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ABSTRACT

The prevalence of graph structures has attracted a surge of research interest in
graph data. As many graph-based tasks exploit recurring subgraph patterns on
graphs, subgraph isomorphism counting becomes an important problem. Classical
methods usually boil down to a backtracking framework that needs to navigate a
huge search space with prohibitive computational cost due to the #P-completeness
of the problem. Some recent studies resort to graph neural networks (GNNs) to
learn a low-dimensional representation for both the query and the input graph, in
order to predict the number of subgraph isomorphisms on the input graph. How-
ever, typical GNNs employ a node-centric message passing mechanism that re-
ceives and aggregates messages on nodes. While effective on node-oriented tasks,
they become inadequate in complex structure matching for isomorphism count-
ing. Moreover, given an input graph, the space of possible query graphs is enor-
mous, and different parts of the input graph will be triggered to match different
queries. Thus, expecting a fixed representation of the input graph to match di-
versely structured query graphs is unrealistic. In this paper, we propose a novel
GNN called COUNT-GNN for subgraph isomorphism counting, to deal with the
above challenges. At the edge level, we resort to an edge-centric message passing
scheme, where messages on edges are propagated and aggregated based on the
edge adjacency. By treating edges as first-class citizens, COUNT-GNN is able to
preserve fine-grained structural information, given that an edge is an atomic unit
of encoding graph structures. At the graph level, we modulate the input graph
representation conditioned on the query, so that the input graph can be adapted
to each query individually to improve their matching. To demonstrate the effec-
tiveness and efficiency of COUNT-GNN, we conduct extensive experiments on a
number of benchmark datasets. Results show that COUNT-GNN achieves supe-
rior performance in comparison to the state-of-the-art baselines.

1 INTRODUCTION

Graph structures are prevalent in real-world scenarios, catalyzing intensive research in network sci-
ence and graph mining and learning. To discover graph-based insights, much research finds and
exploits recurring subgraph patterns on an input graph. For example, on a protein network, we could
query for the hydroxy groups which consist of one oxygen atom covalently bonded to one hydrogen
atom; on a social network, we could query for potential families in which several users form a clique
and two of them are working and the rest are studying. These queries essentially describe a subgraph
pattern that repeatedly occurs on different parts of an input graph, which expresses certain semantics
such as the hydroxy groups or families. These subgraph patterns are also known as network mo-
tifs on homogeneous graphs (Milo et al. (2002)) or meta-structures on heterogeneous graphs (Sun
et al. (2011); Fang et al. (2016)). To leverage their expressiveness, more sophisticated graph mod-
els (Monti et al. (2018a); Sankar et al. (2019); Wang et al. (2019b)) have also been designed to
specifically incorporate motifs or meta-structures.

The need for subgraph patterns in graph-based tasks and models leads to a high demand of subgraph
isomorphism counting (Liu et al. (2020)), a significant problem yet to be adequately addressed.
Classical methods for subgraph isomorphism detection and counting usually resort to search-based
algorithms such as backtracking (Ullmann (1976); Cordella et al. (2004); He & Singh (2008)). Al-
though they can exhaustively detect the isomorphisms and return an exact count, their computational
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costs are often excessive given that the problem is NP-complete (the counting form is #P-complete).
With the rise of graph neural networks (GNNs) (Wu et al. (2020)), some recent approaches for sub-
graph isomorphism counting also leverage on the powerful graph representations from GNNs (Liu
et al. (2020); Zhengdao et al. (2020)). They generally employ GNNs to embed the query and input
graph into low-dimensional vectors, which are further fed into a counter module to predict the ap-
proximate number of isomorphisms on the input graph. Compared to classical approaches, they can
significantly save computational resources and time at the expense of approximation. The empirical
erros are usually within a tolerable margin, providing a useful trade-off between the accuracy and
computational cost since many applications do not necessarily need an exact count.

However, previous GNN-based isomorphism counting models utilize a node-centric message pass-
ing mechanism, which propagates and aggregates messages on nodes. While this mechanism can
be effective for node-oriented tasks, it falls short of matching complex structures for isomorphism
counting. In particular, they usually rely on message aggregation for local view representations cen-
tering on nodes, failing to fundamentally capture the subtle structures especially the link adjacency
which is the atomic element in network structures, exposing a bottleneck of prior studies. Thus,
as the first challenge, how do we capture fine-grained structural information beyond node-centric
GNNs? Moreover, even for the same input graph, the space of possible query graphs is enormous.
Different queries are often characterized by distinct structures that match with different parts of the
input graph. A fixed representation to match with all possible queries is likely to underperform.
Thus, as the second challenge, how do we adapt the input graph to each query individually, in order
to improve the matching of specific structures in every query?
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Figure 1: Illustration of COUNT-GNN.

In this paper, we propose a novel
model called COUNT-GNN for
subgraph isomorphism count-
ing, which copes with the above
challenges from both the edge
and graph perspectives. To be
more specific, at the edge level,
COUNT-GNN is built upon an
edge-centric GNN that propa-
gates and aggregates messages
on and for edges based on the edge adjacency, as shown in Fig. 1(a). Given that edges consti-
tute the atomic unit of graph structures, any subgraph is composed of one or more edge chains.
Thus, treating them as first class citizens can better capture fine-grained structural information. At
the graph level, COUNT-GNN resorts to a modulation mechanism (Perez et al. (2018)) by adapting
edge-centric graph representations to each query graph, as shown in Fig. 1(b). As a result, the input
graph can be tailored to each query individually, which may differ significantly in their structures.
Coupling the two perspectives, COUNT-GNN is able to precisely match complex structures between
the input graph and structurally diverse queries.

To summarize, our contributions are three-fold. (1) We propose a novel model COUNT-GNN that
capitalizes on edge-centric aggregation to encode fine-grained structural information, to improve
structure matching between the queries and input graph from the edge perspective. (2) Moreover,
we design an query-conditioned graph modulation in COUNT-GNN, to adapt structure matching
to different queries from the graph perspective. (3) Extensive experiments on several benchmark
datasets demonstrate that COUNT-GNN can significantly outperform state-of-the-art GNN-based
models on subgraph isomorphism counting.

