
Published as a conference paper at ICLR 2023

EVA: PRACTICAL SECOND-ORDER OPTIMIZATION
WITH KRONECKER-VECTORIZED APPROXIMATION

Lin Zhang1, Shaohuai Shi2 ∗ , Li Bo1

1Hong Kong University of Science and Technology, 2Harbin Institute of Technology, Shenzhen
lzhangbv@connect.ust.hk, shaohuais@hit.edu.cn, bli@cse.ust.hk

ABSTRACT

Second-order optimization algorithms exhibit excellent convergence properties
for training deep learning models, but often incur significant computation and
memory overheads. This can result in lower training efficiency than the first-order
counterparts such as stochastic gradient descent (SGD). In this work, we present
a memory- and time-efficient second-order algorithm named Eva with two novel
techniques: 1) we construct the second-order information with the Kronecker fac-
torization of small stochastic vectors over a mini-batch of training data to reduce
memory consumption, and 2) we derive an efficient update formula without ex-
plicitly computing the inverse of matrices using the Sherman-Morrison formula.
We further provide a theoretical interpretation of Eva from a trust-region optimiza-
tion point of view to understand how it works. Extensive experimental results on
different models and datasets show that Eva reduces the end-to-end training time
up to 2.05× and 2.42× compared to first-order SGD and second-order algorithms
(K-FAC and Shampoo), respectively.

1 INTRODUCTION

While first-order optimizers such as stochastic gradient descent (SGD) (Bottou et al., 1998) and
Adam (Kingma & Ba, 2015) have been widely used in training deep learning models (Krizhevsky
et al., 2012; He et al., 2016; Devlin et al., 2019), these methods require a large number of iterations
to converge by exploiting only the first-order gradient to update the model parameter (Bottou et al.,
2018). To overcome such inefficiency, second-order optimizers have been considered with the po-
tential to accelerate the training process with a much fewer number of iterations to converge (Osawa
et al., 2019; 2020; Pauloski et al., 2020; 2021). For example, our experimental results illustrate that
second-order optimizers, e.g., K-FAC (Martens & Grosse, 2015), require ∼50% fewer iterations to
reach the target top-1 validation accuracy of 93.5% than SGD, in training a ResNet-110 (He et al.,
2016) model on the Cifar-10 dataset (Krizhevsky, 2009) (more results are shown in Table 2).

The fast convergence property of second-order algorithms benefits from preconditioning the gra-
dient with the inverse of a matrix C of curvature information. Different second-order optimizers
construct C by approximating different second-order information, e.g., Hessian, Gauss-Newton,
and Fisher information (Amari, 1998), to help improve the convergence rate (Dennis & Schnabel,
1983). However, classical second-order optimizers incur significant computation and memory over-
heads in training deep neural networks (DNNs), which typically have a large number of model
parameters, as they require a quadratic memory complexity to store C, and a cubic time complexity
to invert C, w.r.t. the number of model parameters. For example, a ResNet-50 (He et al., 2016)
model with 25.6M parameters has to store more than 650T elements in C using full Hessian, which
is not affordable on current devices, e.g., an Nvidia A100 GPU has 80GB memory.

To make second-order optimizers practical in deep learning, approximation techniques have been
proposed to estimate C with smaller matrices. For example, the K-FAC algorithm (Martens &
Grosse, 2015) uses the Kronecker factorization of two smaller matrices to approximate the Fisher
information matrix (FIM) in each DNN layer, thus, K-FAC only needs to store and invert these
small matrices, namely Kronecker factors (KFs), to reduce the computing and memory overheads.

∗Corresponding author.

1

Published as a conference paper at ICLR 2023

Table 1: Time and memory complexity comparison of different second-order algorithms. d is the
dimension of a hidden layer, L is the number of layers, and m is the number of gradient copies.

Complexity Newton K-FAC Shampoo M-FAC Eva
Time O(d6L3) O(2d3L) O(2d3L) O(md2L) O(d2L)

Memory O(d4L2) O(2d2L) O(2d2L) O(md2L) O(2dL)
Second-order Info. Hessian KFs Gradient Statistics Gradient Copies KVs

However, even by doing so, the additional costs of each second-order update are still significant,
which makes it slower than first-order SGD. In our experiment, the iteration time of K-FAC is 2.5×
than that of SGD in training ResNet-50 (see Table 4), and the memory consumption of storing KFs
and their inverse results is 12× larger than that of storing the gradient. Despite the reduced number
of iterations, existing second-order algorithms, including K-FAC (Martens & Grosse, 2015), Sham-
poo (Gupta et al., 2018), and M-FAC (Frantar et al., 2021), are not time-and-memory efficient, as
shown in Table 1. One limitation in K-FAC and Shampoo is that they typically require dedicated
system optimizations and second-order update interval tuning to outperform the first-order counter-
part (Osawa et al., 2019; Pauloski et al., 2020; Anil et al., 2021; Shi et al., 2021).

To address the above limitations, we propose a novel second-order training algorithm, called Eva,
which introduces a matrix-free approximation to the second-order matrix to precondition the gra-
dient. Eva not only requires much less memory to estimate the second-order information, but it
also does not need to explicitly compute the inverse of the second-order matrix, thus eliminating
the intensive computations required in existing methods. Specifically, we propose two novel tech-
niques in Eva. First, for each DNN layer, we exploit the Kronecker factorization of two small
stochastic vectors, called Kronecker vectors (KVs), over a mini-batch of training data to construct
a rank-one matrix to be the second-order matrix C for preconditioning. Note that our constructed
second-order matrix is different from the average outer-product of gradient (i.e., Fisher informa-
tion (Amari, 1998)) that has been used in existing K-FAC related algorithms (Martens & Grosse,
2015; George et al., 2018) (§3.1). KVs require only a sublinear memory complexity w.r.t. the model
size, which is much smaller than the linear memory complexity in existing second-order algorithms
like storing KFs in K-FAC (Martens & Grosse, 2015), gradient statistics in Shampoo (Gupta et al.,
2018), or gradient copies in M-FAC (Frantar et al., 2021) (see Table 1). Second, we derive a new
update formula to precondition the gradient by implicitly computing the inverse of the constructed
Kronecker factorization using the Sherman–Morrison formula (Sherman & Morrison, 1950). The
new update formula takes only a linear time complexity; it means that Eva is much more time-
efficient than existing second-order optimizers which normally take a superlinear time complexity
in inverting matrices (see Table 1). Finally, we provide a theoretical interpretation to Eva from a
trust-region optimization point of view to understand how it preserves the fast convergence property
of second-order optimization (Asi & Duchi, 2019; Bae et al., 2022).

We conduct extensive experiments to illustrate the effectiveness and efficiency of Eva compared to
widely used first-order (SGD, Adagrad, and Adam) and second-order (K-FAC, Shampoo, and M-
FAC) optimizers on multiple deep models and datasets. The experimental results show that 1) Eva
outperforms first-order optimizers – achieving higher accuracy under the same number of iterations
or reaching the same accuracy with fewer number of iterations, and 2) Eva generalizes very closely
to other second-order algorithms such as K-FAC while having much less iteration time and memory
footprint. Specifically, in terms of per-iteration time performance, Eva only requires an average
of 1.14× wall-clock time over first-order SGD, while K-FAC requires 3.47× in each second-order
update. In term of memory consumption, Eva requires almost the same memory as first-order SGD,
which is up to 31% and 45% smaller than second-order Shampoo and K-FAC respectively. In term of
the end-to-end training performance, Eva reduces the training time on different training benchmarks
up to 2.05×, 1.58×, and 2.42× compared to SGD, K-FAC, and Shampoo respectively.

In summary, our contributions are as follows: (1) We propose a novel efficient second-order op-
timizer Eva via Kronecker-vectorized approximation, which uses the Kronecker factorization of
two small vectors to be second-order information so that Eva has a sublinear memory complexity
and requires almost the same memory footprint as first-order algorithms like SGD. (2) We derive a
new update formula with an implicit inverse computation in preconditioning by exploiting the Sher-
man–Morrison formula to eliminate the expensive explicit inverse computation. Thus, Eva reduces
each second-order update cost to linear time complexity. (3) We conduct extensive experiments to
validate that Eva can converge faster than SGD, and it is more system efficient than K-FAC and
Shampoo. Therefore, Eva is capable of improving end-to-end training performance.

2

Published as a conference paper at ICLR 2023

2 BACKGROUND

FF2

FF1

BP2

BP1

Loss

▿ℓ2

▿ℓ1

FF2

FF1

BP2

BP1

Loss

▿ℓ2

▿ℓ1

G2

G1

A1

A0

FF2

FF1

BP2

BP1

Loss

▿ℓ2

▿ℓ1

g2

g1

a1

a0

(a) (b) (c)

Figure 1: Examples of different optimization al-
gorithms in a two-layer DNN model: (a) SGD,
(b) K-FAC, (c) Eva.

In this section, we introduce the background of
first-order and second-order optimization algo-
rithms. We start from the supervised learning,
in which a DNN model is trained by randomly
going through the dataset D many times (i.e.,
epochs) to minimize a loss function ℓ(w, D).
The loss function measures the average dis-
tance between model predictions and ground-
truth labels, and w is the model parameter
should be trained. Given a DNN with L learnable layers, the model parameter typically consists
of a set of parameter matrices {Wl}Ll=1.

SGD. The stochastic gradient descent (SGD) algorithm and its variants (e.g., Adam) with first-order
gradient information are the main optimizers for training DNN models. In each iteration with a
mini-batch of data, SGD updates the model parameter layer-wisely as follows:

W
(t+1)
l = W

(t)
l − α(t)∇ℓl(w(t),B(t)), (1)

where W
(t)
l ,∇ℓl(w(t),B(t)) ∈ Rdl×dl−1 are model parameter and first-order gradient matrices at

layer l, respectively. α(t) > 0 is the learning rate at iteration t. The mini-batch of data B(t) is
sampled randomly from the training dataset. SGD typically takes a large number of iterations to
converge as it only utilizes the first-order gradient to optimize the model (Bottou et al., 2018).

Compared to SGD, second-order algorithms precondition the gradient by the inverse of the curva-
ture matrix, i.e., C−1

l vec(∇ℓl), for model update. The straight-forward way is to use the Hessian to
precondition the gradient using the Newton method, but it takes extremely high time and memory
complexity as shown in Table 1. Due to the large model size in DNNs, storing and inverting Cl

are expensive, which motivates approximation approaches to alleviate the memory and computa-
tion complexity. One of representative methods is K-FAC (Martens & Grosse, 2015) that has been
applied in large-scale training to achieve comparable performance over SGD (Osawa et al., 2019;
2020; Pauloski et al., 2020; 2021). Our proposed method in this work is also close to K-FAC (§3.1).

K-FAC. The K-FAC algorithm (Martens & Grosse, 2015) adopts the Fisher information matrix
(FIM) as Cl for layer l in a DNN and approximates Cl with the Kronecker product of two smaller
matrices (Martens & Grosse, 2015; Grosse & Martens, 2016) 1. For example, for a linear layer
al = ϕ(Wlal−1), in which ϕ is an element-wise non-linear activation function, the FIM can be
approximated via Fl = Al−1 ⊗Gl, where

Al−1 = E[al−1a
T
l−1] and Gl = E[glg

T
l]. (2)

Al−1 ∈ Rdl−1×dl−1 and Gl ∈ Rdl×dl are symmetric matrices, called Kronecker factors (KFs).
al−1 ∈ Rdl−1 is the input vector of layer l (i.e., output of layer l − 1) and gl is the pre-activation
gradient vector of layer l. ⊗ denotes the Kronecker product. KFs are used to precondition the
gradient with a damping parameter γ > 0 via (Al−1 ⊗Gl + γI)−1vec(∇ℓl). Formally, we have

W
(t+1)
l = W

(t)
l − α(t)(Gl +

√
γ

πl
I)−1∇ℓl(w(t),B(t))(Al−1 + πl

√
γI)−1, (3)

where the scalar πl =
√
T (Al−1)/

√
T (Gl) and T (A) is the trace of A divided by its dimension.

