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Abstract

The goal of this work is to build flexible video-language models that can generalize
to various video-to-text tasks from few examples. Existing few-shot video-language
learners focus exclusively on the encoder, resulting in the absence of a video-to-
text decoder to handle generative tasks. Video captioners have been pretrained
on large-scale video-language datasets, but they rely heavily on finetuning and
lack the ability to generate text for unseen tasks in a few-shot setting. We propose
VidIL, a few-shot Video-language Learner via Image and Language models,
which demonstrates strong performance on few-shot video-to-text tasks without the
necessity of pretraining or finetuning on any video datasets. We use image-language
models to translate the video content into frame captions, object, attribute, and
event phrases, and compose them into a temporal-aware template. We then instruct
a language model, with a prompt containing a few in-context examples, to generate
a target output from the composed content. The flexibility of prompting allows
the model to capture any form of text input, such as automatic speech recognition
(ASR) transcripts. Our experiments demonstrate the power of language models in
understanding videos on a wide variety of video-language tasks, including video
captioning, video question answering, video caption retrieval, and video future
event prediction. Especially, on video future event prediction, our few-shot model
significantly outperforms state-of-the-art supervised models trained on large-scale
video datasets. Code and processed data are publicly available for research purposes
athttps://github.com/MikeWangWZHL/VidIL.

1 Introduction

One major gap between artificial intelligence and human intelligence lies in their abilities to generalize
and perform well on new tasks with limited annotations. Recent advances in large-scale pre-trained
generative language models [45, 6, 71, 24] have shown promising few-shot capabilities [72, 43, 63] in
understanding natural language. However, few-shot video-language understanding is still in its infancy.
A particular limitation of most recent video-language frameworks [28, 21, 61, 68, 67, 25, 64, 34] is
that they are encoder-only, which means they do not have the ability to generate text from videos for
purposes such as captioning [62, 57], question answering [60], and future prediction [23]. Meanwhile,
unified video-language models [36, 49] that are capable of language decoding still rely heavily
on finetuning using a large number of manually annotated video-text pairs, therefore cannot adapt
quickly to unseen tasks. Few-shot video-to-text decoding is challenging because the natural language
supervision for learning video-language representation is typically based on subtitles and automatic
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speech recognition (ASR) transcripts [39, 68], which differ significantly from downstream tasks in
terms of distribution and may have poor semantic alignment across vision and text modalities.

We propose to address this problem by harnessing the few-shot power of frozen large-scale language
models, such as InstructGPT [40]. Our inspiration is derived from the fact that humans are excellent
visual storytellers [15], with the ability to piece together a coherent story from a few isolated images.
To mimic this, we propose VidIL, a few-shot Video-language Learner via Image and Language
models, to use image models to provide information about the visual content in the video (as well
as optionally use ASR to represent speech), and then we instruct language models to generate a
video-based summary, answer, or other target output for diverse video-language tasks.

The main challenge of understanding videos
is that, videos contain rich semantics and tem-
poral content at multiple granularities. Unlike
static images which depict objects, attributes
and events in a snapshot, the temporal dimen-
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of this information and its temporal ordering.

To address the unique challenges of videos, we propose to decompose a video into three levels: the
video output, frame captions, and visual tokens (including objects, events, attributes). One major
benefit from this hierarchical video representation is that we can separate the visual and temporal
dimensions of a video. We leverage frozen image-language foundational models at lower levels to
collect salient visual features from the sparsely sampled frames. Specifically, we first leverage a
pretrained image-language contrastive model CLIP [44] to perform visual tokenization, based on
the similarity score between frames and tokens of objects, events and attributes. The tokenization is
done under the guidance of semantics role labeling [14], which provides us with candidate events
with involved objects and related attributes. Next, in order to capture the overall semantics at the
frame level, we employ the pretrained image captioner in the image-language model BLIP [26]
to obtain frame captions. Finally, we instruct a pretrained large language model using in-context
learning [40, 13, 51, 48] to interpret visual tokens and frame captions into the target textual output.
In detail, we temporally order visual tokens and frame captions using specially designed prompts
such as “First...Then...Finally”, to instruct the pretrained language model to track the changes of
objects, events, attributes and frame semantics along the temporal dimension.

