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ABSTRACT

Efficient shape abstraction is challenging due to the complex geometries of natural
objects. Recent methods learn to represent objects using a set of simple primitives
or fit locally parameterized deformable models to the target shapes. However, in
these methods, the primitives used do not always correspond to real parts or lack
the geometric flexibility for interpretability. In this paper, we investigate salient
and efficient primitive descriptors for accurate shape abstractions, and propose
Deep Physics-based Deformable Model (DPDM). DPDM employs global defor-
mations with parameter functions and local deformations. These properties enable
DPDM to abstract complex object shapes with significantly fewer primitives that
offer broader geometry coverage and finer details. DPDM learning formulation is
based on physics-based modeling (i.e., dynamics and kinematics) to enable mul-
tiscale explainable abstractions. Extensive experiments on ShapeNet demonstrate
that DPDM outperforms the state-of-the-art (SOTA) methods in terms of recon-
struction accuracy by a notable margin. We also demonstrate the robustness and
abstraction ability of DPDM by visualizing the semantic consistency which of-
fer interpretability without any part decomposition prior. Experiments on ACDC,
M&Ms, and M&Ms-2 further show the generalization ability of DPDM for object
segmentation.

1 INTRODUCTION

Abstracting complex object shapes with few number of primitives that offer efficiency and explain-
ability has been a long standing goal in computer vision, medical image analysis and graphics. It
can be used in a variety of downstream tasks, such as shape reconstruction, object classification and
segmentation. Recent methods utilize deep neural networks to decompose objects into primitives
(Paschalidou et al., 2019; 2020; Tulsiani et al., 2017; Niu et al., 2018; Zou et al., 2017; Hao et al.,
2020; Paschalidou et al., 2021; Deng et al., 2020). These primitive-based methods interpret shapes
as a union of simple parts (e.g., cuboids, spheres, or superquadrics), offering explainable abstraction
of object shapes. To achieve high reconstruction accuracy, these methods require joint optimization
of a large number of primitives which does not correspond often to the object parts and therefore lim-
its the interpretability of the output. Therefore, devising methods that can discover a fewer number
of primitives for efficiency, robustness and improved abstraction of complex shapes is an active re-
search area. The use of fewer primitives to estimate complex object shapes with abstraction requires
discovery of primitives with broader and interpretable robust parametrization.

In this paper, we investigate salient and efficient primitive descriptors to address flexible and ex-
plainable shape abstractions for complex objects with a minimal number of primitives. We take
our inspiration from the conventional physics-based deformable models (PDMs) (Metaxas, 2012;
Nealen et al., 2006), which are capable of estimating and representing object shapes with strong
abstraction ability and have been successfully applied to shape modeling in natural scenes, medical
imaging and graphics. A major issue of PDMs is that they rely on prior knowledge (i.e., handcrafted
parametric initialization and optimization) for specific shape abstractions, which limits the usage of
PDMs for general automated shape modeling. In addition, they use global deformations with con-
stant parameters, which limits the geometric flexibility. To address these limitations, we augment
PDMs with strong abstraction ability and integrate it into a learning-based framework, named Deep
Physics-based Deformable Models (DPDM), as illustrated in Fig. 1.
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Compared to the traditional PDMs, we make use of deep neural networks to learn geometric rep-
resentations of object shapes and overcome the parametric initialization limitation. In addition, we
generalize the constant global parameters in PDMs by using global parameter functions, which of-
fer broader shape coverage and improve the shape abstraction accuracy (e.g., shape aspect ratio,
tapering and bending functions). To further enhance the shape coverage of DPDM, we employ a
diffeomorphic mapping which preserves shape topology to predict local non-rigid deformations for
shape details beyond the coverage of global deformations.

DPDM also uses the PDM notion of “external forces” to minimize the divergence between the
predicted primitives and the target shapes Metaxas (2012) during training. This allows us to use
physics-based kinematic formulations and Jacobians to compute transformations between data space
and the generalized latent parameter space for improved optimization.

To evaluate the proposed DPDM, we conducted extensive experiments covering various problem set-
tings on shape abstraction tasks. Most noticeably, DPDM outperforms SOTAs by 3.4% using only
a single primitive on the core thirteen shape categories of ShapeNet. We also show the improved
abstraction accuracy, consistent semantic correspondence across the same shape category, and in-
terpretable visualization results on ShapeNet, compared to SOTAs. Moreover, we demonstrate the
generalization ability of DPDM to cardiac MR segmentation, where DPDM achieves significant
improvement on ACDC, M&Ms and M&Ms-2 by 4.0%, 2.3%, and 4.2%, respectively.