The detailed derivation of K-FAC is given in Appendix A.2. An example of a 2-layer DNN is shown
in Fig. 1(a) and Fig. 1(b) to demonstrate the difference between SGD and K-FAC. Compared to the
training process of SGD, K-FAC extra constructs two KFs, which have a memory complexity of
O(2d2), to approximate FIM and computes its inverse, which has a time complexity of O(2d3), to
precondition the gradient in each layer.

Additional approaches. There exist some other second-order optimizers for DNN training. For
example, Shampoo (Gupta et al., 2018) is a full-matrix adaptive algorithm that constructs gradient
statistics matrices (similar to KFs) by building smaller matrices layer-wisely for preconditioning,

1In this paper, we focus on the oft-used K-FAC with the empirical FIM, as discussed in Appendix A.2.

3

Published as a conference paper at ICLR 2023

which introduces a time complexity of O(2d3L) to invert these matrices, and a memory complexity
of O(2d2L) to store them. d is the dimension of a hidden layer. M-FAC (Frantar et al., 2021) is a
matrix-free algorithm that utilizes matrix-vector products with many gradient copies. M-FAC does
not invert any matrix but requires m copies of gradient to estimate FIM, which brings time and
memory costs of O(md2L). m is typically suggested to be as high as 1024 (Frantar et al., 2021).

In summary, existing second-order methods have high time and/or memory complexity in each
second-order update as shown in Table 1. In this work, we present a novel second-order optimizer,
Eva, with much lower time and memory complexity.

3 EVA: KRONECKER-FACTORED APPROXIMATION WITH SMALL VECTORS

Following standard feed-forward (FF) and back-propagation (BP) processes, as shown in Fig. 1(c),
we propose to construct the second-order curvature matrix, denoted as Rl for the sake of clarity, for
layer l using the Kronecker product of two small vectors āl−1 and ḡl, i.e.,

Rl = (āl−1ā
T
l−1)⊗ (ḡlḡ

T
l) = (āl−1 ⊗ ḡl)(āl−1 ⊗ ḡl)

T , (4)
where

āl−1 = E[al−1] =
1

|B|
∑
i∈B

a
(i)
l−1 and ḡl = E[gl] =

1

|B|
∑
i∈B

g
(i)
l . (5)

a
(i)
l−1 and g

(i)
l are activation and pre-activation gradient vectors at layer l, respectively, sampled from

a mini-batch of data B. We call āl−1 and ḡl as Kronecker vectors (KVs), whose dimensions are the
same with a

(i)
l−1 and g

(i)
l respectively and they are irrelevant with the batch size. Thus, we just need

to store inexpensive KVs to construct Rl, which is much more memory-efficient than storing the
whole matrix like K-FAC or Shampoo. The preconditioner of Eva becomes (Rl + γI)−1. However,
it still needs to compute the inverse of the damped Rl, which is computation-expensive in training
DNNs. From Eq. 4, Rl is a rank-one matrix. Using this good property, we can implicitly compute its
inverse efficiently using the Sherman-Morrison formula (Sherman & Morrison, 1950). Specifically,

(Rl + γI)−1 = ((āl−1 ⊗ ḡl)(āl−1 ⊗ ḡl)
T + γI)−1 =

1

γ
(I −

(āl−1ā
T
l−1)⊗ (ḡlḡ

T
l)

(āTl−1āl−1)(ḡT
l ḡl) + γ

). (6)

Based on the above preconditioner, we can derive the update formula of Eva to be

W
(t+1)
l = W

(t)
l − α(t)

γ

(
∇ℓl(w(t),B(t))− ḡT

l ∇ℓl(w(t),B(t))āl−1

(āTl−1āl−1)(ḡT
l ḡl) + γ

ḡlā
T
l−1

)
. (7)

The detailed derivation of Eva is deferred to Appendix B.2 and the study of its training dynamics is
provided in Fig. 6 in Appendix C. Compared to SGD, the precondition process of Eva changes the
gradient direction with compensating in the direction of ḡlā

T
l−1 and scales the step size by 1/γ.

In Eva, KVs are calculated over a mini-batch of data for constructing the second-order precon-
ditioner by their Kronecker product. For a large-scale training dataset, the approximation can be
stabilized by a long-term run of estimation using the whole data. Thus, we use the running average
strategy which is also commonly used in Adam Kingma & Ba (2015) with 1st and 2rd moments, or
K-FAC (Martens & Grosse, 2015) with KFs, that is

ā
(t)
l−1 ← ξā

(t)
l−1 + (1− ξ)ā

(t−1)
l−1 and ḡ

(t)
l ← ξḡ

(t)
l + (1− ξ)ḡ

(t−1)
l , (8)

where ξ ∈ (0, 1] is the running average parameter in iteration t, ā(t)l−1 and ḡ
(t)
l are new KVs calcu-

lated during each FF and BP computation and they are used to update the state of KVs.

Complexity analysis. The extra time costs of Eva come from constructing KVs and precondition-
ing the gradients with KVs, apart from sharing the same FF, BP, and update computations as SGD.
As the overhead of estimating KVs can be ignored, the main time cost of Eva is multiple vector
multiplications for preconditioning, which can be denoted as O(d2L). It means Eva has a time com-
plexity that is linear to the total number of parameters, which is much smaller than the superlinear
complexity in K-FAC and Shampoo as shown in Table 1. Besides, the memory complexity of Eva is
O(2dL) for storing KVs, which is sublinear to the total number of parameters. In summary, Eva has
very little extra time and memory costs in each second-order update compared to first-order SGD,
but it enjoys the fast convergence property of second-order K-FAC.

4

Published as a conference paper at ICLR 2023

3.1 THEORETICAL UNDERSTANDING

wt

wt+1

.
.

wt

wt+1

.
.

wt

wt+1

.
.

wt

wt+1

.
.

(a) (b) (c) (d)

Figure 2: Trust regions of different proximal con-
straints: (a) ball region, (b) strip region, (c) trust
region of Eva, (d) trust region of K-FAC.

Trust-region optimization. The trust-region
optimization algorithm (Yuan, 2015) can be for-
mulated as

w(t+1) = min
w

ℓ(w), (9)

s.t. ρ(w,w(t)) ≤ λ, (10)

where w(t) and w(t+1) are current and next pa-
rameter points, respectively. ρ(w,w(t)) is the
proximal function to measure the distance between w and w(t) (the smaller the closer). Trust-
region optimization treats each update step as finding the next parameter point that minimizes
the loss function and is close to the current parameter point (i.e., located in a trust region of
{w : ρ(w,w(t)) ≤ λ}, where λ > 0 is the threshold). Different proximal functions correspond
to different trust regions. For example, the euclidean distance, ρ(w,w(t)) = ||w −w(t)||2, gives a
ball region as shown in Fig. 2(a).

Adopting the same assumption of K-FAC (Martens & Grosse, 2015), where the input and pre-
activation gradient vectors are fairly independent, i.e., E[a⊗ g] ≈ E[a]⊗ E[g], we have

R = (E[a]⊗ E[g])(E[a]⊗ E[g])T ≈ E[a⊗ g]E[a⊗ g]T = E[vec(∇ℓ)]E[vec(∇ℓ)]T , (11)
where E[vec(∇ℓ)] is the estimated gradient vector over the current mini-batch of data. The above
equation indicates that the second-order matrix R in Eva is in fact the approximation of the outer
product of average gradient (OPAG) (i.e., E[vec(∇ℓ)]E[vec(∇ℓ)]T). Here we ignore the subscrip-
tion of the layer index for simplicity. By applying OPAG into the proximal function to measure the
parameter closeness, we obtain

ρ(w,w(t)) = (w −w(t))TR(w −w(t)) = (∆wTE[vec(∇ℓ)])2 ≤ λ, (12)
where ∆w = w − w(t) is the parameter update. Therefore, the corresponding trust region is
as shown in Fig. 2(b), which limits the update size along the gradient direction. According to
Eq. 7, Eva use the preconditioned gradient using the damped OPAG as the parameter update, i.e.,
∆w = (R+ γI)−1vec(∇ℓ). It indicates that the trust region of Eva is an intersection between the
ball region and the strip region, as shown in Fig. 2(c). More details are given in Appendix B.

Relation to K-FAC. From the trust-region optimization perspective, the K-FAC algorithm with the
true FIM is known to choose ρ as KL-divergence between model distributions (Bae et al., 2022),
which however is not the case for the K-FAC with empirical FIM that has been widely applied in
large-scale training (Osawa et al., 2019; 2020; Ueno et al., 2020; Pauloski et al., 2020; 2021). We
focus on the analysis on oft-used K-FAC with empirical FIM as it is much more practical than true
FIM. We build the connection between K-FAC with empirical FIM (Osawa et al., 2019; 2020) and
our proposed Eva. Formally, the relationship between the empirical FIM and OPAG is:

E[vec(∇ℓ)vec(∇ℓ)T]︸ ︷︷ ︸
empirical FIM

= E[vec(∇ℓ)]E[vec(∇ℓ)]T︸ ︷︷ ︸
OPAG: outer-product of average gradient

+ Cov(vec(∇ℓ))︸ ︷︷ ︸
gradient covariance matrix

, (13)

which indicates the empirical FIM is the sum of OPAG and the gradient covariance matrix (Mc-
Candlish et al., 2018). K-FAC and Eva utilize the approximate empirical FIM and approxi-
mate OPAG as second-order information for calculating preconditioners, respectively. That is
F ≈ E[vec(∇ℓ)vec(∇ℓ)T] and R ≈ E[vec(∇ℓ)]E[vec(∇ℓ)]T . As Cov(vec(∇ℓ)) in Eq. 13
is positive semi-definite, we have vTFv ≥ vTRv for any vector v. Thus, we have

{w : ∆wT (F + γI)∆w ≤ λ} ⊆ {w : ∆wT (R+ γI)∆w ≤ λ}, (14)
for a given threshold λ, which indicates the trust region of Eva is larger than K-FAC as shown in
Fig. 2(d). Therefore, the update step of K-FAC to minimize the loss is more conservative than Eva.

4 EVALUATION

4.1 CONVERGENCE PERFORMANCE

We evaluate the generalization performance of Eva with three representative models, VGG-19 (Si-
monyan & Zisserman, 2015), ResNet-110 (He et al., 2016), and WideResNet-28-10 (WRN-28-

5

Published as a conference paper at ICLR 2023

Table 2: Validation accuracy (%) comparison between Eva and SGD/K-FAC algorithms for training
from scratch with different epoch buckets. † indicates training with extra tricks.

Model Epoch Cifar-10 Cifar-100
SGD K-FAC Eva SGD K-FAC Eva

VGG-19
50 90.95±0.2 92.57±0.3 92.63±0.2 61.69±0.8 70.14±0.1 70.23±0.7

100 92.27±0.3 93.37±0.2 93.20±0.1 67.97±0.3 72.25±0.1 71.79±0.5

200 93.02±0.1 93.46±0.2 93.59±0.2 70.98±0.0 72.90±0.3 72.72±0.4

ResNet-110
50 90.98±0.6 93.03±0.1 93.02±0.3 67.93±0.9 71.03±0.5 71.13±0.4

100 92.49±0.6 93.76±0.1 93.76±0.0 70.74±0.7 72.31±0.5 72.38±0.2

200 93.80±0.2 94.21±0.2 93.99±0.1 72.43±0.6 72.96±0.3 73.29±0.3

WRN-28-10†
50 95.28±0.1 96.12±0.2 96.19±0.1 79.03±0.1 80.98±0.2 81.15±0.2

100 96.88±0.2 97.21±0.0 97.05±0.0 83.03±0.3 83.54±0.4 83.52±0.2

200 97.33±0.1 97.44±0.1 97.38±0.1 84.54±0.0 84.56±0.1 84.52±0.1

Table 3: Validation accuracy (%) comparison between Eva and 4 more algorithms for training from
scratch on Cifar-10 with 100 epochs. † indicates training with extra tricks (except M-FAC).