Without pretraining or finetuning on any video datasets, we show that our approach outperforms
both video-language and image-language state-of-the-art baselines on few-shot video captioning and
question answering tasks. Moreover, on video-language event prediction, our approach significantly
outperforms fully-supervised models while using only 10 labeled examples. We further demonstrate
that our generative model can benefit broader video-language understanding tasks, such as text-video
retrieval, via pseudo label generation. Additionally, we show that our model is highly flexible in
adding new modalities, such as ASR transcripts.

2 Related Work

2.1 Image-Language Models and Their Applications on Video-Language Tasks

Large-scale image-language pretraining models optimize image-text matching through contrastive
learning [44, 17] and multimodal fusion [65, 27, 58, 66, 35, 52, 8, 29, 73, 70, 18, 16]. Recently,



BLIP [26] proposes a bootstrapping image-language pretraining framework with a captioner and
a filterer which has shown promising performance on various image-language tasks. However,
video-language pretraining [25, 36, 28, 38, 3, 1, 42, 33] is still hindered by noisy and domain-specific
video datasets [74, 22, 39]. Naturally, researchers start to explore transferring the rich knowledge
from image models to videos. Different from the traditional way of representing videos by 3D
dense features [12], recent work [21, 25] proves that sparse sampling is an effective way to represent
videos, which facilitates applying pre-trained image-language models to video-language tasks [37, 11].
Specifically, the image-language model BLIP [26] sets new state-of-the-art on zero-shot retrieval-style
video-language tasks, such as video retrieval and video question answering. However, for generation-
style tasks such as domain-specific video captioning, video-language model UniVL [36] still leads
the performance but highly rely on fine-tuning. In this work, we extend the idea of leveraging
image-language models to a wide variety of video-to-text generation tasks. We further connect image-
language models with language models which empowers our model with strong generalization ability.
We show that the knowledge from both image-language pretraining and language-only pretraining
can benefit video-language understanding in various aspects.

2.2 Unifying MultiModal Tasks with Language Models

The community has paid much attention to connecting different modalities with a unified representa-
tion recently. Text-only generation models, such as T5 [46], have been extended to vision-language
tasks by text generation conditioned on visual features [9, 53, 50, 75, 55]. In order to fully leverage
the generalization power from pretained language models, [63] represents images using text in a
fully symbolic way. [32] includes more modalities such as video and audio, but requires annotated
video-text data to jointly training the language model with the video and audio tokenizer. In this work,
we propose a temporal-aware hierarchical representation for describing a video textually. To our
knowledge, we are the first work to leverage prompting a frozen language model for tackling few-shot
video-language tasks with a unified textual representation. Concurrent work Socratic [69] uses a
zero-shot language-based world-state history to represent long videos with given time stamps, while
our model can quickly adapt to different video and text distributions with few examples. Furthermore,
we show that by injecting temporal markers to the prompt we can make a pre-trained language model
understand fine-grained temporal dynamics in video events. Compared with the concurrent work
Flamingo [2], which requires dedicated vision-language post-pretraining, our framework does not
require to pretrain or finetune on any video data. Our framework is simple and highly modulated
where all the components are publicly available. Additionally, our framework is more flexible on
adding new modalities, e.g., automatic speech recognition, without the need for complex redesigning.

3 Method

We propose a hierarchical video representation framework which decomposes a video into three
levels, i.e., visual token level, frame level and video level. The motivation is to separate the spatial
and temporal dimension of a video in order to leverage image-language and language-only foundation
models, such as CLIP [44] and GPT-3 [6]. All three levels use a unified textual representation which
enables us to leverage the powerful few-shot ability from pretrained language models.