2 PROBLEM FORMULATION

A graph G = (VG , EG) is defined by a set of nodes VG , and a set of edges EG between the nodes. In
our study we consider the general case of directed edges, where an undirected edge can be treated
as two directed edges in opposite directions. In our problem, we further consider labeled graphs
(also known as heterogeneous graphs), in which there exists a node label function ℓ : VG → L and
an edge label function ℓ′ : EG → L′, where L and L′ denote the set of labels on nodes and edges,
respectively. A graph S = (VS , ES) is a subgraph of G, written as S ⊆ G, if and only if VS ⊆ VG
and ES ⊆ EG .
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Figure 2: Overall framework of COUNT-GNN.

We are now ready to present the formal definition of subgraph isomorphism on a labeled graph,
followed by our problem formulation.
Definition 1 (Labeled Subgraph Isomorphism). Consider a subgraph S of some input graph, and a
query graph Q. The subgraph S is isomorphic to the query Q, written as S ≃ Q, if there exists a
bijection between their nodes, ψ : VS → VQ, such that

• ∀v ∈ VS , ℓ(v) = ℓ(ψ(v));

• ∀e = ⟨u, v⟩ ∈ ES , it must hold that e′ = ⟨ψ(u), ψ(v)⟩ ∈ EQ and ℓ′(e) = ℓ′(e′).

In our problem of subgraph isomorphism counting, we are given a query graph Q and an input
graph G. We aim to predict n(Q,G), the number of subgraphs of G which are isomorphic to Q, i.e.,
the cardinality of the set {S|S ⊆ G,S ≃ Q}. Note that this is a non-trivial #P-complete problem
(Cordella et al. (2004)). In practice, the query Q usually has a much smaller size than the input
graph G, i.e., |VQ| ≪ |V | and |EQ| ≪ |E|, leading to a huge search space and computational cost.

3 THE PROPOSED MODEL: COUNT-GNN

In this section, we first present the overall framework of COUNT-GNN. Next, we illustrate each
module as well as the overall objective.

3.1 OVERALL FRAMEWORK

We give an overview of the proposed COUNT-GNN in Fig. 2. Consider some query graphs and
an input graph in Fig. 2(a). On both the query and input graphs, we first conduct edge-centric
aggregation in which messages on edges are propagated to and aggregated for each edge based on
the edge adjacency, as shown in Fig. 2(b). This module operates at the edge level, and enables us to
learn edge-centric representations for both input graphs and queries that capture their fine-grained
structural information for better structure matching. Furthermore, to be able to match diverse queries
with distinct structures, the edge-centric graph representations are modulated conditioned on each
query, as shown in Fig. 2(c). The module operates at the graph level, and enables us to adapt the
input graph to each query individually to improve the matching of specific structures in each query.
Finally, as shown in Fig.(d), a counter module is applied to predict the isomorphism counting on the
input graph for a particular query, forming the overall objective.

3.2 EDGE-CENTRIC AGGREGATION

Typical GNNs (Kipf & Welling (2017); Veličković et al. (2018); Hamilton et al. (2017)) and GNN-
based isomorphism counting models (Liu et al. (2020); Zhengdao et al. (2020)) resort to the key
mechanism of node-centric message passing, in which each node receives and aggregates messages
from its neighboring nodes. For the problem of subgraph isomorphism counting, it is crucial to
capture fine-grained structural information for more precise structure matching between the query
and the input graph. Consequently, we exploit edge-centric message passing, in which each edge
receives and aggregates messages from adjacent edges. The edge-centric GNN captures structural
information more explicitly given that edges represent the fundamental, atomic unit of graph struc-
tures.
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To ground our study, we learn a representation vector for each edge by propagating messages on
edges. A message can be an input feature vector of the edge in the input layer of the GNN, or an
intermediate embedding vector of the edge in subsequent layers. Specifically, given a directed edge
e = ⟨u, v⟩, we initialize its message as a d0-dimensional vector h0

⟨u,v⟩ = xu ∥ x⟨u,v⟩ ∥ xv ∈
Rd0 , where x∗ encodes the input features of the corresponding nodes or edges and ∥ denotes the
concatenation operator. In general, h0

⟨u,v⟩ ̸= h0
⟨v,u⟩ for directed edges. Note that, in the absence of

input features, we can employ one-hot encoding as the feature vector; it is also possible to employ
additional embedding layers to further transform the input features into initial messages.

Given the initial messages, we devise an edge-centric GNN where each edge receives and aggregates
messages along the directed edges recursively in multiple layers. Formally, in layer l, the message
on a directed edge ⟨u, v⟩, denoted hl

⟨u,v⟩ ∈ Rdl , is updated as

hl
⟨u,v⟩ = σ(Wlhl−1

⟨u,v⟩ +Ulhl−1
⟨·,u⟩ + bl), (1)

where Wl, Ul ∈ Rdl×dl−1 are learnable weight matrices, bl ∈ Rdl is a learnable bias vector, and
σ is an activation function (we use LeakyReLU in the implementation). In addition, hl−1

⟨·,u⟩ ∈ Rdl−1

is the intermediate message aggregated from the preceding edges of ⟨u, v⟩, i.e., edges incident on
node u from other nodes, which can be formalized as

hl−1
⟨·,u⟩ = AGGR({hl−1

⟨i,u⟩|⟨i, u⟩ ∈ E}), (2)

whereE denotes the set of directed edges in the graph (either the query or input graph), and AGGR(·)
is an aggregation operator to aggregate messages from the preceding edges. We implement the
aggregation operator as a simple mean, although more advanced approaches such as self-attention
(Hamilton et al. (2017)) and sum-pooling (Xu et al. (2019)) can also be employed. To boost the
message passing capacity, more advanced mechanisms can be imported into the layer-wise edge-
centric aggregation, e.g., a residual (He et al. (2016)) can be added to assist the message passing
from previous layers to the current layer.

The above layer-wise edge-centric aggregation is applied to each query and input graph. All query
graphs share one set of GNN parameters (i.e., Wl,Ul,bl), while all input graphs share another
set. On all graphs, the aggregated message on an edge e = ⟨u, v⟩ in the last layer is taken as
the representation vector of the edge, denoted as h⟨u,v⟩ ∈ Rd. Beyond the edge level, COUNT-
GNN fuse the edge-centric representations into a whole-graph representation to facilitate structure
matching between query and input graphs, which we will elaborate in Sect. 3.3.

3.3 QUERY-CONDITIONED GRAPH MODULATION

Toward structure matching between the query and input graph, we derive a whole-graph represen-
tation for each graph by fusing its edge representations. The whole-graph representations will be
leveraged for matching the structures between graphs to predict subgraph isomorphisms.