Model Adagrad AdamW Shampoo M-FAC Eva
VGG-19 92.42±0.0 92.97±0.1 93.38±0.1 92.50±0.1 93.20±0.1

ResNet-110 90.34±0.2 92.61±0.1 92.47±0.2 93.45±0.1 93.76±0.0

WRN-28-10† 93.72±0.2 96.91±0.0 96.99±0.1 94.54±0.2 97.05±0.0

10) (Zagoruyko & Komodakis, 2016) on Cifar-10 (Krizhevsky, 2009) and Cifar-100 (Krizhevsky,
2009) datasets. We compare Eva to the first-order baseline SGD (with a momentum of 0.9), and the
second-order baseline K-FAC (Martens & Grosse, 2015). Following the configurations of (Pauloski
et al., 2020; 2021), we set the same hyper-parameters for all algorithms for a fair comparison, and
the details are given in Appendix C.1. Since training with more epochs can generalize better (Hoffer
et al., 2017), we run each algorithm with 50, 100, and 200 epochs for a better comparison from
compressed to sufficient training budgets. The validation accuracy comparison is shown in Table 2
and Table 3, where we report the mean and std over three independent runs. We summarize the
results in the following three aspects.

First, in the models VGG-19 and ResNet-110 with commonly used settings from their original
papers (details in Appendix C.1), it is seen that Eva performs closely to the second-order K-FAC,
and they both consistently outperform SGD under different training budgets. To be specific, under
the 50-epoch setting, both Eva and K-FAC outperform SGD by a large margin, e.g., +8.5% for
training VGG-19 on Cifar-100; under the setting of sufficient 200 epochs, Eva and K-FAC still
achieve slightly better generalization performance than SGD. Due to the page limit, we put the
convergence curves under the 50-epoch setting in Fig. 7 in Appendix C , which shows that Eva
converges similarly as K-FAC and learns much faster than SGD. Eva and K-FAC with 50 (and 100)
epochs achieve the loss or validation accuracy that SGD needs to take 100 (and 200) epochs. In
summary, our proposed second-order Eva has similar good convergence performance with K-FAC,
and both of them train the models around 2× faster than SGD in terms of iterations. It validates
that second-order algorithms have better convergence performance than SGD and they can reach the
same target accuracy in fewer number of training iterations.

Second, considering that existing training paradigms typically use extra tricks like CutMix (Yun
et al., 2019) and AutoAugment (Cubuk et al., 2019) to achieve better validation accuracy, we train
a relatively new model WRN-28-10 (Zagoruyko & Komodakis, 2016) on Cifar-10 and Cifar-100 to
compare the performance of different optimizers. Note CutMix (Yun et al., 2019) and AutoAug-
ment (Cubuk et al., 2019) have been particularly developed and heavily tuned for the first-order
SGD optimizer, which could be detrimental to second-order algorithms. However, as shown in
Table 2, our Eva and K-FAC still learn faster and generalize better than SGD under the same num-
ber of training epochs. Additional results to verify the generalization performance for fine-tuning
pretrained models are provided in Table 6 in Appendix C. In summary, Eva achieves the same gen-
eralization performance with a less number of iterations than well-tuned SGD or it achieves higher
generalization performance with the same training number of iterations as SGD.

Third, we compare the convergence performance of Eva with 4 more popular optimizers: Ada-
grad (Duchi et al., 2010), AdamW (Loshchilov & Hutter, 2019), Shampoo (Gupta et al., 2018), and
M-FAC (Frantar et al., 2021). Adagrad and AdamW are common adaptive gradient methods, while

6

Published as a conference paper at ICLR 2023

Shampoo and M-FAC are recently proposed second-order algorithms. We tune the learning rate
for each algorithm to choose a best one for particular algorithms (see Appendix C.1) to train three
models on Cifar-10 for 100 epochs. The results are given in Table 3, showing that Eva achieves
comparable performance to other second-order algorithms Shampoo and M-FAC, and outperforms
first-order adaptive methods Adagrad and AdamW on different models. M-FAC, however, results in
2.5% accuracy loss, compared to Eva and Shampoo in training WRN-28-10. Note that we exclude
CutMix and AutoAugment in M-FAC as they cause M-FAC divergences in training WRN-28-10.

Table 4: Relative iteration time and memory over SGD. Values in parentheses represent the results
with increased second-order update intervals (10 on Cifar-10 and 50 on ImageNet).

Dataset Model Shampoo K-FAC Eva
Time Mem Time Mem Time Mem

Cifar-10
VGG-19 19.6× (2.89×) 1.01× 5.57× (1.68×) 1.01× 1.13× 1.00×

ResNet-110 6.79× (1.90×) 1.00× 1.64× (1.16×) 1.03× 1.16× 1.00×
WRN-28-10 6.69× (1.60×) 1.05× 2.68× (1.25×) 1.38× 1.03× 1.00×

ImageNet
ResNet-50 30.7× (1.71×) 1.07× 2.52× (1.14×) 1.06× 1.09× 1.00×

Inception-v4 75.3× (2.70×) 1.11× 3.95× (1.28×) 1.42× 1.28× 1.00×
ViT-B/16 199.× (6.20×) 1.31× 4.47× (1.43×) 1.45× 1.18× 1.00×

4.2 TIME AND MEMORY EFFICIENCY

As we have shown the good convergence and generalization performance of Eva, we demonstrate its
per-iteration training time and memory consumption compared with SGD, Shampoo, and K-FAC.
We do not report M-FAC here as it needs to store extra m gradients for FIM estimation (m = 1024
by default), which is very memory inefficient (normally causes out-of-memory). To cover relatively
large models, we select three extra popular deep models trained on ImageNet (Deng et al., 2009):
ResNet-50, Inception-v4 (Szegedy et al., 2017), and ViT-B/16 (Dosovitskiy et al., 2021). We run
each algorithm on an Nvidia RTX2080Ti GPU. Following the training recipes in (Pauloski et al.,
2020), we set the second-order update interval as 10 on Cifar-10, and 50 on ImageNet for both
Shampoo and K-FAC to reduce their average iteration time. More detailed configurations can be
found in Appendix C.1. We report relative time and memory costs over SGD in Table 4.

Time efficiency. We can see that Eva has the shortest iteration time among all evaluated second-
order algorithms. Eva has only 1.14× longer iteration time on average than SGD, but it achieves an
average of 3.04× and 49.3× faster than K-FAC and Shampoo, respectively. This is because our Eva
does not need to explicitly compute the inverse of second-order matrix while K-FAC requires expen-
sive inverse matrix computations on KFs and Shampoo performs even more computations of inverse
p-th roots (p ≥ 2). Therefore, Eva is able to update second-order information iteratively to achieve
faster convergence, but K-FAC and Shampoo have to update their preconditioners infrequently. For
example, the average time can be reduced to 1.32× and 2.83× for K-FAC and Shampoo, respec-
tively, when increasing the second-order update interval (10 on Cifar-10 and 50 on ImageNet). We
will show the end-to-end training performance in §4.3.

Memory efficiency. In terms of memory consumption, Eva takes almost the same memory as SGD,
and spends much less memory than Shampoo (with 1.09×) and K-FAC (with 1.22×), since Eva
only needs to store small vectors, but Shampoo and K-FAC have to store second-order matrices and
their inverse results. We notice that K-FAC consumes more GPU memory than Shampoo as K-FAC
requires extra memory on intermediate states to estimate KFs, such as unfolding images.

In summary, Eva is a much more efficient second-order optimizer than K-FAC and Shampoo in
terms of the average iteration time and memory consumption.

4.3 END-TO-END TRAINING PERFORMANCE

We further compare the end-to-end wall-clock time to reach the target accuracy training with differ-
ent optimizers. We train VGG-19, ResNet-110, and WRN-28-10 on Cifar-10 with one RTX2080Ti
GPU (11GB memory), and ResNet-50 on ImageNet with 32 RTX2080Ti GPUs. We set the second-
order information update interval to 10 on Cifar-10 and 50 on ImageNet for K-FAC and Shampoo.
More configurations can be found in Appendix C.1.

7

Published as a conference paper at ICLR 2023

0 10 20 30
Wall-clock Time (minutes)

20

40

60

80

Va
l.

Ac
cu

ra
cy

SGD
Shampoo@10
K-FAC@10
Eva

1x 2x 3x

(a) VGG-19, Cifar-10

0 20 40 60
Wall-clock Time (minutes)

20

40

60

80

Va
l.

Ac
cu

ra
cy

SGD
Shampoo@10
K-FAC@10
Eva

1x 2x 3x

(b) ResNet-110, Cifar-10

0 100 200
Wall-clock Time (minutes)

40

60

80

100

Va
l.

Ac
cu

ra
cy

SGD
Shampoo@10
K-FAC@10
Eva

1x 1.5x 2x

(c) WRN-28-10, Cifar-10

0 100 200 300
Wall-clock Time (minutes)

0

25

50

75

Va
l.

Ac
cu

ra
cy

SGD
Shampoo@50
K-FAC@50
Eva

1x 1.5x 2x

(d) ResNet-50, ImageNet

Figure 3: Wall-clock time comparison between Eva and SGD/K-FAC/Shampoo algorithms for train-
ing multiple DNNs. The inset plot reports relative time-to-solution over Eva.

The results are given in Fig. 3, showing that Eva optimizes faster than all the other evaluated al-
gorithms SGD, K-FAC, and Shampoo. On the Cifar-10 dataset, Eva is 1.88×, 1.26×, and 2.14×
faster on average than SGD, K-FAC, and Shampoo, respectively. This is because Eva requires less
training epochs than SGD for convergence, and the iteration time of Eva is smaller than K-FAC
and Shampoo. We notice that K-FAC is also possible to optimize faster than SGD, but it needs to
increase the second-order update interval. Otherwise, the training time of K-FAC would be much
more expensive as studied in Fig. 8 in Appendix C.

Though increasing the interval makes K-FAC and Shampoo computationally efficient, they require
more GPU memory than Eva. For a fair comparison, on the large-scale ImageNet dataset, we set
per-GPU batch size to 96 for SGD and Eva, and 64 for K-FAC and Shampoo, to maximize the GPU
utilization. In this setting, the results shown in Fig. 3(d) indicates that Eva achieves 1.74×, 1.16×,
1.86× speedups over SGD, K-FAC, and Shampoo, respectively, to achieve the target accuracy of
75.9% on the validation set according to MLPerf. The median test accuracy of the final 5 epochs on
ImageNet is 76.02%, 76.25%, 76.06%, and 75.96% for SGD, Shampoo, K-FAC, and Eva, with 100,
60, 55, and 55 epochs, respectively in training ResNet-50. The throughput improvement of Eva by
using larger per-GPU batch size is studied in Table 7 in Appendix C.

80

90

0.004 0.04 0.4 4

10Va
l.

Ac
cu

ra
cy

SGD
K-FAC
Eva

(a) Learning rate
256 512 1024 2048

86

90

94

Va
l.

Ac
cu

ra
cy

SGD
K-FAC
Eva

(b) Batch size
0.003 0.03 0.3 3

93

94

Va
l.