3.1 Frame Level: Image Captioning

Following [21] we first perform sparse sampling to obtain several video frames. Unless otherwise
specified, we sample 4 frames for frame level and 8 frames for visual token level. We then feed each
frame into a pre-trained image-language model to obtain frame level captions. An example can be
found in the blue part of Figure 2. In our experiments, we use BLIP [26], a recent image-language
framework containing both image-grounded encoder and decoder, for generating frame captions. We
follow [26] to do both captioning and filtering on each frame. However, as mentioned in Section 1,
videos contain rich semantics and temporal contents at multiple granularities. It is not enough to
generate video-level target text such as video captions solely based on frame captions. Thus, we
further perform visual tokenization for each frame to capture features at a finer granularity.
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Figure 2: Overview of VidIL framework. We represent a video in a unified textural representation
containing three semantic levels: visual token level, frame level, and video level. At visual token
level, we extract salient objects, events, attributes for each sampled frame. At frame level, we perform
image captioning and filtering. At video level, we construct video representation by aggregating
the visual tokens, frame captions and other text modalities such as ASR, using a few-shot temporal-
aware prompt. We then feed the prompt to a pre-trained language model together with task-specific
instructions to generate target text for a variety of video-language tasks. Examples of the full prompt
for different tasks can be found in Appendix ??.

3.2 Visual Token Level: Structure-Aware Visual Tokenization

At this level, we aim to extract the textual representations of salient visual token types, such as
objects, events and attributes. We found that pre-defined classes for classification, such as those in
ImageNet [10], are far from enough for covering the rich semantics in open-domain videos. Thus,
instead of using classification-based methods for visual tokenization as in previous work [32, 63],
we adopt a retrieval-based visual tokenization approach by leveraging pre-trained contrastive image-
language models. Given a visual token vocabulary which contains all candidate object, event, and
attribute text phrases, we compute the image embedding of a frame and the text embeddings of the
candidate visual tokens using a contrastive multi-modal encoder, CLIP [44]. We then select top 5
visual tokens per frame based on the cosine similarity of the image and text embeddings. An example
of the extracted object tokens can be found in the green part of Figure 2.

Unlike in images where objects and attributes already cover most visual features, events are more
informative in videos. In order to discover events from video frames, we construct our own event
vocabulary by extracting event structures from Visual Genome [19] synsets® using Semantic Role
Labeling. Specifically, we first select the phrases that contain at least one verb and one argument
as events. Then we remove highly similar events based on their sentence similarity using Sentence-
BERT [47] embeddings. For object vocabulary, we adopt Openlmage [20] full classes (~20k), instead
of using the visually groundable subset (~600) as in concurrent work [69]. We found that using large
but noisy vocabulary is more effective than using small but clean vocabulary in our retrieval-based
setting with CLIP. For attribute vocabulary, we adopt visual genome attribute synset. In Section 4.6,
we provide ablation study on the impact of different types of visual tokens. The statistics of visual
token vocabulary can be found in Appendix Table ??.

3We use the keys in Visual Genome [19] object synsets which contains frequent <verb,object> pairs.
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Figure 3: Temporal-aware prompt successfully distinguishes the Sunset and Sunrise scenarios based
on the temporal ordering change of objects and frame captions, while the static prompt fails.

3.3 Video Level: Temporal-Aware Few-shot Prompting

Once we obtain the textual representation from frame level and visual token level, the final step is
to put the pieces together to generate a video level target text. The goal is to build a model that
can be quickly adapted to any video-to-text generation task with only a few examples. To this
end, we propose to leverage large-scale pre-trained language models, such as GPT-3 [6], with a
temporal-aware few-shot prompt. As shown in Figure 2, our framework can be readily applied to
various video-to-text generation tasks, such as video captioning and video question answering, with a
shared prompt template. The proposed prompting strategy enables a language model to attend to the
lower level visual information as well as taking into account the temporal ordering.

Here, we use the video captioning task depicted in Figure 2 to illustrate the details. The few-shot
prompt consists of three parts: instruction, few-shot context, and task query. The instruction
is a concise description of the generation task, e.g., "Generate a video caption based on
the objects, events, attributes and frame captions. Example:", which is proved
to be effective in zero-shot and few-shot settings [0, 59]. The few-shot context contains the
selected in-context examples as well as the test video instance. Each video instance is repre-
sented by the aggregated visual tokens®, e.g., "Objects: First, bath toy. Then,...",
the frame captions, such as "Frame Captions: First, a toddler playing in a bathtub
filled with toys. Then,...", and the ASR inputs if available, e.g., "Subtitle:<ASR
Transcript>". Finally, the task query is a task-specific suffix indicating the target text format,
e.g. "Video Caption:". For in-context examples (omitted here for simplicity), the task query is
followed by ground truth annotation, while for the test instance, the generation starts at the end of the
task query.