2 RELATED WORK

3D shape representation can be categorized into several mainstreams: (1) voxel-based meth-
ods (Choy et al., 2016; Wu et al., 2016) leverage voxels to capture 3D object geometry. These
methods usually require large memory and computation resources. Some methods reduce the mem-
ory cost (Maturana & Scherer, 2015). But the implementation complexity of these methods increases
significantly. (2) Point Cloud methods (Fan et al., 2017; Qi et al., 2017) require less computation, but
additional post-processing is necessary to address the lack of surface connectivity for mesh genera-
tion. (3) Mesh-based (Liao et al., 2018; Groueix et al., 2018) and (4) Implicit representation-based
methods (Mescheder et al., 2019; Chen & Zhang, 2019; Park et al., 2019) can yield smooth shape
surfaces, but most of them lack output interpretability (abstraction ability). (5) primitive-based meth-
ods (Tulsiani et al., 2017; Paschalidou et al., 2019) represent object shapes by deforming a number
of primitives, each of which is fully defined by a set of shape parameters.

Primitive-based methods. Our approach falls into primitive-based shape abstractions which have
been revisited in deep learning and have recently demonstrated promising results. Paschalidou et al.
(2019) developed a method that combines superquadrics with deep networks. Given a prior decom-
position of an object, it estimates sets of superquadric parts that enable 3D shape parsing. This
method has been further extended to estimate hierarchical parts from 3D data (Paschalidou et al.,
2020). Other shapes such as cuboids (Tulsiani et al., 2017; Niu et al., 2018; Zou et al., 2017), spheres
(Hao et al., 2020; Paschalidou et al., 2021) and convexes (Deng et al., 2020) have also been used for
primitive-based reconstruction. However, these basic parts only offer limited shape coverage and
cannot address accurate estimation of complex shapes that require multiscale abstractions.

Parameterized deformable models. Prior research works developed parameterized deformable
models that abstracted multiple shapes with relatively few parameters. A notable example is the
work of Kass et al. (1988) which exploited computational physics in the modeling process and pro-
posed snakes, a locally parameterized deformable model. The snake formulation employs a force
field computed from data to fit the model. Nevertheless, snakes which use locally defined deforma-
tions does not intrinsically offer shape abstractions. Pentland (1987) addressed partially the problem
of shape abstraction by using superquadric ellipsoids that can deform using a few global parame-
ters. Terzopoulos & Metaxas (1991) developed a new physics-based framework offering multiscale
global and local deformations, and demonstrated its power using deformable superquadrics. Al-
though their physics-based framework was able to address complex shapes and motion estimations
of objects, it relies on prior object segmentation (Jones & Metaxas, 1998). In addition, modeling
global deformations with constant parameters offers limited geometric coverage.
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Figure 1: Overview of training Deep Physics-based Deformable Model (DPDM). Given an input
X , DPDM predicts a set of low dimensional latent representations qc, qθ, qs, and qd that describe
global rigid motion, global and local deformations of the deformable model. For each reconstructed
primitive of the deformable model xp, DPDM calculates the externally applied forces and the model
Jacobian matrices which transform the external forces from the data space to the latent parameter
space. The generalized force loss Fgen optimizes the deformable model parameters in terms of
translation Ltrans, rotation Lrot, global deformations Lglob and local deformations Lloc. The training
loss is a weighted summation of both the external force loss Fext and the generalized force loss Fgen.

3 METHOD

Given an input image (or 3D data from a scene) X to be segmented (or reconstructed), the goal of
the proposed method is to incorporate a differentiable deformable model to predict P primitives that
best describe the target shape. Each primitive is represented by a set of low dimensional parameters
q with global and local deformations. We present the parameterization and network optimization of
the proposed deformable model in Secs. 3.1 and 3.2, respectively. The training overview is given in
Fig. 1.

3.1 DEFORMABLE MODEL GEOMETRY AND PARAMETERIZED DEFORMATIONS

We begin by summarizing the concept of physics-based deformable models and, along the way,
introduce the notations. Geometrically, DPDM models a deformable primitive as a closed surface
defined on a domain Ω ∈ R3 with a model-centered coordinate ϕ. As shown in Fig. 1, given a point
on the primitive surface, its location x = (x, y, z) w.r.t. the world coordinate Φ is:

x = c + Rp = c + R(d + s), (1)

where c and R represent the translation and rotation of the model’s coordinate system ϕ w.r.t. the
world coordinate system Φ; p denotes the relative position of the point on the primitive surface w.r.t.
ϕ, which includes global deformation s and local deformation d. Global deformations are expected
to efficiently capture salient features of natural shapes using a minimum number of parameters, and
therefore primitives, while local deformations allow the model to represent the fine-scale structures
of complex real-world objects. We refer the readers to (Metaxas, 2012) for more details about the
standard geometry formulation of PDMs.