Ac
cu

ra
cy

K-FAC
Eva

(c) Damping
0.05 0.35 0.65 0.95

93

94
Va

l.
Ac

cu
ra

cy

K-FAC
Eva

(d) Running average

Figure 4: Hyper-parameter study of Eva by training ResNet-110 on Cifar-10 with 100 epochs.

4.4 HYPER-PARAMETER AND ABLATION STUDY

We study the convergence performance of Eva with different hyper-parameters, including learning
rate, batch size, damping, and running average. The results are shown in Fig. 4 in training ResNet-
110 on Cifar-10, and the similar results of training VGG-19 on Cifar-100 are reported in Fig. 9 in
Appendix C. First, the learning rate and batch size are two key hyper-parameters to both SGD and
Eva, as shown in Fig. 4(a) and (b), but Eva and K-FAC can consistently outperform SGD under
different settings, and largely outperform SGD in the large batch size regime. However, a large
learning rate would cause performance degradation in SGD and Eva, but Eva is more robust to the
learning rate and batch size than SGD. Second, we tune the damping and running average hyper-
parameters introduced in K-FAC and Eva, as shown in Fig. 4(c) and (d). K-FAC and Eva perform
very closely and they are both robust to damping and running average values, which implies that one
can use default hyper-parameters to achieve good performance. Therefore, the hyper-parameters
used in SGD and some dedicated hyper-parameters used in K-FAC can be directly applied in Eva
to achieve good convergence performance instead of tuning them. Finally, we conduct the ablation
study on Eva to validate the necessity of using momentum, KL clip (details in Appendix B.2), and
KVs. We compare the performance of Eva to three variants without using momentum, KL clip (see
Eq. 45), and KVs (see Eq. 38), respectively. The results are demonstrated in Table 5, which show
that discarding any part of them would cause performance degradation. Specifically, momentum
can improve the generalization of Eva (similar to SGD with momentum). KL clip is of importance

8

Published as a conference paper at ICLR 2023

Table 5: Ablation study on Eva without using momentum, KL clip, and KVs, respectively.
Dataset Model Eva w/o momentum w/o KL clip w/o KVs
Cifar-10 ResNet-110 93.86±0.1 89.39±0.1 90.95±0.5 92.62±0.2

Cifar-10 WRN-28-10† 97.03±0.1 94.59±0.1 67.27±50. 96.67±0.0

Cifar-100 VGG-19 72.04±0.3 66.00±0.3 60.93±2.3 66.64±0.8

to prevent exploding the preconditioned gradients (similar to K-FAC), otherwise, Eva w/o KL clip
could cause divergence as shown in training WRN-28-10 on Cifar-10. In addition, KVs are required,
rather than gradient norm, to construct useful curvature information that helps optimization.

4.5 LIMITATION AND FUTURE WORK

Though we have demonstrated the good performance of our proposed Eva, we would like to dis-
cuss several limitations and possible future work: (1) there lacks a solid theoretical analysis on the
convergence rate for both Eva and K-FAC with empirical FIM; (2) since most training tricks were
initially proposed for first-order algorithms, it is of interest to design novel second-order friendly
strategies for achieving possibly better performance; (3) we will conduct more experiments to show
the effectiveness of Eva on other applications like NLP; (4) our prototype implementation of Eva
currently only supports data parallelism for distributed training, which can be further integrated with
model parallelism (Huang et al., 2019; Shoeybi et al., 2019) for training very large models.

5 RELATED WORK

Matrix-free methods do not explicitly construct second-order matrix, but they rely on the matrix-
vector products to calculate the preconditioned gradients. The very initial work in this line is the
Hessian-free method (Martens et al., 2010), which requires only Hessian-vector products with an
iterative conjugate gradient (CG) approach. To reduce the cost of each CG iteration, subsampled
mini-batch can be used for Hessian-vector products (Erdogdu & Montanari, 2015). Recently, M-
FAC (Frantar et al., 2021) is proposed to estimate inverse-Hessian vector products with a recursive
Woodbury-Sherman-Morrison formula (Amari, 1998). However, matrix-free methods forgo second-
order matrix at a cost of either performing expensive CG iterations or storing extra sliding gradients.

Approximation methods, on the other hand, construct smaller second-order matrix with different
approximation techniques such as quasi-Newton (Goldfarb et al., 2020), quantization (Alimisis et al.,
2021), Hessian diagonal (Yao et al., 2021), and the most relevant one K-FAC (Martens & Grosse,
2015; Grosse & Martens, 2016), among which K-FAC is a relatively practical one for deep learn-
ing. With K-FAC, one only needs to construct and invert KFs for preconditioning, which is much
more efficient than inverting large FIM directly. However, inverting and storing KFs are not cheap
enough compared with SGD, thus, many recent works attempt to accelerate K-FAC with distributed
training (Osawa et al., 2019; 2020; Ueno et al., 2020; Pauloski et al., 2020; 2021; Shi et al., 2021;
Zhang et al., 2022; 2023). Besides, full-matrix adaptive methods such as Shampoo (Gupta et al.,
2018; Anil et al., 2021) are very similar to K-FAC, which construct second-order preconditioners
for gradient tensors on each dimension (concretely, a variant of full-matrix Adagrad). However, the
required inverse p-th root computations are more expensive than inverting KFs. These expensive
memory and compute costs make them even slower than first-order SGD.

6 CONCLUSION

We proposed an efficient second-order algorithm called Eva to accelerate DNN training. We first
proposed to use the Kronecker factorization of two small vectors to construct second-order informa-
tion, which significantly reduces memory consumption. Then we derived a computational-friendly
update formula without explicitly calculating the inverse of the second-order matrix using the Sher-
man–Morrison formula, which reduces the per-iteration computing time. We also provided a the-
oretical interpretation to Eva with a trust-region optimization perspective. Extensive experiments
were conducted to validate its effectiveness and efficiency, and the results show that Eva outper-
forms existing popular first-order and second-order algorithms on multiple models and datasets.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

The research was supported in part by a RGC RIF grant under the contract R6021-20, and RGC
GRF grants under the contracts 16209120 and 16200221.

REPRODUCIBILITY

We give precise statements for our algorithm in Section 3, and provide all the necessary implemen-
tation details in Appendix B.2. We have specified the settings and hyper-parameters required to
reproduce our experimental results in Appendix C.1. We implement our algorithm atop PyTorch
framework and provide easy-to-use APIs so that users can adopt it by adding several lines of code
in their training scripts. The code is available at https://github.com/lzhangbv/eva.

REFERENCES

Foivos Alimisis, Peter Davies, and Dan Alistarh. Communication-efficient distributed optimization
with quantized preconditioners. In Proceedings of the 38th International Conference on Ma-
chine Learning, ICML, volume 139 of Proceedings of Machine Learning Research, pp. 196–206.
PMLR, 2021.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning, 2021.

Hilal Asi and John C. Duchi. Stochastic (approximate) proximal point methods: Convergence,
optimality, and adaptivity. SIAM J. Optim., 29:2257–2290, 2019.

Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization using
kronecker-factored approximations. In International Conference on Learning Representations,
2017.

Juhan Bae, Paul Vicol, Jeff Z. HaoChen, and Roger B. Grosse. Amortized proximal optimization.
ArXiv, abs/2203.00089, 2022.

Frederik Benzing. Gradient descent on neurons and its link to approximate second-order optimiza-
tion. In ICML, 2022.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

Léon Bottou et al. Online learning and stochastic approximations. On-line learning in neural
networks, 17(9):142, 1998.

Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural networks
for document processing. In Tenth International Workshop on Frontiers in Handwriting Recogni-
tion. Suvisoft, 2006.

Mengyun Chen, Kaixin Gao, Xiaolei Liu, Zidong Wang, Ningxi Ni, Qian Zhang, Lei Chen, Chao
Ding, Zhenghai Huang, Min Wang, et al. THOR, trace-based hardware-driven layer-oriented nat-
ural gradient descent computation. Proceedings of the AAAI Conference on Artificial Intelligence,
35(8):7046–7054, 2021.

Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. Autoaugment:
Learning augmentation strategies from data. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 113–123, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

10

https://github.com/lzhangbv/eva

Published as a conference paper at ICLR 2023

John E. Dennis and Bobby Schnabel. Numerical methods for unconstrained optimization and non-
linear equations. In Prentice Hall series in computational mathematics, 1983.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition
at scale. In 9th International Conference on Learning Representations, ICLR. OpenReview.net,
2021.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. In J. Mach. Learn. Res., 2010.

Murat A. Erdogdu and Andrea Montanari. Convergence rates of sub-sampled newton methods. In
NIPS, 2015.

Elias Frantar, Eldar Kurtic, and Dan Alistarh. M-fac: Efficient matrix-free approximations of
second-order information. In Advances in Neural Information Processing Systems, volume 34,
pp. 14873–14886, 2021.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast approx-
imate natural gradient descent in a kronecker factored eigenbasis. Advances in Neural Information
Processing Systems, 31:9550–9560, 2018.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. In Advances in Neural Information Processing Systems, 2020.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582, 2016.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In ICML, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems, pp. 1731–1741, 2017.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32:
103–112, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

Abdoulaye Koroko, Ani Anciaux-Sedrakian, Ibtihel Ben Gharbia, Valérie Garès, Mounir Haddou,
and Quang-Huy Tran. Efficient approximations of the fisher matrix in neural networks using
kronecker product singular value decomposition. ArXiv, abs/2201.10285, 2022.

Aravind Krishnamoorthy and Deepak Menon. Matrix inversion using cholesky decomposition. 2013
Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), pp. 70–72,
2013.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Citeseer, 2009.

11

Published as a conference paper at ICLR 2023

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60:84 – 90, 2012.

Guan-Horng Liu, Tianrong Chen, and Evangelos Theodorou. Second-order neural ODE optimizer.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Linjian Ma, Gabe Montague, Jiayu Ye, Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael
Mahoney. Inefficiency of k-fac for large batch size training. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(04):5053–5060, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417, 2015.

James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored curvature approximations for
recurrent neural networks. In International Conference on Learning Representations, 2018.

James Martens et al. Deep learning via hessian-free optimization. In ICML, volume 27, pp. 735–742,
2010.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. ArXiv, abs/1812.06162, 2018.

MLPerf. Mlperf training v1.1 results. https://mlcommons.org/en/news/
mlperf-training-v11/, 2021. Accessed: 2022-09-15.

Jorge J Moré. The levenberg-marquardt algorithm: implementation and theory. In Numerical anal-
ysis, pp. 105–116. Springer, 1978.

K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, C. Foo, and R. Yokota. Scalable and practical natural gradi-
ent for large-scale deep learning. IEEE Transactions on Pattern Analysis & Machine Intelligence,
2020.

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
Large-scale distributed second-order optimization using kronecker-factored approximate curva-
ture for deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 12359–12367, 2019.

J Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu, and Ian T Foster. Convolutional neural
network training with distributed K-FAC. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–14, 2020.

J. Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman, Kyle Chard, Ian Foster, and
Zhao Zhang. Kaisa: An adaptive second-order optimizer framework for deep neural networks.
In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, 2021.

Yi Ren and Donald Goldfarb. Tensor normal training for deep learning models. In Advances in
Neural Information Processing Systems, pp. 26040–26052, 2021.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in tensor-
flow. arXiv preprint arXiv:1802.05799, 2018.

Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix corresponding to a change
in one element of a given matrix. The Annals of Mathematical Statistics, 21(1):124–127, 1950.

Shaohuai Shi, Lin Zhang, and Bo Li. Accelerating distributed k-fac with smart parallelism of com-
puting and communication tasks. In 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2021.