Formally, we denote the instruction line as t, few-shot context as c, the task query as q, and the target
text as y, where y = (y1, Y2, ..., y1.). The generation of the next target token y; can be modeled as:

yi = argmax p(yls, ¢, q,y<i1) (1)
Y

In order to capture the temporal dynamics between frames and visual tokens, we further propose to
inject temporal markers to the prompt. As shown in the few-shot context in Figure 2, each visual
token and frame caption is prefixed with a natural language phrase indicating its temporal ordering,
e.g., "First,","Then,", and "Finally,". We found adding the temporal marker can make the
language model conditioned on not only literal but also temporal information of the context. We show
an example in Figure 3, where we compare our temporal-aware prompt with a static prompt on video
captioning using InstructGPT. Again, the in-context examples are omitted here, which can be found
in Appendix ??. In this example, the only difference between these two contexts is the ordering of
the visual tokens and the frame captions. For the context on the left, where "sun moving" appears
before "night sky", we are expected to see a story talking about sunset, while for the context on
the right, we are expected to see sunrise. We can see the static prompt generates captions about
sunset for both contexts, while the temporal-aware prompt can capture temporal ordering correctly
and generate sunrise for the context on the right.

“To obtain video level visual tokens, the visual tokens extracted from each frame are further ranked and
ordered based on frequency and frame index. More details can be found in Appendix ??.



4 Experiments

4.1 Experimental Setup

To comprehensively evaluate our model, we show results on four video-language understanding
tasks in few-shot settings: video captioning, video question answering (QA), video-language event
prediction, and text-video retrieval. We compare our approach with state-of-the-art approaches on
five benchmarks, i.e, MSR-VTT [62], MSVD [7], VaTeX [57], YouCook2 [74], and VLEP [23]. The
statistics of the datasets can be found in Table 1. For more details please refer to Appendix 2?.

Implementation Details. We use CLIP-L/14° Table 1: Statistics of datasets in our experiments
as our default encoder for visual tokenization.
We adopt BLIP captioning checkpoint’ fine- Dataset Task
tuned on COCO [31] for frame captioning. We

Split Count
# train / # eval

MSR-VTT [62] Captioning; QA 6,513 /2,990
use InstructGPT [fl()] as our defaplt language MSR.VTT [62] Re?rieval zQ 770107 1,000
model for generating text conditioned on the y\isvp 7] Question Answering 30,933 / 13,157
few-shot prompt. To construct event vocabulary, vaTeX v1.15[57] Captioning; Retrieval 25,991 / 6,000
we use the semantic role labeling model from  YouCook2 [74] Captioning 10,337 /3,492
AllenNLP?. The experiments are conducted on ~ VLEP [23] Event Prediction 20,142/ 4,192

2 NVIDIA V100 (16GB) GPUs. All few-shot
finetuning on baselines and semi-supervised training are performed on 2 Nvidia V100 16G GPUs.

In-context Example Selection. From our preliminary experiments, we find that the generation
performance is sensitive to the quality of in-context examples. For example, for QA tasks such
as MSVD-QA where the annotations are automatically generated, the <question, answer> pair in
randomly selected in-context examples can be only weakly-correlated with the video context. Thus,
instead of using a fixed prompt for each query, we dynamically filter out the irrelevant in-context
examples. Specifically, given a randomly sampled M-shot support set from the training set, we select
a subset of N-shots as in-context examples based on their SentenceBERT [47] similarities with text
queries. Furthermore, we reorder the selected examples in ascending order based on the similarity
score to account for the recency bias [72] in large language models. For QA tasks, we choose the
most relevant in-context examples by comparing with questions. While for captioning task, we
compare with frame captions. If not otherwise specified, we use M=10 and N=5, which we consider
as 10-shot training.