Primitives with parameter functions. Instead of relying on the geometric coverage of such shapes
using constant parameters, we create a novel shape parameterization that is based on parameter
functions. This provides shapes with more flexibility, makes it possible to abstract complex objects
with much fewer primitives and enhances shape abstration’s explainability.

Due to their versatility in shape representation and abstraction, in this work, we generalize constant
parameter superquadrics by defining a new class of deformable model primitives whose parameters
are functions. These new primitives have improved shape coverage with explainable parameteri-
zation that is necessary for computer vision and medical imaging applications (Oblak et al., 2019;
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Paschalidou et al., 2019; Park et al., 1995). Due to space limitations, the detailed definition of the
parameterized primitive formulation e and its reference shape s are given in Appendix A.1.

Global deformations with parameter functions. To further improve the geometric coverage of
these primitives, we introduce parameterized tapering and bending deformation functions. These
additional global deformations are defined as continuously differentiable and commutative func-
tions following (Barr, 1987). Specifically, due to their suitability for natural objects, we add linear
tapering and bending to the primitives e and further express the novel deformation qs with parameter
functions as following:

qs = [α(u), ε(u), τ(u), β(u)]⊤, (2)
where u = (u, v) is the material coordinates of the primitive with −π/2 ≤ u ≤ π/2 and −π ≤ v ≤
π (Wang et al., 2008); α(u) includes a scaling parameter function and three aspect ratio parameter
functions; ε(u) is the squareness function; τ(u) is the tapering parameter function; β(u) includes the
bending magnitude function, the location function, and the influence region function. See detailed
formulations of these parameter functions in Appendix A.2. Note that our formulation can be applied
to any primitive and its global deformation definition by replacing its constant parameters with
differentiable parameter functions.

Diffeomorphic local deformations. We use local deformations to capture fine details beyond the
coverage of global deformations. Previous approaches (Metaxas, 1992) adopted the finite element
method (Zienkiewicz et al., 1977) to estimate local deformations. This requires handcrafted design
of shape functions for the chosen fine elements with additional computational costs for accurate local
deformation estimation. In this paper, we introduce a diffeomorphic mapping to estimate the local
deformations qd. Due to the differentiable and invertible properties of diffeomophism, it preserves
topology and guarantees one-to-one mapping during deformations (Dalca et al., 2018). In addition,
since the global deformations used are invertibale, the composed deformation of global and local
deformations in our model is invertible and smooth, which thus facilitates the learning of dense
semantic correspondences for shape abstraction. To be specific, given the encoded local feature l
from ζ−1

µ (·), we first use a convolution layer to map l to a vector field v0, and then map v0 to a
stationary velocity field (SVF) v using a Gaussian smoothing layer. v is defined via the ordinary
differential equation Arsigny et al. (2006):

dψ(t)

dt
= v(ψ(t)), (3)

where ψ(t) is the path of diffeomorphic non-rigid deformation field parameterized by t ∈ [0, 1] and
ψ(0) = Id is an identity transformation. To obtain the final local non-rigid deformation qd = ψ(1)

at time t = 1, we follow (Arsigny et al., 2006; Dalca et al., 2018) and employ an Euler integration
with a scaling and squaring layer (SS) to solve Eq. 3. Details are given in Appendix A.3.

Kinematics and Dynamics for DPDM. From Eq. (1), we can derive out the velocity of a point on
the primitive surface as

ẋ = ċ + Ṙp + Rṗ = ċ + Bθ̇ + Rṡ + RSq̇d, (4)

where · denotes the first-order derivative; B = ∂Rp/∂θ, with θ the rotational coordinates and
ṡ = [∂s/qs]q̇s = Jq̇s, with J the Jacobian matrix of the model-centered coordinates ϕ w.r.t. the
global deformation parameters at each point. We set the shape matrix S to identity matrix I in
DPDM since we use one-to-one mapping for local deformation estimation. We note that the size of
the Jacobian matrix is determined by the type of global deformations used. All the non-zero entries
of the Jacobian matrix used are given in Appendix A.3. Eq. 4 can be further written in the form:

ẋ = [I,B,RJ,R]q̇ = Lq̇, (5)

where L is the deformable model’s Jacobian matrix that includes the Jacobians J for translation,
rotation and deformations (Metaxas, 2012).