12

https://mlcommons.org/en/news/mlperf-training-v11/
https://mlcommons.org/en/news/mlperf-training-v11/

Published as a conference paper at ICLR 2023

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale im-
age recognition. In 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Proc. of The 31st AAAI,
2017.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In Proceedings of the 36th International Conference on Machine Learning, ICML,
volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114. PMLR, 2019.

Zedong Tang, Fenlong Jiang, Maoguo Gong, Hao Li, Yue Wu, Fan Yu, Zidong Wang, and Min
Wang. Skfac: Training neural networks with faster kronecker-factored approximate curvature.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13479–13487, 2021.

Yuichiro Ueno, Kazuki Osawa, Yohei Tsuji, Akira Naruse, and Rio Yokota. Rich information is
affordable: A systematic performance analysis of second-order optimization using K-FAC. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2145–2153, 2020.

Minghan Yang, Dong Xu, Zaiwen Wen, Mengyun Chen, and Pengxiang Xu. Sketch-based empirical
natural gradient methods for deep learning. J. Sci. Comput., 92:94, 2022.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(12):10665–10673, 2021.

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. ImageNet training in
minutes. In Proceedings of the 47th International Conference on Parallel Processing, pp. 1–10,
2018.

Ya-Xiang Yuan. Recent advances in trust region algorithms. Mathematical Programming, 151:
249–281, 2015.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Young Joon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6022–6031, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British
Machine Vision Conference,. BMVA Press, 2016.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George E. Dahl,
Christopher J. Shallue, and Roger Baker Grosse. Which algorithmic choices matter at which
batch sizes? insights from a noisy quadratic model. In NeurIPS, 2019.

Lin Zhang, Shaohuai Shi, Wei Wang, and Bo Li. Scalable k-fac training for deep neural networks
with distributed preconditioning. IEEE Transactions on Cloud Computing, 2022.

Lin Zhang, Shaohuai Shi, and Bo Li. Accelerating distributed k-fac with efficient collective commu-
nication and scheduling. IEEE International Conference on Computer Communications, 2023.

13

Published as a conference paper at ICLR 2023

A APPENDIX: BACKGROUND OF SECOND-ORDER OPTIMIZATION

A.1 SECOND-ORDER OPTIMIZATION

Second-order optimization algorithms typically utilize the second-order information matrix C to
precondition the first-order gradient (i.e., multiplying the gradient by the inverse of C), and then use
the preconditioned gradient to update the model parameter as follows:

w(t+1) = w(t) − α(t)C−1vec(∇ℓ(w(t),B(t))), (15)

where w(t),vec(∇ℓ(w(t),B(t))) ∈ Rn are the model parameter vector, and the first-order gradient
vector of a loss with respect to model parameter, respectively. C ∈ Rn×n is the second-order curva-
ture information matrix, and α(t) > 0 is the learning rate at iteration t. The mini-batch of data B(t)
is sampled randomly from the training dataset. The matrix-vector multiplication of C−1vec(∇ℓ) is
called preconditioning, and the second-order information matrix includes Hessian, Gauss-Newton,
Fisher information, their damped versions and so on (Bottou et al., 2018). When C = I , the update
formula becomes the first-order SGD algorithm.

A.2 DETAILED ANALYSIS OF K-FAC

K-FAC has been proven to be one of the most powerful second-order optimizers for training deep
models (Osawa et al., 2019; 2020; Pauloski et al., 2020; 2021), and the idea of Kronecker factorized
approximation of curvature information is similar to our algorithm. Here we provide a detailed
analysis of K-FAC (Martens & Grosse, 2015), which could help us understand Eva provided in
the next section (§ B.2). We start from introducing FIM, which is the curvature matrix used in K-
FAC, and then establish the Kronecker factorized approximation for FIM, and give the final update
formula with the damping technique.

FIM. In the natural gradient descent (NGD) algorithm (Amari, 1998; Martens & Grosse, 2015),
the Fisher information matrix (FIM) is used and inverted to precondition the gradient. The update
formula of NGD is:

w(t+1) = w(t) − α(t)F−1vec(∇ℓ(w(t),B(t))), (16)
where F ∈ Rn×n is the FIM, and F−1vec(∇ℓ) is the natural gradient, which is known to be the
steepest direction in the space of model distributions (Amari, 1998). The true FIM is derived from

F1mc = Ex∼pdata,ŷ∼r(·|x)[vec(∇ℓ)vec(∇ℓ)T], (17)

where ∇ℓ = ∇ log r(ŷ|x) is the pseudo-gradient w.r.t. model parameter w, the expectation E is
taken from sampling the input x from data distribution pdata, and its pseudo-label ŷ from the model
distribution r(·|x). As the model distribution is different from the data distribution, the pseudo-
gradient is different from the gradient used in SGD. In practice, the one-sample Monte-Carlo (1mc)
approach (Martens & Grosse, 2015) is used to generate a pseudo-label ŷ for each input x from the
model output distribution r(·|x), and then the pseudo-gradient is calculated via back-propagation
(BP) w.r.t. the loss between model outputs and pseudo-labels. To avoid any confusion, the true FIM
is usually denoted as F1mc.

However, in many existing K-FAC implementations, it is a common practice to construct the empiri-
cal FIM (Osawa et al., 2019; 2020; Ueno et al., 2020; Pauloski et al., 2020; 2021) to avoid additional
back-propagation computations with pseudo-labels for efficient training. The empirical FIM can be
represented as

Femp = E(x,y)∼pdata
[vec(∇ℓ)vec(∇ℓ)T], (18)

where ∇ℓ = ∇ log r(y|x) is the the log-likelihood gradient of a loss between the input x and its
label y (sampled from the data distribution). As this gradient is exactly the same one in SGD, Femp

can be efficiently constructed during the same feed-forward and back-propagation process of SGD.
In this work, we focus on the analysis of the empirical FIM as it is more efficient than the true FIM
while having the similar convergence performance with the true FIM in practise (Osawa et al., 2019;
2020; Ueno et al., 2020; Pauloski et al., 2020; 2021). Thus, throughout the following context, F
refers to Femp if not particularly specified.

K-FAC. Due to the large number of parameters in DNNs, it is impractical to store and invert the
whole F , which takes O(n2) memory. Many approximation methods have been proposed to re-
duce the quadratic memory cost, such as Matrix-free methods (Martens et al., 2010; Frantar et al.,

14

Published as a conference paper at ICLR 2023

2021), and Kronecker factorization (K-FAC) methods (Martens & Grosse, 2015; Grosse & Martens,
2016; George et al., 2018). In particular, K-FAC methods provide efficient and effective approxi-
mations of F , and have been successfully applied in large-scale distributed DNNs training for faster
convergence (Osawa et al., 2019; Ueno et al., 2020; Pauloski et al., 2020; 2021).

Specifically, given an L-layer DNN, K-FAC approximates the full F with a block-wise diagonal
matrix as follows:

F ≈ diag(F1, · · · , FL), where Fl = E[vec(∇ℓl)vec(∇ℓl)T], (19)

where Fl is the FIM block constructed from the gradient information of layer l. For each Fl, K-FAC
approximates it as the Kronecker product of two smaller matrices. Take a linear layer as an example,
where al = ϕ(Wlal−1), Fl can be approximated by

Fl = E[vec(∇ℓl)vec(∇ℓl)T], (20)

= E[(al−1 ⊗ gl)(al−1 ⊗ gl)
T] = E[(al−1a

T
l−1)⊗ (glg

T
l)], (21)

≈ E[al−1a
T
l−1]⊗ E[glg

T
l] ≜ Al−1 ⊗Gl. (22)

The second-line derivation is based on the chain rule of E[∇ℓl] = E[gla
T
l−1] and the properties of

Kronecker product ⊗, where ∇ℓl is the gradient matrix w.r.t. the parameter matrix Wl ∈ Rdl×dl−1 ,
al−1 ∈ Rdl−1 is the input vector of layer l (i.e., activation of layer l − 1), gl ∈ Rdl is the gradi-
ent vector w.r.t. the pre-activation output of layer l, and ϕ is an element-wise non-linear activation
function. The third-line approximation is based on the assumption that al−1 and gl are fairly inde-
pendent (Martens & Grosse, 2015), which gives E[(al−1a

T
l−1)⊗(glg

T
l)] ≈ E[al−1a

T
l−1]⊗E[glg

T
l].

The Al−1 = E[al−1a
T
l−1] and Gl = E[glg

T
l] are called Kronecker factors (KFs). We notice that

recent work points out K-FAC may not approximate FIM, but should be linked to gradient descent
on neurons (Benzing, 2022). We are open to study this new perspective as well in the future work.

In summary, K-FAC approximates the full FIM diagonally via F ≈ diag(F1, · · · , FL), and then use
the Kronecker product of two KFs to approximate each FIM block via Fl ≈ Al−1⊗Gl. Based on the
property of (A⊗G)vec(V) = vec(GV A), the preconditioned gradient is computed layer-wisely:

F−1
l vec(∇ℓl) = (A−1

l−1 ⊗G−1
l)vec(∇ℓl) = vec(G−1

l ∇ℓlA
−1
l−1). (23)

Thus, preconditioning the gradient in K-FAC is simply to left-multiply the gradient with G−1
l and

right-multiply it with A−1
l−1, where both KFs are symmetric matrices.

The K-FAC approximation reduces the memory complexity from a quadratic cost of storing FIM to
a linear cost of storing KFs. Specifically, the total model parameter number is n =

∑L
l=1(dl−1×dl),

while the KF parameter number is
∑L

l=1(d
2
l−1 + d2l) = O(kn), in which k ≥ 2. In addition, the K-

FAC approximation is by no means limited to linear layers, and it has been successfully applied into
other types of DNNs, such as CNNs, RNNs, and neural ODEs (Grosse & Martens, 2016; Martens
et al., 2018; Liu et al., 2021).

Damping technique. To stabilize the second-order optimization, the damping technique (Moré,
1978) is commonly applied into the FIM (i.e., Fl + γI) with a damping value γ > 0, before pre-
conditioning. As inverting the large damped FIM directly is very expensive, K-FAC exploits an
alternative approximate approach to invert two smaller damped KFs, i.e.,

(Fl + γI)−1 = (Al−1 ⊗Gl + γI)−1 ≈ (Al−1 + πl
√
γI)−1 ⊗ (Gl +

√
γ

πl
I)−1, (24)

where πl =
√
T (Al−1)/

√
T (Gl). T (·) is the trace of a square matrix divided by its dimension,

which is derived to minimize the approximation error of inverting damped KFs (Martens & Grosse,
2015). To avoid that πl becomes infinitely large when Gl is nearly zero, we restrict πl no larger than
109 in practise. With the damping technique, the K-FAC update formula becomes:

W
(t+1)
l = W

(t)
l − α(t)(Gl +

√
γ

πl
I)−1∇ℓl(w(t),B(t))(Al−1 + πl

√
γI)−1, (K-FAC)

where I is an identity matrix. Therefore, K-FAC only needs to construct and invert damped KFs for
all layers (l = 1, · · · , L). The damped KFs are positive definite and they are typically inverted using
Cholesky decomposition (Krishnamoorthy & Menon, 2013).