4.2 Few-shot Video Captioning

We report BLEU-4 [41], ROUGE-L [30], METEOR [5], and CIDEr [54] scores on three video caption-
ing benchmarks covering both open-domain (MSR-VTT, VaTeX) and domain-specific (YouCook?2)
videos. We compare with both state-of-the-art video captioner (UniVL [36]) and image captioner
(BLIP [26]). In order to implement the BLIP baseline for few-shot video captioning, we extend the
approach used for text-video retrieval evaluation in [26] to video-language training. Specifically,
we concatenate the visual features of sampled frames and then feed them into the image-grounded
text-encoder to compute the language modeling loss. This is equivalent to stitching the sampled
frames into a large image and then feeding it to BLIP for image captioning. We found that this simple
approach results in very strong baselines.

As shown in Table 2, existing methods have strong bias on certain datasets. For example, UniVL
performs well on YouCook2 but fails on MSR-VTT and VaTeX, while BLIP performs the oppo-
site. This is because UniVL is pretrained on HowTol100M which favors instructional videos, i.e.,
YouCook2, while BLIP is pre-training on image-caption pairs which favors description-style captions,
i.e., MSR-VTT and VaTeX. On the contrary, our model performs competitively on both open-domain
and instructional videos, and significantly outperforms the baselines on the average CIDEr score
across all three benchmarks. This indicates that by leveraging language models, we can maintain
strong few-shot ability regardless of the video domain or the target caption distribution.

*https://huggingface.co/openai/clip-vit-large-patchl4

"https://github.com/salesforce/BLIP#finetuned-checkpoints

$https://docs.allennlp.org/models/main/models/structured_prediction/predictors/
srl/
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Table 2: 10-shot video captioning results. #® indicates concurrent work. The reported Flamingo [2]
results are using 16 shots. #Videopr represents the number of videos used for pre-training. B-4, R-L,
M, C represents BLEU-4, ROUGE-L, METEOR and CIDEr. Avg C represents the average CIDEr
score across all available benchmarks. ASR indicates whether the model has access to the ASR
subtitles. BLIP and BLIP,,, use the pretrained checkpoint and the finetuned checkpoint on COCO
captioning. All results are averaged over three random seeds.

. MSR-VTT Caption| YouCook2 Caption VaTex Caption
Method #Videorr ASRIg 4R’ M C [B4RL M C |B4RL M ¢ |A8C
Few-shot
UniVL 12M No | 2.1 225 95 36|33 253 11.6 34.1 | 1.7 157 80 2.1 133
BLIP 0 No |27.7 43.0 23.0 39.5| 0.7 9.0 34 11.5|13.5 39.5 154 20.7| 23.9
BLIP qp 0 No |21.6 48.0 22.7 30.2| 3.7 8.6 3.8 9.4 |20.7 41.5 17.4 28.9| 22.8
VidIL(ours) 0 No |26.0 51.7 24.7 36.3| 2.6 229 9.5 27.0 |22.2 43.6 20.0 36.7| 33.3
UniVL 12M Yes | - - - - |43 264 122 48.6 | 2.7 17.7 102 34| 26.0
VidIL(ours) 0 Yes| - - - - |10.7 35.9 19.4 111.6(23.2 44.2 20.6 38.9| 75.3
AFlamingo-3B(16) 27M No | - - - - | - - - 72| - - - 51| -
*Flamingo-80B(16) 27M No | - - - - - - 842 | - - - 628 -
Fine-tuning
UniVL 1.2M No [42.0 61.0 29.0 50.1|11.2 40.1 17.6 127.0]22.8 38.6 22.3 33.4| 70.2
UniVL 1.2M Yes | - - - - |16.6 45.7 21.6 176.8(23.7 39.3 22.7 35.6| 106.2

As discussed in Section 1, video captions describe the content in various semantic levels. The N-gram
based metric may not fairly reflect the models’ performance in capturing the video-caption alignment.
We further verify this hypothesis in Section 4.5. Thus, in addition to automatic metrics, we include
qualitative examples illustrated in Figure 4. More examples are in Appendix 2?.