In the physics-based modeling paradigm, our deformable model continuously deforms from an ini-
tial shape (e.g., a sphere) to the target shape using the Lagrangian equations of motion given as:

Mq̈ + Cq̇ + Kq = gq + fq, (6)

where ·· denotes the second-order derivative; M,C,K are the mass, damping and stiffness matrices,
respectively; gq is the inertial forces generated from the dynamic coupling between the local and
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global deformations; fq is the generalized forces which we will explain in the next. In this paper,
we set M = 0, C = 1, K = 0, gq = 0 and use a simplified Lagrangian dynamic model given as:

q̇ = fq. (7)

In this way, we formulate our deep physics-based deformable model. During training, by explic-
itly minimizing the generalized forces fq , we can constrain the optimization of q in a physically
regularized space, we term lantent parameter space, which ensures reaching the global minimum
instead of a local one. In Sec. 3.2, we will show that, with the kinematics and Lagrangian dynam-
ics, our physics-based deformable model can project the generalized force into the sub-optimization
space corresponding to each deformation component, making it possible to explicitly supervise the
learning of each deformation component, i.e. translation, rotation, global deformation and local
deformation.

3.2 DPDM TRAINING AND NETWORK LOSSES

Inspired by previous physics-based deformable models (Nealen et al., 2006; McInerney & Terzopou-
los, 1996), we define the following loss function to train and optimize DPDM:

L = λextLext + λgenLgen, (8)

which is a weighted summation of the loss Lext computed using external forces from the data space
and the loss Lgen computed using generalized forces from the latent parameter space; λext and λgen
are their weights, respectively.

External model loss. To fit the primitives to the target shape, we train an encoder ζ−1
µ (·) to optimize

the loss Lext computed using the external forces applied to the primitives:

Lext =
1

P

P∑
p=1

∑
r

fpr =
γ

P
∣∣∣M̂p

∣∣∣
P∑

p=1

∑
r∈M̂p

D(M̂p, T ). (9)

D(M̂p, T ) = ∥xp − T ∥2 is the distance function of all points on the target shape T to all points r
on p-th predicted primitive M̂p, where P is the total number of used primitives and γ is the strength
factor for the external forces fpr . The external force loss Lext measures how well the primitives are
deformed to fit the target shape in the data space during training.

Generalized model loss. Given Eq. 5, using the principle of virtual work 1, we can determine the
relationship between the generalized forces and the external forces. In particular, the energy of the
p-th primitive due to translation rotation and deformations, Ep

f , is expressed as:

Ep
f =

∫
(fp)⊤dxp =

∫
(fp)⊤Lpdqp =

∫
fpq dq

p, (10)

where fpq is the generalized forces applied to M̂p and is computed using the external forces fp
and the model Jacobian matrix Lp. This allows us to employ the generalized forces fpq in the
latent parameter space to facilitate the primitive prediction. Specifically, given the model Jacobian
Lp = [Ip,Bp,RpJp,Rp] (Metaxas, 2012), we express fpq as:

fpq = (fp)⊤Lp = [(fp)
⊤
, (fp)

⊤
Bp, (fp)

⊤
RpJp, (fp)

⊤
Rp]

= [(fpc )
⊤, (fpθ )

⊤, (fps )
⊤, (fpd )

⊤],
(11)

where fpc and fpθ represent the generalized forces for the translation and rotation; fps and fpd represent
the generalized forces for the global and local deformations. In our learning framework, in addition
to the external forces, we also train the encoder ζ−1

µ (·) to optimize these four generalized force
components and define the generalized model loss Lgen as:

Lgen = Ltrans + Lrot + Lglob + Lloc, (12)

1In mechanics, virtual work is the total work done by the applied forces on a mechanical system as it moves
through a set of virtual displacements.
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(a) Target (b) Suq (c) NP (d) DPDM (e) Basic primitive (f) Shape correspondence

Figure 2: Visual results on ShapeNet. (a) Target meshes, (b) Suq (Paschalidou et al., 2019) with ∼20
primitives, (c) Neural Parts (Paschalidou et al., 2021) with 5 primitives, and (d) DPDM using one
single primitive. Consistent semantic correspondences are illustrated in (e), (f) with color codes.