15

Published as a conference paper at ICLR 2023

A.3 K-FAC VARIANTS

The K-FAC algorithm can potentially improve the training performance by using a much less num-
ber of iterations than the SGD counterpart to reach the target accuracy (Osawa et al., 2019; Ueno
et al., 2020). However, the iterative training time of K-FAC is much longer than that of SGD, as it
needs to construct and invert KFs, which limits the practical usability of K-FAC. Distributed train-
ing techniques can also help alleviate the heavy inverse computations with multiple workers (Osawa
et al., 2019; 2020; Pauloski et al., 2020; 2021). As distributed K-FAC introduces new bottleneck
of communicating KFs, recent works (Shi et al., 2021; Zhang et al., 2022; 2023) were proposed to
optimize its communication cost to reduce training time. Besides, the eigen-decomposition meth-
ods (George et al., 2018; Pauloski et al., 2020; 2021) target at providing better FIM approximations,
for more stable optimization performance, by eigen-decomposing the KFs. For example, the exact
damped preconditioner is given by eigen-decomposing KFs:

(Fl + γI)−1 = (Al−1 ⊗Gl + γI)−1 = (QA ⊗QG)(DA ⊗DG + γI)−1(QT
A ⊗QT

G), (25)

where Al−1 = QADAQ
T
A and Gl = QGDGQ

T
G are the orthogonal eigen-decompositions of two

KFs. The eigen-decomposition provides the exact preconditioner rather than approximate precondi-
tioner with matrix inversion (see Eq. 24). However, eigen-decomposition operations introduce much
larger per-iteration computation overheads than matrix inversion operations (Zhang et al., 2022).

In addition, to alleviate the computational bottleneck, SKFAC (Tang et al., 2021) and SENG (Yang
et al., 2022) applied the Woodbury formula to invert the Kronecker factors in a smaller dimension
of mini-batch size, and KPSVD (Koroko et al., 2022) considered low-rank approximation of the
Kronecker factors via expensive singular value decomposition. Unlike Eva, these methods attempt
to approximate the low-rank FIM, and they are still compute-inefficient as they rely on either matrix
inversion or decomposition operations.

Stale FIM. Existing K-FAC algorithms suffer from the system inefficiency due to the expensive
overheads of computing and/or communicating KFs of all layers iteratively. As a compromise,
they usually utilize the stale FIM information to increase the update interval of KFs to alleviate
its inefficiency. However, skipping K-FAC approximations by using the stale statistics could bring
potential negative effects on the convergence performance (Ba et al., 2017; Pauloski et al., 2020;
Chen et al., 2021), and increase the complexity of tuning hyper-parameters (Ma et al., 2020).

B APPENDIX: DETAILED DERIVATION OF EVA

We provide the derivations of Eva from the trust-region optimization perspective, and supplement
its algorithm and implementation details.

B.1 TRUST-REGION OPTIMIZATION

The trust-region optimization provides a useful perspective toward understanding many second-
order methods. Formally, we have

w(t+1) = min
w

ℓ(w), (26)

s.t., ρ(w,w(t)) ≤ λ, (27)

where w(t) is the current model parameter, ℓ is the loss function, and ρ is the proximal function to
measure the distance between two parameters. Therefore, the objective of trust-region optimization
is to find the next model parameter w(t+1) that minimizes the loss function while being close to the
current parameter (i.e., in the trust region). It can be well solved by converting it into a proximal
optimization problem (Bae et al., 2022) as follows:

w(t+1) = min
w

ℓ(w) +
1

λ
ρ(w,w(t)), (28)

≈ min
w

ℓ(w(t)) + vec(∇ℓ(w(t)))T (w −w(t)) +
1

2λ
(w −w(t))TP (w −w(t)). (29)

First, the proximal constraint of ρ(w,w(t)) ≤ λ is added into the objective function as a penalty
(smaller λ means larger penalty). Second, we approximate the left-side loss term with first-order

16

Published as a conference paper at ICLR 2023

expansion: ℓ(w) ≈ ℓ(w(t)) + vec(∇ℓ(w(t)))T (w−w(t)), and approximate the right-side penalty
term with second-order expansion: ρ(w,w(t)) ≈ 1

2 (w−w
(t))TP (w−w(t)) ≤ λ, where the metric

P depends on the choice of ρ.

As the approximated objective function is quadratic to w, the optimal solution can be obtained as
follows:

w(t+1) = w(t) − λP−1vec(∇ℓ(w(t))). (30)

This gives a generalized update formula of many second-order methods. For example, NGD uses the
true FIM as the metric matrix, i.e., P = F1mc, and the proximal constraint with the true FIM is in
fact the second-order approximation of the KL-divergence between two model output distributions,
i.e., KL(pw||pw(t)) ≈ 1

2 (w −w(t))TF1mc(w −w(t)).

B.2 EVA

Algorithm. Following the same idea, Eva uses the damped outer-product of average gradient
(OPAG) as the metric, that is

P = R+ γI = E[vec(∇ℓ)]E[vec(∇ℓ)]T + γI, (31)

where R = E[vec(∇ℓ)]E[vec(∇ℓ)]T is the OPAG. Put it into the proximal function, we have

ρ(w,w(t)) =
1

2
(w −w(t))TP (w −w(t)) =

1

2
(∆wTE[vec(∇ℓ)])2 + γ

2
||∆w||2, (32)

where ∆w = w −w(t) is the parameter update. Therefore, the proximal function consists of two
terms: the first one constrains the parameter update along the gradient direction, and the second one
limits the parameter update size. In other words, it is equivalent to combining the strip trust region
and ball trust region, as shown in Fig. 2(c).

Like K-FAC, to reduce memory and computation costs, Eva approximates the OPAG with two
smaller vectors at each DNN layer. Specifically, given a linear layer al = ϕ(Wlal−1), the OPAG is
approximated as follows:

Rl = E[vec(∇ℓl)]E[vec(∇ℓl)]T = E[al−1 ⊗ gl]E[al−1 ⊗ gl]
T , (33)

≈ (E[al−1]⊗ E[gl])(E[al−1]⊗ E[gl])
T ≜ (āl−1 ⊗ ḡl)(āl−1 ⊗ ḡl)

T . (34)

Similarly, the derivations are based on the chain rule of E[∇ℓl] = E[gla
T
l−1], and the assumption that

al−1 and gl are fairly independent (Martens & Grosse, 2015). āl−1 = E[al−1] and ḡl = E[gl] are
called Kronecker vectors (KVs). Since Rl = vlv

T
l , where vl = āl−1⊗ ḡl, is a rank-one matrix, the

inverse of the damped Rl can be computed efficiently via the Sherman–Morrison formula (Sherman
& Morrison, 1950). The Sherman–Morrison formula is

(A+ u1u
T
2) = A−1 − A−1u1u

T
2 A

−1

1 + uT
2 A

−1u1
, (35)

where A is an invertible square matrix, u1 and u2 are column vectors. Taking A = γI and u1,u2 =
vl into the formula, we can invert the damped Rl efficiently as follows:

(Rl + γI)−1 = (γI + vlv
T
l)

−1 =
1

γ
(I − vlv

T
l)

γ + vT
l vl

) =
1

γ
(I −

(āl−1ā
T
l−1)⊗ (ḡlḡ

T
l)

(āTl−1āl−1)(ḡT
l ḡl) + γ

). (36)

Therefore, the preconditioned gradient with damped OPAG in the vector form is given by

(Rl + γI)−1vec(∇ℓl) =
1

γ

(
vec(∇ℓl)−

ḡT
l ∇ℓlāl−1

(āTl−1āl−1)(ḡT
l ḡl) + γ

vec(ḡlā
T
l−1)

)
. (37)

Thus, we can derive the update formula of Eva as:

W
(t+1)
l = W

(t)
l − α(t)

γ

(
∇ℓl −

ḡT
l ∇ℓlāl−1

(āTl−1āl−1)(ḡT
l ḡl) + γ

ḡlā
T
l−1

)
. (Eva)

17

Published as a conference paper at ICLR 2023

Relation to SGD. Assume that a and g are fully independent, we have E[vec(∇ℓ)] = E[a⊗ g] =
E[a] ⊗ E[g]. This means one can replace the Kronecker product of KVs by the gradient in Eva’s
update formula. That is, we can derive a simple update formula without using KVs as follows:

W
(t+1)
l = W

(t)
l − α(t)

γ
(∇ℓl −

||∇ℓl||2

(||∇ℓl||2 + γ
∇ℓl) = W

(t)
l − α(t) ∇ℓl

||∇ℓl||2 + γ
. (38)

This shows that Eva (w/o KVs) uses only gradient norm to precondition the gradient in each DNN
layer, behaving like a layer-wise adaptive SGD algorithm (You et al., 2018). However, the assump-
tion that a and g are completely independent is unrealistic, because ḡT

l āl−1 is a rank-one matrix
while the expectation of gradient is generally not (i.e., E[∇ℓl] ̸= ḡT

l āl−1). Therefore, performing
Eq. 38 directly will lose second-order information and affect the convergence performance com-
pared to the Eva algorithm (see Table 5). Nevertheless, the Kronecker factorization of KVs are able
to capture the structure information that helps optimization in deep learning training.

KVs estimation for different types of layers. The key component of Eva is to construct KVs used
to precondition the gradient. Due to different structure of different types of layers, how to construct
KVs is different. First of all, we consider how to estimate KVs for linear and convolutional layers.

Linear layer without bias: it is straightforward to estimate the KVs during feed-forward (FF) and
back-propagation (BP) processes with a mini-batch of intermediate states by

āl−1 = E[al−1] =
1

|B|
∑
i∈B

a
(i)
l−1 and ḡl = E[gl] =

1

|B|
∑
i∈B

g
(i)
l , (39)

where a
(i)
l−1 and g

(i)
l are input and pre-activation gradient vectors at layer l, sampled from the mini-

batch of data B. In practice, the mini-batch size used to estimate KVs can be a subset of the current
batch. We find that a mini-batch size of 16 works well to estimate KVs.

Linear layer with bias: we can formulate it as matrix-vector multiplication:

si = Wlal−1 + bl = (Wl bl)

(
al−1

1

)
, (40)

where Wl and bl are weight and bias parameters, respectively. Therefore, to precondition the con-
catenated gradient of weight and bias, one should estimate āl−1 over the input activation associated
with one.

Convolutional layer: we need to convert the convolution operation into a linear transformation to es-
timate KVs. Assume that the input size is (Cin, Hin,Win), and the output size is (Cout, Hout,Wout)
in a conv layer, where C denotes a number of channels, H is a height in pixels, W is a width in
pixels, the convolution operation is defined as follows:

out[cout] =
Cin∑

cin=1

weight[cout][cin] ⋆ input[cin], cout = 1, · · · , Cout, (41)

where ⋆ is the 2D cross-correlation operator. There are totally Cin × Cout cross-correlation opera-
tions, and each ⋆ operation involves parameters with kernel size KH ×KW . By unfolding the input
into a matrix X , one can perform convolution as a linear transformation (Chellapilla et al., 2006):

out = reshape(XWT), (42)

where X is the unfolding input matrix of shape HoutWout × CinKHKW (each row contains all
necessary values within the receptive fields), and WT is the weight matrix of shape CinKHKW ×
Cout (each column contains all in-channel kernel weights). To construct KVs used to precondition
the gradient of weight matrix, we are interested in the output pixel-wise linear transformation:

yi = Wxi, i = 1, · · · , HoutWout, (43)

where xi and yi are the i-th row of the input matrix X and output matrix XWT . In other words, we
can treat the pixel-wise out-channel computations as linear transformations on HoutWout vectors.
Therefore, the KVs for a convolutional layer can be efficiently constructed as follows:

āconv =
1

|B|
∑
i∈B

mean(X(i), 0) and ḡconv =
1

|B|
∑
i∈B

mean(∇(i)
out, [1, 2]), (44)

18

Published as a conference paper at ICLR 2023

where X(i) is the unfolding input sampled from B, and ∇(i)
out is the corresponding pre-activation

output gradient tensor. The āconv ∈ RCinKHKW and ḡconv ∈ RCout take the average estimations
over all rows of all inputs, and all pixels of all outputs, respectively. Like linear layers, the calculated
KVs are used to precondition the gradient of the weight matrix. If bias is involved, one can simply
add one element into āconv as discussed before.