Additionally, for most existing methods and also concurrent work, e.g., Flamingo [2], adding a
new modality often requires a dedicated model redesign or retraining. However, the nature of our
framework, where we use a unified textual representation for each level, makes it highly flexible for
incorporating new modalities. As shown in row 6 in Table, our model can effectively utilize extra
information from ASR to obtain significantly better few-shot performance on certain datasets such as
YouCook?2.

MSR-VTT Caption YouCook2 Caption VaTex Caption
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commentator Up" with a wood burning kit.

Ground Truths: Ground Truth: Ground Truth: Someone uses a wood burning

« 2 men are discussing sports on a talk show || ¢ remove sausages from pan tool to burn a design into a slice of wood and

* aman being interviewed on a tv show then begins to brush polyurethane unto it.

Figure 4: Qualitative examples on video captioning. Grey boxes contain part of the video repre-

sentation from our model. Blue boxes contain caption generation from different models.
contain ground truth annotations. Bold green text highlights the correct information that is not

captured in baseline outputs which can be reasoned from our visual tokens and frame captions.

4.3 Few-shot Video Question Answering

We compare the test accuracy of our approach with few-shot pretrained BLIP, BLIPy g 4 [26], and
concurrent work Flamingo [2] on two video question answering benchmarks, MSR-VTT_QA and
MSVD_QA. BLIPy g 4 represents finetuned BLIP on VQA [4] dataset, which is the previous SOTA



on zero/few-shot video question answering. In order to have fairer comparison with BLIPy g 4, we
reduce the shot number to 5 and report the average accuracy on three sets of randomly selected
5-shot examples. As shown in Table 3, our method outperforms previous SOTA by a large margin.
Comparing with concurrent work Flamingo, which is post-pretrained on a large number of video-text
data, our model is training-free and did not observe any video data. However, with only image-
language and language-only knowledge, our 5-shot model is able to outperform 8-shot Flamingo-3B
and achieve on-par performance with 4-shot Flamingo-80B.

Table 3: Video QA results. BLIPy g 4 is finetuned on VQA [4]. 4 in- Table 4: Accuracy (%) on
dicates concurrent work. PT, FT indicates pretraining and finetuning. VLEP hidden test set.

Method #videopy #videorr MSR-VTT MSVD Method #videopr Acc

BLIP 0 0-shot 0.55 0.45

BLIP 0 5-shot 0.84 0.53 VLEP [23] . 20142675
MERLOT [68] 20142 68.4

BLIPy g4 [26] 0 0-shot 19.2 35.2 ;

VidIL(ours) 0 5-shot 21.2 39.1 VidIL(ours) — 10-shot  72.0

*Flamingo-3B [2] 27IM 4-shot 14.9 33.0 Human -9

#Flamingo-3B [2] 27M 8-shot 19.6 37.0

"Fluming()—?ﬂ()B [2] 27TM 4-shot 23.9 41.7

“‘Flamingo—SOB [2] 27TM 8-shot 27.6 45.5

ALPRO [25] 2M full-shot 42.1 459

4.4 Few-shot Video-Language Event Prediction

In this section, we show that our model not only can answer questions about the video visual features
but also answering "What is more likely to happen next?". Given a video with associated subtitle
transcript as premise, the video-language event prediction (VLEP) task is to predict the most likely
future event. The original VLEP [23] paper formulates the problem as a binary classification problem
where the model will be chosen from two possible future event candidates. Instead, we formulate this
problem as another video-to-text generation problem to fit into our framework. Figure 5 depicts an
example with the same format as in Figure 2. Similar to the evaluation setting in QA, the generated
free-form text will first be mapped to one of the two candidate answers using SentenceBert [47], and
then calculate the accuracy. In Table 4, we report accuracy on the hidden test set of VLEP [23]. To our
surprise, our 10-shot model outperforms state-of-the-art fully-supervised baseline, i.e., MERLOT [68],
by a large margin (~ 4%). This shows that our model has strong few-shot ability not only on video-
language understanding but also on prediction. Since event prediction tasks rely heavily on temporal
ordering, we show that with the proposed temporal-aware prompting, language models can be guided
to capture temporal dynamics between historical and future events.