Query graph representation. We employ a typical readout function (Xu et al. (2019); Lee et al.
(2019); Yao et al. (2020)) for a query graph, by aggregating all edge representations in the query.
Given a query graph Q, its whole-graph representation is computed as

hQ = σ(Q · AGGR({h⟨u,v⟩|⟨u, v⟩ ∈ EQ}), (3)

where Q ∈ Rd×d is a learnable weight matrix shared by all query graphs, and we use sum for
the aggregation. Intuitively, the query graph representation simply pools all edge representations
together uniformly.

Input graph representation. A straightforward way for the input graph representation is to rely
on Eq. (3) as well, which regards all edges uniformly. However, on an input graph, the space
of possible query graphs is enormous. Thus, different queries are often characterized by distinct
structures, which implies that different parts of the input graph will be triggered to match different
queries. Therefore, aggregating all edges in the input graph uniformly cannot retain sufficiently
specific structural properties w.r.t. each query. In other words, using a fixed whole-graph represen-
tation for the input graph cannot tailor to each query individually for effective structure matching.
Thus, we propose to modulate the input graph conditioned on the query, to adapt its whole-graph
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representation to each query uniquely. To this end, we leverage Feature-wise Linear Modulation or
FiLM (Perez et al. (2018)) on the edge representations in the input graph, conditioned on the query,
in order to retain the most specific structures for the query. The modulation is essentially an affine
transformation based on scaling and shifting to adapt the edge representations of the input graph to
the query. Specifically, given an input graph G, for each edge e = ⟨u, v⟩ ∈ EG we modulate its
representation h⟨u,v⟩ into h̃⟨u,v⟩, as follows.

h̃⟨u,v⟩ = (γ⟨u,v⟩ + 1)⊙ h⟨u,v⟩ + β⟨u,v⟩, (4)

where γ⟨u,v⟩, β⟨u,v⟩ ∈ Rd are FiLM factors for scaling and shifting, respectively, ⊙ denotes the
Hadamard product, and 1 ∈ Rd is a vector filled with ones to center the scaling factor around one.
Note that the FiLM factors γ⟨u,v⟩ and β⟨u,v⟩ are not directly learnable, but are instead generated by
a secondary network (Ha et al. (2017)) conditioned on the original edge representation h⟨u,v⟩ and
the query representation hQ. More specifically,

γ⟨u,v⟩ = σ(Wγh⟨u,v⟩ +UγhQ + bγ), (5)

β⟨u,v⟩ = σ(Wβh⟨u,v⟩ +UβhQ + bβ), (6)

where Wγ ,Uγ ,Wβ ,Uβ ∈ Rd×d are learnable weight matrices, and bγ ,bβ ∈ Rd are learnable
bias vectors.

The modulated edge representations can be further fused via a readout function, to result in a modu-
lated whole-graph representation for the input graph tailored toward specific structures in each query.
The adaptation to each query individually enables more precise matching between the input graph
and the query, which ultimately improve subgraph isomorphism counting downstream. Concretely,
consider a query graph Q and input graph G. We formulate the Q-conditioned representation for G,
denoted hQ

G ∈ Rd, by aggregating the modulated edge representations of G in the following.

hQ
G = σ(G · AGGR({h̃⟨u,v⟩|⟨u, v⟩ ∈ EG}), (7)

where G ∈ Rd×d is a learnable weight matrix shared by all input graphs.

3.4 COUNTER MODULE AND OVERALL OBJECTIVE

With the whole-graph representations of the query and input graph, we first capitalize on a counter
module to estimate the count of subgraph isomorphisms, and then design the overall objective.

Counter module. We estimate the count of isomorphisms based on the structure matchability be-
tween the query and input graph. Formally, given the query graph Q and input graph G, we predict
the number of subgraphs of G which are isomorphic to Q by

n̂(Q,G) = RELU(w⊤MATCH(hQ,h
Q
G ) + b), (8)

where MATCH(·, ·) outputs a dm-dimensional vector to represent the matchability between its ar-
guments, and w ∈ Rdm , b ∈ R are the learnable weight vector and bias, respectively. Here a
ReLU activation is used to ensure that the prediction is non-negative. Note that MATCH(·, ·) can be
any function; in our implementation, we adopt a fully connected layer (FCL) and materialize it as
MATCH(x,y) = FCL(x ∥ y ∥ x− y ∥ x⊙ y).

Overall objective. Based on the counter module, we formulate the overall training objective. As-
sume a set of training triples T = {(Qi,Gi, ni)|i = 1, 2, . . .}, where ni is the ground truth count
for query Qi and input graph Gi. The ground truth can be evaluated by classical exact algorithms
(Cordella et al. (2004)). Subsequently, we minimize the following absolute loss during training.

L = 1
|T |

∑
(Qi,Gi,ni)∈T |n̂(Qi,Gi)− ni|+ λ · LFILM + µ · ∥Θ∥22, (9)

where LFILM is a regularizer on the FiLM factors and ∥Θ∥22 is a L2-norm regularizer on the model
parameters, and λ, µ are hyperparameters to control the weight of the regularizers. Specifically, the
FiLM regularizer is designed to smooth the modulations to reduce overfitting, by encouraging less
scaling and shifting as follows.

LFILM =
∑

(Qi,Gi,ni)∈T
∑

e∈EGi
(∥γe∥22 + ∥βe∥22). (10)

We also present the training algorithm as well as the complexity analysis in Appendix A.
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Table 1: Summary of datasets.

# Queries # Graphs # Triples Avg(|VQ|) Avg(|EQ|) Avg(|VG |) Avg(|EG |) Avg(Counts) Max(|L|) Max(|L′|)
SMALL 75 6790 448,140 5.20 6.80 32.62 76.34 14.83 16 16
LARGE 122 3240 395,280 8.43 12.23 239.94 559.68 34.42 64 64
MUTAG 24 188 4,512 3.50 2.50 17.93 39.58 17.76 7 4

4 EXPERIMENTS

In this section, we evaluate the proposed model COUNT-GNN1 for subgraph isomorphism counting,
and further analyze various important aspects of the model.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct the evaluation on three datasets, as summarized in Table 1. In particular,
SMALL and LARGE are two synthetic datasets, which are generated by the query and graph genera-
tors presented by Liu et al. (2020). On the other hand, MUTAG (Zhang et al. (2018)) is a real-world
dataset which consists of 188 nitro compound graphs. These graphs are taken as our input graphs,
while we use the query generator (Liu et al. (2020)) to obtain the query graphs. As each dataset
consists of multiple query and input graphs, we couple each query graph Q with an input graph G to
form a training triple (Q,G, n) with n denoting the ground-truth count given by an exact algorithm
VF2 (Cordella et al. (2004)). More details of the datasets can be found in Appendix B.1.