Table 1: Quantitative results on ShapeNet. We evaluate DPDM against Suq (Paschalidou et al.,
2019), CvxNets (Deng et al., 2020), H-Suq (Paschalidou et al., 2020), and Neural Parts (NP)
(Paschalidou et al., 2021). We report IoU and Chamfer-L1 distance for comparison.

Category IoU (↑) Chamfer-L1 (↓)

Suq CvxNets H-Suq NP DPDM Suq CvxNets H-Suq NP DPDM

airplane 0.456 0.598 0.529 0.611 0.637 0.122 0.093 0.175 0.089 0.081
bench 0.202 0.461 0.437 0.502 0.529 0.114 0.133 0.153 0.108 0.098
cabinet 0.110 0.709 0.658 0.681 0.725 0.087 0.102 0.087 0.083 0.081
car 0.650 0.675 0.702 0.719 0.727 0.117 0.103 0.141 0.127 0.101
chair 0.176 0.491 0.526 0.532 0.549 0.138 0.337 0.114 0.107 0.096
display 0.200 0.576 0.633 0.646 0.662 0.106 0.223 0.137 0.098 0.092
lamp 0.189 0.311 0.441 0.402 0.449 0.189 0.795 0.169 0.153 0.148
speaker 0.136 0.620 0.660 0.693 0.721 0.132 0.462 0.108 0.128 0.096
rifle 0.519 0.515 0.435 0.537 0.541 0.127 0.106 0.203 0.189 0.101
sofa 0.122 0.677 0.693 0.712 0.735 0.106 0.164 0.128 0.107 0.097
table 0.180 0.473 0.491 0.531 0.552 0.110 0.358 0.122 0.102 0.085
phone 0.185 0.719 0.770 0.810 0.813 0.112 0.083 0.149 0.076 0.072
vessel 0.471 0.552 0.570 0.605 0.642 0.125 0.173 0.178 0.119 0.107
Average 0.277 0.567 0.580 0.614 0.637 0.122 0.245 0.143 0.114 0.097

where

Ltrans =

P∑
p=1

(fpc )
⊤ =

P∑
p=1

∑
r

(fpr )
⊤
, Lglob =

P∑
p=1

(fps )
⊤ =

P∑
p=1

∑
r

(fpr )
⊤
RpJp,

Lrot =

P∑
p=1

(fpθ )
⊤ =

P∑
p=1

∑
r

(fpr )
⊤
Bp, Lloc =

P∑
p=1

(fpd )
⊤ =

P∑
p=1

∑
r

(fpr )
⊤
Rp,

are the generalized model losses associated with the translation, rotation, global and local model
degrees of freedom, respectively. Note that, by decomposing the generalized forces into different
components and by minimizing each force component, we can directly optimize the corresponding
deformation components, which in turn ensures a global optimum.

4 EXPERIMENTS

4.1 SETTINGS AND DATASETS

We first evaluate the performance of DPDM on ShapeNet (Chang et al., 2015), a richly-annotated,
large-scale dataset of 3D shapes. A subset of ShapeNet including 50k models and 13 major cate-
gories are used in our experiments. We split the dataset into training and testing sets following (Choy
et al., 2016). We also test the general applicability of DPDM on object segmentation. We test on the
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challenging task of cardiac MR image segmentation due to its complex shape and ill-defined board-
ers of the heart. Three different datasets are used for evaluation, including ACDC (Bernard et al.,
2018), M&Ms, and M&Ms-2 (Campello et al., 2021). The acquired cardiac MR images from all
the three datasets were delineated by experienced clinical doctors, including the left ventricle (LV),
right ventricle (RV), and the left ventricular myocardium (Myo). They contain 100, 350, and 160
cases, respectively. We train and test our network separately on the three image sets with manual
labels, following the strategy of five-fold cross-validation.

4.2 IMPLEMENTATION DETAILS

Figure 3: Illustration of interpretability of
DPDM shape abstractions without any super-
vision or part prior. Consistent semantic cor-
respondence is indicated by colors on recon-
structed shapes (right) mapped from the initial
primitives (left).

In all experiments, Adam (Kingma & Ba, 2014) is
employed for optimization and the learning rate is
initialized as 10−4. We use a batch size of 32 and
train the model for 300 epochs. All experiments
are implemented with PyTorch and run on a Linux
system with eight Nvidia A100 GPUs.