Gradient clipping. After the gradient is preconditioned with KVs, the size of preconditioned gra-
dient is typically an order of magnitude larger than the size of the original gradients (in terms of
L2-norm), which could cause divergence. To ensure the model update is inside the trust region,
different gradient clipping strategies can be applied to prevent exploding the preconditioned gradi-
ent. As suggested in (Pauloski et al., 2020), one can clip the preconditioned gradient when the KL
size is higher than a threshold, which is measured by the damped OPAG (Martens & Grosse, 2015)
as vec(Gl)T (R + γI)vec(Gl) = vec(Gl)Tvec(∇ℓl), where Gl is the preconditioned gradient at
layer l. Thus, one can scale the preconditioned gradients by a factor of

νKL = min
(
1,

√
κ

α2
∑L

l=1 vec(Gl)Tvec(∇ℓl)

)
, (45)

where κ > 0 is the threshold for KL clipping. As KL clip is coupled with learning rate schedule
algorithms, we find it works well for multi-step learning schedule following the practise of (Pauloski
et al., 2020).

In addition, to avoid any hyper-parameter for clipping (i.e., κ), we propose gradient rescaling to
keep the preconditioned gradient in the same size of the original gradient, that is, multiplying pre-
conditioned gradient by a factor of

νGR =

√√√√∑L
l=1 ||∇ℓl||2∑L
l=1 ||Gl||2

. (46)

With gradient rescaling, preconditioning will not change the size of the gradient. We apply it in our
finetuning experiments (see Table 6), and the results show that Eva can generalize on par with SGD
under the same cosine learning rate schedule. As gradient clipping is of importance for precondi-
tioned gradient descent algorithms such as K-FAC and Eva, we leave designing effective gradient
clipping or scaling strategies as our future work.

Implementation. We implement Eva atop PyTorch. Following (Pauloski et al., 2020; 2021), we
build a preconditioner to estimate KVs and precondition the gradients before performing the stan-
dard SGD optimizer. Our preconditioner supports Linear and Conv2D layers, and parameters at
other layers (e.g., BatchNorm2d) will be updated by SGD without preconditioning. To construct
KVs at supported layers, we register forward pre-hooks and backward-hooks to capture the acti-
vations and pre-activation gradients during the feed-forward and back-propagation computations,
respectively. These intermediate values are used to estimate new KVs and update the running aver-
age states. Then we use stored KVs to precondition the gradients layer-wisely, and perform gradient
clipping on preconditioned gradients, before they are used to update the model parameters in SGD.

To support data parallelism, we implement our Eva preconditioner to communicate KVs at each
worker via all-reduce primitives. The communication of KVs is very efficient as the data vol-
ume of KVs is sublinear to the number of gradients, and small KVs can be merged to be commu-
nicated together via the tensor fusion technique supported by the distributed training framework
Horovod (Sergeev & Del Balso, 2018). The aggregated KVs are then used to precondition the ag-
gregated gradients on all workers. Unlike distributed K-FAC (Osawa et al., 2019; Shi et al., 2021),
distributed Eva does not need to assign matrix-inversion tasks at different layers into different work-
ers, and it also does not need to use stale FIM to skip the precondition of many iterations (e.g.,
update KFs every 50 iterations). Instead, it is memory- and time-efficient to construct KVs and
precondition the gradients on all workers during the whole training process.

19

Published as a conference paper at ICLR 2023

C APPENDIX: SUPPLEMENT OF EXPERIMENTS

C.1 EXPERIMENTAL SETTINGS

Testbed. We conduct our experiment on a 32-GPU cluster. It consists of 8 nodes connected 10Gb/s
Ethernet, and each node has 4 Nvidia RTX2080Ti GPUs connected by two Intel(R) Xeon(R) Gold
6230 CPUs, 512GB memory, and PCIe3.0x16. We use some common software including PyTorch-
1.10.0, Horovod-0.21.0, CUDA-10.2, cuDNN-7.6, and NCCL-2.6.4.

Datasets and Models. We conduct our experiments on three commonly used datasets: Cifar-
10 (Krizhevsky, 2009), Cifar-100 (Krizhevsky, 2009), and ImageNet (Deng et al., 2009). The Cifar-
10/100 has 50,000 training images and 10,000 validation images. The ImageNet has ∼1.3M train-
ing images and 50,000 validation images. On Cifar-10 and Cifar-100 datasets, we choose three
representative models: VGG-19 (Simonyan & Zisserman, 2015), ResNet-110 (He et al., 2016), and
WRN-28-10 (Zagoruyko & Komodakis, 2016). On the ImageNet dataset, we select ResNet-50 (He
et al., 2016), Inception-v4 (Szegedy et al., 2017), and ViT-B/16 (Dosovitskiy et al., 2021) models.

Baselines. We compare our Eva to the first-order baseline SGD, and second-order baseline K-
FAC (Martens & Grosse, 2015). Besides SGD and K-FAC, we select two first-order adaptive gra-
dient algorithms Adagrad (Duchi et al., 2010) and AdamW (Loshchilov & Hutter, 2019), and two
other second-order algorithms M-FAC (Frantar et al., 2021) and Shampoo (Anil et al., 2021). We
run each algorithm for 3 runs to compute the average metric (e.g., top-1 validation accuracy).

Hyper-parameters. We provide hyper-parameter configurations for reproducibility as below.

• In training VGG-19, ResNet-110, WRN-28-10 on Cifar-10 and Cifar-100 with SGD, K-
FAC, and Eva, following (Pauloski et al., 2020), we set the mini-batch size to 512, learning
rate to 0.4, and weight decay to 5e-4. We apply the multi-step learning rate schedule (a
linear warmup at the first 5 epochs and learning rate decays by a factor of 10 at 35%, 75%,
and 90% epochs). For K-FAC and Eva, we set damping to 0.03, running average to 0.95,
and KL-clip to 0.001. The second-order update interval of K-FAC is 10.

• In training VGG-19, ResNet-110, WRN-28-10 on Cifar-10 with 4 more algorithms (Ada-
grad, AdamW, Shampoo, and M-FAC), we set the mini-batch size to 512, and tune the
learning rate (from 10e-4 to 4) and choose the best one for each algorithm. Specifically,
we set the learning rate as 0.4, 0.06, 0.04, and 0.004 for Shampoo, M-FAC, Adagrad, and
AdamW, respectively. For AdamW, we set weight decay to 0.05 (5e-4 for others). For
M-FAC, we set the number of gradient copies to 32. For Shampoo, we set the second-order
update interval to 10, and apply the same multi-step learning rate schedule. We use co-
sine learning rate schedule (Loshchilov & Hutter, 2017) in other 3 algorithms (Adagrad,
AdamW, and M-FAC) for better results.

• In time and memory efficiency comparison, we run Shampoo, K-FAC, and Eva on an
Nvidia RTX2080Ti GPU. The second-order update interval of Shampoo and K-FAC is
10 on Cifar-10 (and 50 on ImageNet). On Cifar-10, we set the batch size as 512 for training
VGG-19 and ResNet-110, and 256 for WRN-28-10. On ImageNet, we set the batch size as
64, 32, 16 for training ResNet-50, Inception-v4, and ViT-B/16, respectively. We measure
the average time over 250 iterations, and obtain the GPU memory consumption by calling
the “nvidia-smi” command.

• In the end-to-end performance comparison, we train VGG-19, ResNet-110, WRN-28-10
on Cifar-10 with one GPU. We set learning rate to 0.4, batch size to 512 for VGG-19,
ResNet-110, and 256 for WRN-28-10. We run SGD for 200 epochs, and run Shampoo, K-
FAC, and Eva for 100 epochs. We use the same multi-step learning rate schedule as before.
For Shampoo and K-FAC, the update interval is 10. For K-FAC and Eva, the damping is
0.03 and the running average is 0.95. The target validation accuracy is 93% for training
VGG-19 and ResNet-110, and 96.5% for training WRN-28-10.

• In end-to-end performance comparison, we train ResNet-50 on ImageNet-1k with 32
GPUs. To maximize the GPU memory, we set the per-GPU batch size to 64 for Sham-
poo and K-FAC, and to 96 for SGD and Eva. We set the learning rate to 0.05× 32 = 1.6.
Following (Pauloski et al., 2020), we train K-FAC and Eva for 55 epochs with learning rate
decays at 25, 35, 40, 45, 50 epochs, and we set the damping to 0.001 and the running aver-

20

Published as a conference paper at ICLR 2023

age to 0.95. We train Shampoo for 60 epochs with tuned decays at 30, 45, 55 epochs, and
SGD for 100 epochs, with tuned decays at 30, 60, 90 epochs. For Shampoo and K-FAC,
the update interval is 50. The target validation accuracy is 75.9% (MLPerf).

C.2 ADDITIONAL EXPERIMENTAL RESULTS

Autoencoder. Following (Martens & Grosse, 2015; Goldfarb et al., 2020; Ren & Goldfarb, 2021),
we compare the optimization performance of each algorithm by training an 8-layer autoencoder
(with hidden dimensions of [1000, 500, 250, 30, 250, 500, 1000]) on three datasets: MNIST, FACES,
and CURVES. We set batch size to 1000, and run each algorithm for 100 epochs with a linear decay
learning rate schedule. We tune the learning rate in the range of [0.001, 0.5] for different cases. The
results are given in Fig. 5. The Fig. 5 shows that second-order methods K-FAC and Eva optimize
much faster than SGD in this task, and our Eva can optimize the autoencoder model at the same con-
vergence speed as K-FAC. In addition, one can see that Eva performs closely or better than another
second-order method Shampoo, and Shampoo is faster than Adagrad except on CURVES. Note that
Shampoo is a full-matrix version of Adagrad. We also compare the generalization performance of
each algorithm in this task, and the results are very close to those of optimization comparison, that
is, Eva performs similarly to K-FAC and outperforms other first-order counterparts on three datasets.

0 20 40 60 80 100
Epochs

0.2
0.4
0.6
0.8

Tr
ai

n
Lo

ss

SGD
Adagrad
K-FAC
Shampoo
Eva

(a) Train loss on MNIST

0 20 40 60 80 100
Epochs

0.2
0.4
0.6
0.8
1.0

Tr
ai

n
Lo

ss

SGD
Adagrad
K-FAC
Shampoo
Eva

(b) Train loss on FACES

0 20 40 60 80 100
Epochs

1.4

1.8

2.2

2.6

Tr
ai

n
Lo

ss

1e 2

SGD
Adagrad
K-FAC
Shampoo
Eva

(c) Train loss on CURVES

0 20 40 60 80 100
Epochs

0.2
0.4
0.6
0.8

Te
st

 L
os

s

SGD
Adagrad
K-FAC
Shampoo
Eva

(d) Test loss on MNIST

0 20 40 60 80 100
Epochs

0.2
0.4
0.6
0.8
1.0

Te
st

 L
os

s

SGD
Adagrad
K-FAC
Shampoo
Eva

(e) Test loss on FACES

0 20 40 60 80 100
Epochs

1.4

1.8

2.2

2.6

Te
st

 L
os

s

1e 2

SGD
Adagrad
K-FAC
Shampoo
Eva

(f) Test loss on CURVES

Figure 5: Optimizing an autoencoder on MNIST/FACES/CURVES with different algorithms.

Training dynamics study. To understand the training dynamics of Eva, we provide a case study by
setting Eva’s learning rate as αEva = γ × αSGD, and then update formula of Eva is given by

W
(t+1)
l = W

(t)
l − α

(t)
SGD

(
∇ℓl − βl · ḡlā

T
l−1

)
, (47)

where βl =
ḡT
l ∇ℓlāl−1

(āTl−1āl−1)(ḡT
l ḡl) + γ

. (48)

In this case, βl has played an important role in Eva, making its training dynamics different from
SGD (which can be viewed as βl = 0). Here we optimize the autoencoder following the original
setting, except that we set αSGD = 0.6, αEva = 0.018, γ = 0.03, and disable the KL-clip for Eva.