Baselines. We compare the proposed COUNT-GNN with the state-of-the-art approaches from two
main categories. (1) Conventional GNNs, including GCN (Kipf & Welling (2017)), GAT (Veličković
et al. (2018)), GraphSAGE (Hamilton et al. (2017)), GIN (Xu et al. (2019)) and DiffPool (Ying et al.
(2018)). They capitalize on node-centric message passing, followed by a readout function to obtain
the whole-graph representation. Except DiffPool which utilizes a specialized hierarchical readout,
we employ a sum pooling over the node representations for the readout in other GNNs. (2) GNN-
based isomorphism counting models, including four variants proposed by Liu et al. (2020), namely
RGCN-DN, RGCN-Sum, RGIN-DN, RGIN-Sum, as well as LRP (Zhengdao et al. (2020)). They
are purposely designed GNNs for subgraph isomorphism counting, relying on different GNNs (e.g.,
RGCN (Schlichtkrull et al. (2018)), RGIN (Xu et al. (2019)), or local relational pooling (Zhengdao
et al. (2020))) for node representation learning, followed by a specialized readout suited for isomor-
phism matching, e.g., DiamNet (Liu et al. (2020)). In particular, the two variants RGCN-DN and
RGIN-DN utilize DiamNet, whereas RGCN-Sum and RGIN-Sum utilize the simple sum-pooling.
Finally, we also compare to a classical approach VF2 (Cordella et al. (2004)), which evaluates exact
counts as the ground truth. We provide further details and settings for the baselines in Appendix B.2.

Settings and parameters. For SMALL and LARGE datasets, we randomly sample 5000 triples
for training, 1000 for validation, and the rest for testing. For MUTAG, due to its small size, we
randomly sample 1000 triples for training, 100 for validation and the rest for testing. We also
conduct experiments with different training splits to evaluate the performance in Appendix C.1. We
report further parameter settings in Appendix B.3.

Evaluation. We employ mean absolute error (MAE) and Q-error (Zhao et al. (2021)) to evaluate
the effectiveness of COUNT-GNN. While the widely used MAE measures the magnitude of error
in the prediction, Q-error measures a form of relative error defined by max(nn̂ ,

n̂
n ), where n denotes

the ground-truth count and n̂ denotes the predicted count. Both metrics are better when smaller: the
best MAE is 0 and the best Q-error is 1. We further report the inference time for all the approaches
in order to evaluate their efficiency, while training time comparisons are included in Appendix C.2.
We repeat all experiments with five runs, and report their average results and standard deviations.

4.2 PERFORMANCE EVALUATION

To comprehensively evaluate the performance, we compare COUNT-GNN with the baselines in two
settings: (1) a main setting with triples generated by all the query graphs and input graphs; (2) a

1Code and data can be found in Supplementary Materials for review.
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Table 2: Effectiveness and efficiency evaluation in the main setting. VF2 generates exact ground-
truth counts, thus with the perfect MAE (0) and Q-error (1). Time refers to the total inference time
on all test triples, in seconds. Except VF2, the best method is bolded and the runner-up is underlined.

Methods SMALL LARGE MUTAG
MAE ↓ Q-error ↓ Time (s) ↓ MAE ↓ Q-error ↓ Time (s) ↓ MAE ↓ Q-error ↓ Time (s) ↓

GCN 14.8 ± 0.5 2.1 ± 0.1 7.9 ± 0.2 33.0 ± 0.4 3.5 ± 0.9 29.8 ± 0.7 19.9 ± 9.7 4.2 ± 1.5 0.88 ± 0.02
GRAPHSAGE 14.0 ± 2.7 2.5 ± 0.8 7.0 ± 0.1 33.8 ± 1.6 3.1 ± 0.4 27.5 ± 1.3 13.8 ± 2.8 4.7 ± 0.8 0.88 ± 0.02
GAT 12.2 ± 0.7 2.9 ± 0.5 14.3 ± 0.3 37.3 ± 5.2 6.0 ± 1.2 59.4 ± 0.7 30.8 ± 6.7 6.0 ± 0.3 0.91 ± 0.01
DIFFPOOL 14.8 ± 2.6 2.1 ± 0.4 7.0 ± 0.1 34.9 ± 1.4 3.8 ± 0.7 32.5 ± 0.7 6.4 ± 0.3 2.5 ± 0.2 0.86 ± 0.00
GIN 12.6 ± 0.5 2.1 ± 0.1 7.1 ± 0.0 35.8 ± 0.6 4.8 ± 0.2 33.5 ± 0.6 21.3 ± 1.0 5.6 ± 0.7 0.41 ± 0.01

RGCN-SUM 24.2 ± 6.1 3.7 ± 1.2 13.2 ± 0.1 80.9 ± 26.3 6.3 ± 1.3 61.8 ± 0.2 8.0 ± 0.9 1.5 ± 0.1 0.90 ± 0.01
RGCN-DN 16.6 ± 2.3 3.2 ± 1.3 48.1 ± 0.2 73.7 ± 29.2 9.1 ± 4.2 105.0 ± 0.4 7.3 ± 0.8 2.6 ± 0.2 1.19 ± 0.04
RGIN-SUM 10.7 ± 0.3 2.0 ± 0.2 12.2 ± 0.0 33.2 ± 2.2 4.2 ± 1.3 61.4 ± 1.0 10.8 ± 0.9 1.9 ± 0.1 0.45 ± 0.02
RGIN-DN 11.6 ± 0.2 2.4 ± 0.0 49.7 ± 1.8 32.5 ± 1.9 4.3 ± 2.0 104.0 ± 1.5 8.6 ± 1.9 3.3 ± 0.8 0.73 ± 0.03

COUNT-GNN 8.5 ± 0.0 1.4 ± 0.1 7.9 ± 0.3 30.9 ± 4.3 2.5 ± 0.5 59.2 ± 1.7 4.2 ± 0.1 1.8 ± 0.0 0.02 ± 0.00

VF2 0 1 1267.5 ± 2.7 0 1 12734.6 ± 5.9 0 1 1.52 ± 0.04

Table 3: Effectiveness and efficiency evaluation in the secondary setting. Time refers to the total
inference time on all test triples, in seconds. The better method for each query is bolded.