Task: Video Language Event Prediction (VLEP)

'Instruction E (Predict what is more likely to happen next based on the frame captions and dialogue. Example: )
'/_F_e;lv_—éf;(;t_:i Frame Captions: First, a man in a black shirt is serving food. Then, a group of people in a kitchen preparing food ...

. Context i | Dialogue: | took a portion of it, you can smell the onions. You can smell kind of a spice like cinnamon a little bit ...
:—V_Ie_p_'lja_s_k-ji Question: What is more likely to happen next? A: He puts the hot sauce on the food. B: The chef will serve the food.

| Query :,' Answer: The chef will serve the food.

Figure 5: Prompt for VLEP task.

4.5 Semi-supervised Text-Video Retrieval

In addition to video-to-text generation tasks, we show that a broader range of video-language tasks
can benefit from our few-shot video captioner from a data perspective. Here, we consider a low-
budget semi-supervised setting where we only have a few labeled video-caption pairs and a large
amount of unlabeled videos. The idea is to leverage our video captioner to generate pseudo labels for
training any given vision-language models. As a case study, we evaluate on two text-video retrieval
benchmarks, i.e., MSR-VTT and VaTeX. We use greedy decoding to generate pseudo caption for
each video in the training set. We then train an identical base model, i.e., BLIP, using different pseudo
labeled data as well as ground truth annotations. We report Recall @ 1 and 5 for both video-to-text



Table 5: Semi-supervised text-video retrieval with 10 labeled examples. Vel OF Viypiapel are the
number of labeled and unlabeled videos, respectively. ¢_RI and #_R denote video-to-text Recall@ 1
and 5. v_RI and v_R5 denote text-to-video Recall@1 and 5.

MSR-VTT Retrieval VaTex Retrieval

Model Pseudo Label Viabel/Vuntabet t_R1 t_R5 v_R1 V_RS|Viahet/Vuniaver t_R1 t_RS5 v_R1 v_RS
BLIP - - 332 572 405 628 - 28.2 534 34.0 58.6
BLIP UniVL 10/7010 33.1 57.3 33.6 57.7| 10/22685 25.5 47.7 26.1 49.1
BLIP BLIP 10/7010 356 60.8 39.8 604 | 10/22685 263 50.5 29.3 53.6
BLIP BLIP.qp 10/7010 353 58.0 39.1 633 | 10/22685 239 46.8 27.5 49.7
BLIP VidIL(ours) 10/7010 39.6 64.5 40.8 65.2 | 10/22685 33.3 59.1 33.7 59.5
BLIP Ground Truth | 7010/0 43.6 662 43.1 672 | 22685/0 40.1 664 40.1 66.6
ALPRO [25] Ground Truth | 140200/0 32.0 60.6 33.9 60.7 - - - - -

DRL [56] Ground Truth | 180000/0 54.1 77.4 529 78.5 - - - - -

and text-to-video retrieval. Table 5 shows that through training on our pseudo labels, we can achieve
significant improvements compared with zero-shot BLIP. We also show that the performance gain
is not simply a result of training on more data, since finetuning on the pseudo labels generated by
other baselines (UniVL, BLIP) is less effective and can even hurt the performance. Furthermore, on
MSR-VTT Recall @ 5 we can even achieve comparable performance against BLIP model finetuned
on full ground truth annotations.

Another interesting observation is that, compared with the video captioning results in Table 2, we
found that the gain of our model over baselines on text-video retrieval is more visible than on
captioning. A key factor in performing well on text-video retrieval tasks is to learn a good video-text
multi-modal alignment. This result shows that our pseudo labels capture richer video-text alignment
that can benefit the retrieval-style downstream task. The N-gram based generation metrics, e.g.,
BLEU, may not be able to fully reflect the alignment information, due to the variety of semantic
levels in video captions. Furthermore, from a data perspective, our video captioner can be viewed
as a data augmentation tool which is capable of generating or augmenting any open-domain video-
language pretraining datasets with minimal human effort. As a result, we can potentially improve
video-language pretraining by constructing a cleaner and more diverse video-text corpus.