The optimization performance comparison is given in Fig. 6(a), showing that Eva can still outper-
form SGD under the condition that αEva = γ × αSGD. This implies that βl · ḡlā

T
l−1 can help

precondition the gradient information. Therefore, we also plot the values of βl in each layer during
the training process in Fig. 6(b), showing that βl are very small (< 10−3) but not zeros, and βl are
gradually decreasing. This implies that Eva preconditions more in the early stage, but acts more like
SGD in the late stage. Besides, β values are adaptive to different layers, e.g., layer 7 seems the most
ill-conditioned as it requires the largest β values for preconditioning.

21

Published as a conference paper at ICLR 2023

0 20 40 60 80 100
Epochs

0.2

0.4

0.6

0.8

Tr
ai

n
Lo

ss

SGD
Eva

(a) SGD vs. Eva

0 20 40 60 80 100
Epochs

0
2
4
6
8

Be
ta

 V
al

ue

1e 4

layer 1
layer 2
layer 3
layer 4

layer 5
layer 6
layer 7
layer 8

(b) βl dynamics

Figure 6: Training dynamics study of Eva in optimizing an autoencoder on MNIST.

Convergence results with 50 epochs. To verify that second-order algorithms K-FAC and Eva
can learn faster than first-order algorithms such as SGD, especially in the early epochs (Frantar
et al., 2021), we report the training loss and validation error curves (log-scale), in Fig. 7, for training
ResNet-110 on Cifar-10 and VGG-19 on Cifar-100 with 50 epochs. The results show that K-FAC
and Eva converge very closely, and they indeed outperform SGD on both optimization and general-
ization abilities. As studied in Table 2, K-FAC and Eva can outperform SGD under different epoch
budgets.

0 10 20 30 40 50
Epochs

0.1

0.5

2.0

Tr
ai

n
Lo

ss

SGD
K-FAC
Eva

0 10 20 30 40 50
Epochs

0.1

0.2

0.4

0.8

Va
l.

Er
ro

r

SGD
K-FAC
Eva

(a) ResNet-110 on Cifar-10

0 10 20 30 40 50
Epochs

0.2
0.4

1.0
2.0
4.0

Tr
ai

n
Lo

ss

SGD
K-FAC
Eva

0 10 20 30 40 50
Epochs

0.3

0.4
0.5

0.7
0.9

Va
l.

Er
ro

r

SGD
K-FAC
Eva

(b) VGG-19 on Cifar-100

Figure 7: Convergence performance (log-scale) comparison between Eva and SGD/K-FAC algo-
rithms for training ResNet-110 on Cifar-10, and VGG-19 on Cifar-100 in compressed 50 epochs.

Pairwise t-test comparison. In addition to Table 2, we perform pairwise t-test with Bonfereonni
correction for the accuracy metric among SGD, K-FAC, and Eva algorithms. The results show that
Eva performs closely to K-FAC in all cases (i.e., they have no significant difference with p > 0.05).
K-FAC and Eva significantly outperform SGD with p < 0.05 in many cases (12 out of 18 cases),
including all models with 50 epochs, VGG-19 and ResNet-110 with 100 epochs, and VGG-19 with
200 epochs on two datasets. K-FAC and Eva are slightly better than SGD in other cases while SGD
is trained with sufficient epochs and/or extra tricks.

Finetuning pretrained models. Pretraining an model on a large dataset and then finetuning on the
downstream task (i.e., transfer learning) is a common practice to produce better model accuracy
on small datasets. To further verify the effectiveness of Eva in this task, we choose two repre-

22

Published as a conference paper at ICLR 2023

sentative pretrained models, EfficientNet-b0 (Tan & Le, 2019) (pretrained on ImageNet-1k) and
ViT-B/16 (Dosovitskiy et al., 2021) (pretrained on ImageNet-21k). We load their weights from pub-
licly available checkpoints, except the last classification layer, which is randomly initialized. As
suggested in (Tan & Le, 2019; Dosovitskiy et al., 2021), we scale down initial learning rate to 0.04
and 0.004 for EfficientNet-b0 and ViT-B/16, set the batch size to 96, and use the cosine learning rate
schedule (Loshchilov & Hutter, 2017). The weight decay is set to 5e-5 for EfficientNet-b0, and 0
for ViT-B/16, and the input images are resized to 224-pixel. For K-FAC and Eva, we set damping
value to 0.03 and running average to 0.95. Gradient rescaling is also applied. We finetuning the
models with 20 epochs. The results are given in Table 6, showing that second-order optimization
methods such as K-FAC and Eva can generalize as well as SGD on finetuning pretrained models,
even though they were pretrained with first-order algorithms (SGD for EfficientNet-b0, and AdamW
for ViT-B/16). Specifically, Eva can achieve very competitive performance, i.e., 98.88% and 92.88%
top-1 accuracy on Cifar-10 and Cifar-100, respectively, when finetuning ViT-B/16.

Table 6: Validation accuracy (%) comparison between Eva and SGD/K-FAC algorithms for finetun-
ing pretrained models with 20 epochs. EffNet stands for EfficientNet.

Model Cifar-10 Cifar-100
SGD K-FAC Eva SGD K-FAC Eva

EffNet-b0 97.39±0.1 97.37±0.0 97.43±0.1 85.41±0.0 85.32±0.2 85.38±0.0

ViT-B/16 98.87±0.0 98.87±0.0 98.88±0.0 92.79±0.1 92.68±0.2 92.88±0.0

The effects of update interval. As second-order algorithms such as K-FAC have expensive second-
order update costs, it is necessary to increase the second-order update interval to achieve faster
convergence (Martens & Grosse, 2015). Here we compare the end-to-end performance of K-FAC
with different update intervals.

0 10 20 30 40 50
Wall-clock Time (minutes)

40

60

80

Va
l.

Ac
cu

ra
cy

K-FAC@1
K-FAC@5
K-FAC@10
K-FAC@15

1x 1.5x 2x

(a) ResNet-110, K-FAC

0 20 40 60
Wall-clock Time (minutes)

40

60

80

Va
l.

Ac
cu

ra
cy

K-FAC@1
K-FAC@5
K-FAC@10
K-FAC@15

1x 3x 5x

(b) VGG-19, K-FAC

0 50 100 150 200
Wall-clock Time (minutes)

20

40

60

80

Va
l.

Ac
cu

ra
cy

Shampoo@1
Shampoo@5
Shampoo@10
Shampoo@15

1x 3x 5x

(c) ResNet-110, Shampoo

0 50 100 150 200
Wall-clock Time (minutes)

20

40

60

80

Va
l.

Ac
cu

ra
cy

Shampoo@1
Shampoo@5
Shampoo@10
Shampoo@15

1x 5x 10x 15x

(d) VGG-19, Shampoo

Figure 8: Wall-clock time comparison of K-FAC and Shampoo with different update intervals on
Cifar-10. The inset plot reports relative time-to-solution over Eva.

As shown in Fig. 8, K-FAC@1 takes much longer training time than Eva, i.e., 1.45× and 5.27×
than Eva for ResNet-110 and VGG-19, respectively. Thus, it is often required to increase the
second-order update interval to make K-FAC more affordable. For example, the training speed
of K-FAC@10 (update KFs and their inverses every 10 iterations) is comparable to Eva for training
ResNet-100, and it is 1.58× slower than Eva for training VGG-19 to achieve the target accuracy.

23

Published as a conference paper at ICLR 2023

Unlike K-FAC, our Eva can converge quickly using an update interval of second-order informa-
tion of 1, i.e., updating second-order information iteratively, which avoids the efforts of tuning the
interval and the danger of performance degradation with stale information.

We also include the effects of update intervals on Shampoo for training ResNet-110 and VGG-19 on
Cifar-10, in Fig. 8(c) and (d), respectively. The results show that increasing the update intervals of
Shampoo can accelerate the training process with little performance degradation, but keep increasing
the update interval only brings marginal performance improvement.

The effects of batch size on throughput. As Eva is more memory-efficient than other second-
order algorithms, it is of interest to investigate the effects of batch size on system throughput. For
that purpose, we train the ResNet-50 model with SGD, K-FAC@50, Shampoo@50, and Eva on
ImageNet with 32 GPUs. We set the per-GPU batch size to maximally utilize GPU memory, i.e., 64
for K-FAC@50 and Shampoo@50, and 96 for SGD and Eva (64 for SGD and Eva is also conducted
for comparison). The system throughput is given in Table 7. It shows that Eva, K-FAC@50, and
Shampoo@50 can achieve 90%, 86%, and 68% throughput over SGD, when they adopt the same
batch size of 64. However, as we scale the batch size of SGD and Eva to 96 (as they are more memory
efficient than K-FAC and Shampoo), Eva achieves a much closer throughput (92%) with SGD, while
the performance gap between other second-order algorithms (K-FAC@50 and Shampoo@50) and
SGD becomes larger.

Table 7: Throughput (samples per second) comparison between Eva and other algorithms
Algorithm SGD Shampoo@50 K-FAC@50 Eva SGD Eva
Batch Size 64 64 64 64 96 96
Throughput 6420.1 4366.7 5520.2 5801.7 7420.3 6857.1

In addition to Fig. 3(d), we have added Table 8 to indicate the required number of epochs to achieve
the target accuracy of ResNet-50 on ImageNet as follows.

Table 8: Number of epochs to achieve the target accuracy of ResNet-50 on ImageNet.
Algorithm SGD Shampoo K-FAC Eva

Number of Epochs 91 55 46 46

The effects of hyper-parameters on Cifar-100. We conduct hyper-parameter study of Eva, includ-
ing learning rate, batch size, damping, and running average, by training VGG-19 on Cifar-100. The
results are given in Fig. 9, showing that Eva can consistently outperform SGD under different learn-
ing rate and batch size, and Eva performs closely to K-FAC under different learning rate, batch size,
damping and running average settings. Besides, both SGD and Eva performs poorly with a large
learning rate, but Eva performs much better than SGD with a large batch size. We leave the study
on the effects of large-batch training with second-order optimization methods (Zhang et al., 2019)
as our future work. As for damping and running average hyper-parameters, we found that damping
is more sensitive than running average, so that one can tune the damping value to further boost the
performance of Eva.

0.004 0.04 0.4 4
0

20

40

60

Va
l.

Ac
cu

ra
cy

SGD
K-FAC
Eva

(a) Learning Rate
256 512 1024 204855

60

65

70

75

Va
l.

Ac
cu

ra
cy

SGD
K-FAC
Eva

(b) Batch Size
0.003 0.03 0.3 3

70

71

72

73

Va
l.

Ac
cu

ra
cy

K-FAC
Eva

(c) Damping
0.05 0.35 0.65 0.95

71

72

73

Va
l.

Ac
cu

ra
cy

K-FAC
Eva

(d) Running Average

Figure 9: Hyper-parameter study of Eva by training VGG-19 on Cifar-100 with 100 epochs.

24

	Introduction
	Background
	Eva: Kronecker-factored approximation with small vectors
	Theoretical understanding

	Evaluation
	Convergence performance
	Time and memory efficiency
	End-to-end training performance
	Hyper-parameter and ablation study
	Limitation and future work

	Related Work
	Conclusion
	Appendix: Background of Second-order Optimization
	Second-order optimization
	Detailed analysis of K-FAC
	K-FAC variants

	Appendix: Detailed Derivation of Eva
	Trust-region optimization
	Eva

	Appendix: Supplement of Experiments
	Experimental settings
	Additional experimental results