SMALL LARGE MUTAG
MAE ↓ Q-error ↓ Time (s) ↓ MAE ↓ Q-error ↓ Time (s) ↓ MAE ↓ Q-error ↓ Time (s) ↓

Q1
LRP 11.5 ± 0.4 3.6 ± 0.5 0.13 ± 0.00 126.1 ± 4.9 38.3 ± 1.1 0.04 ± 0.00 12.3 ± 0.2 2.1 ± 0.0 0.01 ± 0.00
COUNT-GNN 3.0 ± 0.2 1.4 ± 0.3 0.04 ± 0.00 111.2 ± 0.8 2.9 ± 0.1 0.22 ± 0.01 2.5 ± 0.2 1.2 ± 0.1 0.00 ± 0.01

Q2
LRP 12.6 ± 2.4 4.6 ± 0.9 0.12 ± 0.01 19.8 ± 1.4 3.7 ± 0.6 0.04 ± 0.00 7.8 ± 0.4 2.9 ± 0.8 0.01 ± 0.00
COUNT-GNN 4.6 ± 1.4 1.1 ± 0.2 0.05 ± 0.01 4.3 ± 2.4 1.1 ± 0.1 0.07 ± 0.00 5.0 ± 0.2 2.1 ± 0.1 0.01 ± 0.00

Q3
LRP 31.5 ± 3.1 4.1 ± 0.6 0.05 ± 0.01 87.2 ± 2.9 7.1 ± 0.8 0.04 ± 0.00 8.3 ± 0.4 2.8 ± 0.1 0.01 ± 0.00
COUNT-GNN 23.2 ± 2.8 1.3 ± 0.2 0.03 ± 0.00 58.0 ± 2.4 1.8 ± 0.1 0.08 ± 0.00 4.3 ± 0.2 1.8 ± 0.1 0.01 ± 0.00

Avg. LRP 18.5 4.1 0.10 77.7 16.4 0.04 9.5 2.6 0.01
COUNT-GNN 10.3 1.3 0.04 57.8 1.9 0.12 3.9 1.7 0.01

secondary setting for triples generated by all input graphs associated with only one query graph.
Note that the main setting represents the more general scenarios, in which we compare with all
baselines except LRP. However, due to the particular design of LRP that requires a number of input
graphs coupled with one query graph and the corresponding ground-truth count during training, we
use the secondary setting only for this baseline. Our model can flexibly work in both settings.

Main setting. As discussed, we compare COUNT-GNN with all baselines except LRP in this more
general scenario, where the triples are generated by coupling every pair of query and input graphs.
We report the results in Table 2, and make the following observations. Firstly, in terms of effec-
tiveness measured by MAE and Q-error, COUNT-GNN consistently outperforms all the GNN-based
models. The only exception appears on the Q-error of MUTAG, where COUNT-GNN still emerges
as a competitive runner-up. This demonstrates the two key modules of COUNT-GNN, namely,
edge-centric aggregation and query-conditioned graph modulation, can improve structure matching
between input graphs and structurally diverse queries. Secondly, in terms of efficiency, COUNT-
GNN achieves 76x∼215x speedup over the classical VF2. Moreover, the speedup over the fastest
RGCN/RGIN variant (i.e., RGIN-Sum) are moderate but still range up to 23x whilst reducing the
MAE and Q-error by 20% or more in most cases. In contrast, conventional GNNs can run faster than
COUNT-GNN on LARGE and comparably on SMALL, but the efficiency comes at the expense of
much worse MAE and Q-error than COUNT-GNN, by at least 30% in most cases. Thirdly, VF2
achieves the perfect MAE and Q-error (i.e., 0 and 1 respectively), given that it is an exact method
based on which the ground-truth counts are obtained. In summary, COUNT-GNN can achieve very
significant speedup while maintaining a strong level of effectiveness.

Secondary setting. We also generate another group of triples for comparison with the baseline
LRP, in the so-called secondary setting as discussed earlier. In particular, for each dataset we select
three query graphs of different size (see details of the selected queries in Appendix B.1). On each
dataset, we couple each query graph with all the input graphs, thus forming 6790/3240/188 triples
for each query in SMALL/LARGE/MUTAG, respectively. Besides, we split the triples of SMALL
and LARGE in the ratio of 1:1:2 for training, validation and testing respectively, while use the ratio
of 1:1:1 for MUTAG. The results are reported in Table 3. We observe that COUNT-GNN persistently
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outperforms LRP across the three datasets in terms of effectiveness, significantly reducing MAE by
43% and Q-error by 64% on average. This demonstrates again the power of the two key modules in
COUNT-GNN. In terms of efficiency, neither COUNT-GNN nor LRP emerges as the clear winner.

4.3 MODEL ANALYSIS

In this section, we conduct a further analysis on COUNT-GNN. In particular, we present ablation
study and parameters sensitivity here, and leave the rest (including comparison with different train-
ing size, comparison of offline time) into Appendix C due to the space limitation.
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Figure 3: Ablation study of COUNT-GNN.

Ablation Study. To evaluate the impact of each
component in COUNT-GNN, we conduct an abla-
tion study by comparing COUNT-GNN with its two
degenerate variations, including the version by re-
placing edge-centric aggregation with node-centric
GIN aggregation (COUNT-GNN\E), and the version
by replacing the query-conditioned modulation with
sum-pooling upon the edges (COUNT-GNN\M),
and show the results in Fig. 3. We have the follow-
ing observations. Firstly, the whole model COUNT-
GNN generally outperforms the two variations in
most cases, except MAE on LARGE dataset. This
shows that removing either module from the whole
COUNT-GNN would impair the performance, fur-
ther demonstrating the necessity of edge-centric aggregation mechanism and query-based modu-
lation. Secondly, it is interesting that COUNT-GNN\M is usually better than COUNT-GNN\E in
terms of both MAE and Q-error. This demonstrates that the edge-centric may contribute more to
the performance boost of subgraph isomorphism counting, possibly due to the key fact that treat-
ing the edges as first class citizens for representation learning can capture fine-grained structural
information.
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Figure 4: Parameters sensitivity on dataset SMALL.