Table 6: Impact of visual tokens and temporal dimen-

sion. Table 7: Impact of shot selection. #ICE in-
dicates the number of in-context examples in
Video Representation Avg! Std) the prompt. Details of in-context example
selection are in the Appendix.
Frame 39.6 3.7
Frame+Object 403 29 #shot w/o selection w/ selection
Visual Frame+Object+Event 399 28 #ICE Avg? Std| | #ICE Avg? Std]
Token Frame+Object+Attibute 409 29
Frame+Object+Event+Attribute 40.8 2.4 ?o 150 i?:g g:é 2 jg:g ;;i
Temporal Reduce to one frame 385 24 20 20 426 33 5 422 20
Reverse temporal order 40.7 1.7 30 30 400 29 5 411 19

4.6 Ablation Studies

We perform comprehensive ablation studies on our few-shot prompt including the impact of different
video representation, number of shots and in-context selection. All the ablation results are evaluated
on MSVD_QA validation set, and we report the mean and standard deviation of each setting on three
sets of randomly sampled shots. For the cases with in-context example selection, we further select
5 examples as in-context examples from the sampled shots, while for the cases without in-context
selection, all shots will be feed into the prompt. In Table 6, we show adding visual tokens consistently
improves not only the model accuracy but also the model variance. A lower standard deviation
indicates that the model is less sensitive to the few-shot sampling.

To further demonstrate the impact of the additional temporal dimension of videos, we perform two
ablations on the "Frame+Object+Event+Attribute" setting. First, we reduce the number of



frame captions and visual tokens to be one’ for each video. We found that the performance drops
significantly compared with using the default four frames, which indicates the model’s ability to
incorporate information from multiple timestamps. Further, we found that fine-grained temporal
modeling is rarely required for performing well on current video-language benchmarks. As shown in
the ablation result where we reverse the order of all visual tokens and frame captions, the performance
decreased only marginally, which indicates that current benchmarks may not be sufficient in reflecting
the benefits from better temporal ordering.

In Table 7, we first show that, with the same context length, namely, 5 in-context examples, in-context
example selection significantly increases the performance as well as the robustness. At 10-shot, and
20-shot, directly fitting more shots into the prompt results in better performance. In-context selection
achieves slightly lower performance but with significantly better efficiency due to shorter context.
Interestingly, at 30-shot, in-context selection with 5 examples outperforms directly adding all 30
shots into the prompt. This is showing that in-context selection can help the model utilize a larger
number noisy video examples. Nevertheless, we still observe that the benefit of adding more shots
saturated at around 20 to 30 shots, even if with in-context selection. we view this as a remaining
challenging on how to make language models benefit from longer contexts.

5 Conclusions, Limitations and Future Work

This paper proposes VidIL, a few-shot Video-language Learner via Image and Language models.
It demonstrates the strong ability of large-scale language models on performing video-to-text tasks
when frame features are provided as unified text representations using image-language models. We
propose a temporal order aware prompt by decomposing videos into a hierarchical structure, which is
able to plug in multiple levels of frame features, along with speech transcripts. Without pretraining
on videos, our model outperforms vision-language models learned from large-scale video datasets
on a variety of few-shot tasks, such as domain-specific captioning, question answering, and future
event prediction. One limitation of using unified textual representation is that we might lose low-level
visual features which can be essential for some specific tasks, such as fine-grained spatial visual
question answering. We also observe that current video-language benchmarks rarely require explicit
temporal tracking on the frames and visual tokens. Future work will focus on leveraging large-scale
language models for learning script knowledge from long videos where temporal dynamics are better
emphasized.

6 Broader Impact

An open-domain few-shot video-language learner has a wide range of beneficial applications for
society, such as automatically detecting violent or mature content in videos and helping people with
vision impairment understand videos. However, since the language model is pretrained on massive
internet-scale text data, there might be unexpected output that can have potential negative impact
on the society, such as bias against people of a certain gender, race or sexuality. Future work and
dedicated collaboration from the community are needed to alleviate the potential negative societal
impact of large language models.
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