Parameters Sensitivity. We study
the sensitivity of two important
hyper-parameters on SMALL
dataset. In Fig. 4(a), we increase the
total number of GNN layers K for
edge-centric aggregation, to check
its influence on the performance.
As K increases, the performance in
terms of MAE and Q-error generally
become better, only with one excep-
tion on Q-error when K = 4. This
shows a phenomena that the increase
of layers may facilitate the exploitation of long-range structural information, which might further
help the model to achieve a clearer view of the structures in the graph. In Fig. 4(b), we show the
sensitivity of parameter λ, which weights the regularizer on the FiLM factors in Eq. (9). We observe
that λ is a bit sensitive to the performance, and λ = 0.01 may result an inferior performance.
Interval [1e-5, 1e-3] might be a good range for superior performance.

5 RELATED WORK

Graph representation learning. Graph representation learning (Perozzi et al. (2014); Grover &
Leskovec (2016); Tang et al. (2015)) usually capitalizes on sub-structures sampling on graph to rep-
resent the local view of graph structures, thus an encoder can be further utilized to embed nodes into
low-dimensional representations, in which the graph structures are preserved. More recently, graph
neural networks (GNNs) (Kipf & Welling (2017); Hamilton et al. (2017); Veličković et al. (2018);
Xu et al. (2019)) arise as a powerful family of representation learning approaches, which rely on
the key operator of neighborhood aggregation to pass messages recursively for node representation
learning, thus the graph structure and content information can be preserved simultaneously.

8
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Graph isomorphism counting. Graphs usually retain abundant local structures to depict specific
frames in accordance with particular semantics, which gives rise to a high demand of subgraph
isomorphism counting (Ullmann (1976)). To solve this proble, most traditional methods resort to
backtracking (Ullmann (1976); Cordella et al. (2004); He & Singh (2008)). Though they can achieve
precise results, the searching space usually grows exponentially as the increase of graph size, result-
ing in an intractable fact that subgraph isomorphism Counting being an #P-complete problem with
high cost (Ullmann (1976)). Subsequently, several approaches (Han et al. (2013); Carletti et al.
(2017)) are proposed to utilize some constraints towards reducing the searching space, and others
(Yan et al. (2004)) try to filter out unnecessary graphs to speed up the backtracking process. Another
line of approaches (Alon et al. (1995); Bressan et al. (2021)) rely on the color coding for subgraph
isomorphism counting in polynomial time. They are usually fixed parameter tractable and can only
be employed for some limited subcases. Teixeira et al. (2020) transform the subgraph counting
to edge sum over a higher-order graph that only provides neighborhood query access for large-real-
world input graphs, and work (Pinar et al. (2017)) is built on the idea of cutting a pattern into smaller
ones, and using counts of smaller patterns to get larger counts. Though more efforts (Teixeira et al.
(2018); Wang et al. (2014)) have also been devoted, these attempts still face the high cost issue.

Recently, a few studies (Liu et al. (2020); Zhengdao et al. (2020)) propose to address the subgraph
isomorphism counting from the perspective of machining learning. Liu et al. (2020) propose to in-
corporate several existing pattern extraction mechanisms such as CNN (LeCun et al. (1998)), GRU
(Chung et al. (2014)) and GNNs on both query graph and input graph for structural information ex-
ploitation, then a counter module is attached to summarize the number of isomorphisms. Zhengdao
et al. (2020) analyze the ability of GNNs in detecting subgraph isomorphism, and propose a Local
Relational Pooling model based on the permutations of walks according to BFS to count certain
queries on graphs. However, they should create a new model for each query subgraph, limiting
their usage. Compared to traditional methods, these GNN-based models usually approximate the
counting with a tolerable error, yet can significantly save computation resources and time, providing
a trade-off between the accuracy and cost. However, the node-centric nature of these GNNs-based
models limits their ability to capture the fine-grained structural information. Bouritsas et al. (2020)
propose Graph Substructure Networks (GSN), a topology-aware message passing scheme based on
substructure encoding, to serve as structural features to enhance the expressive power of GNNs, yet
not targeting at the problem of graph isomorphism counting itself.

Other related studies. Graph similarity search (Bai et al. (2019); Li et al. (2019)) addresses a dis-
tinct problem that calculating the similarity between graphs. Though some recent studies (Wang
et al. (2019a; 2021b); Bai et al. (2021)) are designed by combining both the traditional models and
deep learning models, they cannot be directly employed to cope with the problem of subgraph iso-
morphism counting since they focus on a distinct problem. Object detection (Redmon et al. (2016);
Zhao et al. (2019)) is a hot topic in research field of computer vision, which is a bit similar to
subgraph isomorphism counting. Yet these approaches usually do not consider the graph structure
stemming from dependencies between instances. Some recent studies (Wang et al. (2021a); Jiang
et al. (2020); Yang & Li (2020); Monti et al. (2018b)) resort to edge-oriented neighborhood aggrega-
tion to facilitate the node representation learning, or further graph representation learning based on
the achieved node representations. But they are not particularly devised for subgraph isomorphism
counting.

6 CONCLUSIONS

In this paper, we proposed a novel GNN called COUNT-GNN to address the problem of subgraph
isomorphic counting on labeled graphs. COUNT-GNN is equipped with two key modules, namely,
edge-centric message passing and query-conditioned graph modulation, to improve structure match-
ing between the query and input graphs. On one hand, the module of edge-centric message passing
operates at the edge level, which propagates and aggregates messages on and for edges following
the edge adjacency, in order to capture fine-grained structural information. On the other hand, the
module of query-conditioned graph modulation operates at the graph level, which adapts the input
graph to suit each query individually, in order to improve the matching with specific structures in
each query. To demonstrate the effectiveness and efficiency of COUNT-GNN, we conduct extensive
experiments on a number of benchmark datasets. Results show that the proposed COUNT-GNN
achieves superior performance in comparison to the state-of-the-art baselines.
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and Michael M Bronstein. Dual-primal graph convolutional networks. arXiv preprint
arXiv:1806.00770, 2018b.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual
reasoning with a general conditioning layer. In AAAI, 2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online learning of social representa-
tions. In KDD, pp. 701–710, 2014.

Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Efficiently counting all 5-vertex sub-
graphs. In Proceedings of the 26th international conference on world wide web, pp. 1431–1440,
2017.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan Chang. Meta-GNN: metagraph neural net-
work for semi-supervised learning in attributed heterogeneous information networks. In Proceed-
ings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining, pp. 137–144, 2019.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. PathSim: Meta path-based top-k
similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment,
4(11):992–1003, 2011.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In WWW, pp. 1067–1077, 2015.

Carlos HC Teixeira, Leornado Cotta, Bruno Ribeiro, and Wagner Meira. Graph pattern mining and
learning through user-defined relations. In 2018 IEEE International Conference on Data Mining
(ICDM), pp. 1266–1271. IEEE, 2018.

Carlos HC Teixeira, Mayank Kakodkar, Vinı́cius Dias, Wagner Meira Jr, and Bruno Ribeiro. Se-
quential stratified regeneration: Mcmc for large state spaces with an application to subgraph count
estimation. arXiv preprint arXiv:2012.03879, 2020.

11



Under review as a conference paper at ICLR 2022

Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM), 23(1):
31–42, 1976.
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A ALGORITHM AND COMPLEXITY ANALYSIS

Algorithm. We present the algorithm for training of COUNT-GNN in Alg. 1. In line 1, we initial all
the parameters, as well as objective L. In lines 3-13, we accumulate the loss for the given training
tuples. In particular, in lines 4-8, we conduct the recursive edge-centric aggregation. In lines 5-7,
we calculate the edge-centric representation for each edge. Then, in lines 9 and 10, we form the
graph representations by aggregating all the inclusive edge-centric representations for query graph
and input graph, respectively. In line 11, a counter module is employed to predict the number of
subgraphs of Gi which are isomorphic to Qi. In line 12, we accumulate the loss. In line 14, we form
the overall objective. Finally, in line 15 we optimize the model by minimizing objective L.

Algorithm 1 MODEL TRAINING FOR COUNT-GNN
Input: Training tuples T = {(Qi,Gi, ni)|i = 1, 2, . . .}, total layers number K, hyper-parameters λ, µ.
Output: Model parameters Θ.
1: Θ← parameters initialization, L ← 0;
2: while not converged do ▷ Training iteration
3: for each triple (Qi,Gi, ni) ∈ T do
4: for each layer l ∈ {1, . . . ,K} do
5: for each directed edge ⟨u, v⟩ ∈ EQi or EGi do
6: hl

⟨u,v⟩ ← σ(Wlhl−1
⟨u,v⟩ +Ulhl−1

⟨·,u⟩ + bl); ▷ Edge-centric aggregation, Eq. (1)
7: end for
8: end for
9: hQi ← σ(Q · AGGR({he|e ∈ EQi}); ▷ Query graph representation, Eq. (3)

10: hQi
Gi
← σ(G · AGGR({h̃e|e ∈ EGi}); ▷ Input graph representation, Eq. (7)

11: n̂(Qi,Gi)← RELU(w⊤MATCH(hQi ,h
Qi
Gi

) + b); ▷ Counter, Eq. (8)
12: L ← L+ |n̂(Qi,Gi)− ni|; ▷ Loss accumulation
13: end for
14: L ← L+ λ · LFILM + µ · ∥Θ∥22; ▷ Overall objective, Eq. (9)
15: Update Θ by minimize L;
16: end while
17: return Θ.

Complexity analysis. The edge-centric aggregation increases the computation cost. Here, given
a tuple (Q,G, n), we split COUNT-GNN into two parts for complexity analysis, i.e., edge-centric
aggregation, and query-conditioned graph modulation. (1) Edge-centric aggregation. Supposing
the average degree on Q and G is d̄. In each edge-centric aggregation layer, each edge would ac-
cess its d̄ neighboring edges for aggregation, thus involving complexity O(d̄). For query graph Q
with a total of K layers, the complexity for the edge representation learning is O(d̄K · |EQ|). Sim-
ilarly, the complexity for the edge representation learning of input graph G is O(d̄K · |EG |). (2)
Query-conditioned graph modulation. For query graph Q, the calculation of graph representation
involves complexity of O(|EQ|). For input graph Q, it first calculates the query-conditioned mod-
ulation for all edges with a complexity of O(|EG |); then the calculation of graph representation has
complexity of O(|EG |). The prediction w.r.t. the calculated representation of query graph and input
graph has complexity of O(1). In summary, the prediction for tuple (Q,G, n) has complexity of
O(d̄K · |EQ|+ d̄K · |EG |+ |EQ|+ 2|EG |).

B FURTHER DETAILS OF EXPERIMENTAL SETUP

In this section, we give further details for the experimental setup.

B.1 DETAILS OF DATASETS

Data generation. We resort to the data generators in work (Liu et al. (2020)) to generate the three
datasets (for MUTAG, only the query graphs), by using the same parameter settings. The detailed
settings in data generation for SMALL and LARGE are illustrated in Table 4. In particular, when
to generate one query graph or input graph, we first randomly sample the size parameters from the
corresponding sets in Table 4, to constrain the generation of this graph. Note that, with generally
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Table 4: Parameters for the data generation of SMALL and LARGE.
Parameters SMALL LARGE

Query graphQ
|VQ| {3, 4, 8} {3, 4, 8, 16}
|EQ| {2, 4, 8} {2, 4, 8, 16}
|LQ| {2, 4, 8} {2, 4, 8, 16}
|L′

Q| {2, 4, 8} {2, 4, 8, 16}

Input graph G
|VG | {8, 16, 32, 64} {64, 128, 256, 512}
|EG | {8, 16, ..., 256} {64, 128, ..., 2048}
|LG | {4, 8, 16} {16, 32, 64}
|L′

G | {4, 8, 16} {16, 32, 64}

larger parameter sizes, the dataset LARGE would have larger individual graph sizes than dataset
SMALL, as illustrated in Table 1.

Query selection for secondary setting in experiments. Let N and E denote the number of nodes
and directed edges, respectively; for dataset SMALL, we randomly select three query graphs in the
size of (N3, E3), (N4, E4) and (N8, E8), respectively; for dataset LARGE, we randomly select three
query graphs in the size of (N4, E4), (N8, E8), and (N16, E16), respectively; for dataset MUTAG,
we randomly select three query graphs in the size of (N3, E2), (N4, E3) and (N4, E3), respectively.

B.2 DETAILS AND SETTINGS OF BASELINES

We compare COUNT-GNN with the state-of-the-art approaches from two main categories.

(1) Conventional GNNs, including GCN (Kipf & Welling (2017)), GAT (Veličković et al. (2018)),
GraphSAGE (Hamilton et al. (2017)), GIN (Xu et al. (2019)) and DiffPool (Ying et al. (2018)).
They usually capitalize on node-centric message passing, followed by a readout function to obtain
the whole-graph representation.

• GCN (Kipf & Welling (2017)): GCN usually resorts to mean-pooling based node-centric neigh-
borhood aggregation to receive messages from the neighboring nodes for node representation
learning.

• GAT (Veličković et al. (2018)): GAT also depends on node-centric neighborhood aggregation for
node representation learning, while it can assign different weights to neighbors to reweight their
contributions.

• GraphSAGE (Hamilton et al. (2017)): GraphSAGE has a similar neighborhood aggregation mech-
anism with GCN, while it focuses more on the information from the node itself.

• GIN (Xu et al. (2019)): GIN employs a SUM aggregator to replace the mean-pooling method in
GCN to aggregate all the messages from neighboring nodes, which is demonstrated to be more
powerful to capture the graph structures.

• DiffPool (Ying et al. (2018)): DiffPool depends on a GNN framework to further build its specific
aggregation mechanism, by clustering nodes hierarchically to form the whole-graph representa-
tion.

(2) GNN-based isomorphism counting models, including four variants proposed by Liu et al. (2020),
namely RGCN-DN, RGCN-Sum, RGIN-DN, RGIN-Sum, as well as LRP (Zhengdao et al. (2020)).
They are purposely designed GNNs for subgraph isomorphism counting, relying on different GNNs
(e.g., RGCN (Schlichtkrull et al. (2018)), RGIN (Xu et al. (2019)), or local relational pooling
(Zhengdao et al. (2020))) for node representation learning, followed by a specialized readout suited
for isomorphism matching, e.g., DiamNet (Liu et al. (2020)). In particular, the two variants RGCN-
DN and RGIN-DN utilize DiamNet, whereas RGCN-Sum and RGIN-Sum utilize the simple sum-
pooling.

Model settings. To achieve the optimal performance, we tune the hyper-parameters for all the base-
lines according to the proposed settings in literature. In particular, for conventional GNN models
including GCN (Kipf & Welling (2017)), GAT (Veličković et al. (2018)), GraphSAGE (Hamilton
et al. (2017)), GIN (Xu et al. (2019)) and DiffPool (Ying et al. (2018)), we set the number of total
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layers as 3, hidden dimension as 128, and dropout rate as 0.2. In particular, for GAT, we use a
self-attention mechanism with 4 heads; for GraphSAGE, we use the mean-pooling as the aggrega-
tor. For DiffPool, we set the ratio of nodes’ number in consecutive layers as 0.1. For GNN-based
isomorphism counting models, we follow the hyper-parameter settings in their original papers, with
which the models can achieve the optimal performance. In particular, for RGCN-SUM, RGCN-DM,
RGIN-SUM and RGIN-DM, we set the number of layers as 3, and the hidden dimension as 128.

B.3 SETTINGS OF COUNT-GNN

We tune several hyper-parameters for COUNT-GNN to achieve its optimal performance. In particu-
lar, we employ a COUNT-GNN with a total of 3 layers. Besides, on SMALL and LARGE datasets,
we set the hidden dimension as 24, due to the fact that COUNT-GNN performs well even with low
hidden dimensions, though it usually performs better with higher dimension which also costs more
time. To find a balance between the accuracy and time cost, we choose this moderate dimension.
On MUTAG, we set the hidden dimension as 12. In addition, we set the hyper-parameter λ for
weighting the FiLM factors in Eq. (9) as 0.0001.

B.4 OTHER DETAILS

Environment. We implemented the proposed COUNT-GNN using Pytorch 1.8.1 in Python 3.7.10.
All experiments were conducted on a Linux workstation with a 16-core 3.50GHz CPU, 128GB
DDR4 memory and one GeForce RTX 2080 Ti GPU.

C FURTHER MODEL ANALYSIS

C.1 COMPARISON WITH DIFFERENT TRAINING SIZE
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Figure 5: Comparison with different training size.

To evaluate the performance ten-
dency of COUNT-GNN in terms of
different training size, we conduct
an additional experiment by increas-
ing the training triples from 2000 to
10,000, then to 20,000 on dataset
SMALL. A baseline RGIN-SUM
(Liu et al. (2020)) is also imported
for comparison, which is proved to be
competitive in the results of Table 2.
Figs. 5(a) and 5(b) show the results of
MAE and Q-error, respectively. We
have several observations. Firstly,
with different training size, the pro-
posed model COUNT-GNN can con-
sistently outperform baseline RGIN-SUM. The only exceptions lie in MAE with 20k and Q-error
with 2k. This demonstrates that the performance of COUNT-GNN for subgraph isomorphism count-
ing is stably superior to the baselines with different size of labeled data. Only when labeled data
is too scarce or too sufficient its performance might be surpassed by the competitive baselines.
Secondly, as the number of training triples increases, both MAE and Q-error have a tendency of
decrease, showing that more labeled data would generally boost the model performance.

C.2 COMPARISON OF TRAINING TIME

We conduct experiments for all the approaches to compare their training time. In particular, we show
the training time per epoch for main setting in Table 5 and secondary setting in Table 6, respectively.
In accordance with Tables 2 and 3, similar observations can be achieved that (1) in the main setting,
our proposed COUNT-GNN generally occupies relative low training time on dataset SMALL and
MUTAG, while having comparable training time with GNN-based isomorphism counting models on
dataset LARGE; (2) in the secondary setting, COUNT-GNN usually costs a bit more training time
than LRP.
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Table 5: Comparison of training time in main setting.
Methods SMALL LARGE MUTAG

GCN 0.8 1.1 0.35
GRAPHSAGE 0.8 1.0 0.35

GAT 1.0 2.4 0.39
DIFFPOOL 0.8 1.3 0.34

GIN 0.5 1.0 0.19

RGCN-SUM 1.0 2.4 0.38
RGCN-DN 1.5 3.7 0.50
RGIN-SUM 0.7 1.9 0.23
RGIN-DN 1.4 2.9 0.39

COUNT-GNN 0.4 2.5 0.04

Table 6: Comparison of training time in secondary setting with LRP.
SMALL LARGE MUTAG

Q1
LRP 0.2 0.1 0.01

COUNT-GNN 0.2 0.7 0.02

Q2
LRP 0.2 0.1 0.01

COUNT-GNN 0.3 0.3 0.02

Q3
LRP 0.1 0.1 0.01

COUNT-GNN 0.2 0.3 0.02
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