Similar to (Deng et al., 2020; Paschalidou et al.,
2021; 2019), we draw 2k random samples from the
surface of the target mesh, and sample 1k points
for each generated primitive during training. Dur-
ing evaluation, we uniformly sample 100k points
on the target/predicted meshes for the calculation
of the volumetric Intersection over Union (IoU) and
the Chamfer-L1 distance (CD). For cardiac MR segmentation, we resample all images in the three
datasets to a spacing of 1.25 mm, and utilize data augmentation strategies, including random his-
togram matching, rotation, shifting, scaling, elastic deformation, and mirroring.

We empirically set the weights of the two losses in Eq. 8 to 0.6 and 0.4, respectively, which led to
the best performance. The ablation study for the losses is given in Sec. 4.6.1. For a fair comparison
with the other baselines, we use the standard ResNet18 (He et al., 2016) as the encoder ζ−1

µ (·) for
both tasks. The encoder output is followed by a fully connected layer to estimate four individual
vectorized parameters that represent translation, rotation, global and local deformations.

4.3 RESULTS ON ShapeNet

Figure 4: Results of part label transfer for
abstraction capability evaluation (using a sin-
gle primitive). The first column is the source
shape, while the rest is the transferred labels
from source shapes through learned dense cor-
respondences.

We first compare DPDM to SOTAs (Paschalidou
et al., 2019; 2020; 2021; Deng et al., 2020) on
ShapeNet. We train our model with one single
primitive and train other models following their re-
ported experimental setups. Specifically, for Suq
and H-Suq (Paschalidou et al., 2019; 2020), we use
a maximum number of 64 primitives; for CvxNets
(Deng et al., 2020) and Neural Parts (Paschali-
dou et al., 2021), we report the results using 50
and 5 primitives, respectively, which in their pa-
pers lead to the best performance. The quanti-
tative results measured by IoU and Chamfer-L1

distance are reported in Table 1. We observe
that DPDM outperforms the other approaches for
all the shape categories. Fig. 2 and Fig. 3 display a few qualitative examples using dif-
ferent methods. We find that while baseline methods use multiple primitives with obvious
overlap to abstract partitions of shapes, DPDM captures the complete geometry of the chair
and airplane using only one primitive. Moreover, DPDM demonstrates meaningful seman-
tic correspondence among individual instances from the same category (see Fig. 2 (e), (f) and
Fig. 3), corresponding partitions have similar color), indicating clear advantageous interpretability.

4.4 ABSTRACTION CAPABILITY
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Figure 5: Analysis of reconstruction accu-
racy v.s. the number of primitives used. We
compare the reconstruction performance with
other primitive-based methods on ShapeNet.

Part Label Transfer. We evaluate the abstraction
capability through a part label transfer task (Wang
et al., 2020) due to the lack of part decomposi-
tion prior for target shapes. Following (Deng et al.,
2021), we use five labeled shapes from ShapeNet-
Part (Yi et al., 2016) dataset as source shapes, and
transfer their labels to other instances from the same
category via the learned dense correspondences.
The results in Fig. 4 illustrate the accurate seman-
tic consistency across instances from the same cat-
egory, e.g., the lampshades are always matched de-
spite large variances of the object structures.

Multi-primitive Fitting. DPDM is a general
framework that can fit multiple primitives to the tar-
get shape. We provide the reconstruction accuracy
on ShapeNet by varying the number of primitives
and test the performance in terms of IoU. Note that
our model shows leading reconstruction performance regardless of the number of primitives used as
shown in Fig. 5. We also observe that the curve saturates when adding more primitives to our model.
We attribute this to the efficient geometric coverage of our model where a single primitive is already
sufficient for accurate abstractions. We also provide qualitative results in Fig. 7, where we use three
and two primitives, respectively, for the abstraction of chairs and earphones, and visualize the results
with colors. We observe that semantic consistency is still preserved using multiple primitives.

4.5 GENERAL APPLICABILITY

(a) Input (b) TDAC   (c) DPDM    (d) Target

Figure 6: Results on cardiac
MR segmentation. Zoom-in
images are indicated by blue
boxes in the previous images.

To demonstrate the general applicability of DPDM, we fur-
ther test on cardiac MR segmentation and compare DPDM with
TDAC (Hatamizadeh et al., 2020), the SOTA image segmentation
method which uses learning-based deformable models. Note that to
segment apical and basal regions in cardiac MR images is challeng-
ing, because the apical region is relatively small in the image and
the basal region has unclear boundaries between the ventricles and
the atria. We use three primitives to abstract the shapes of the left
and right ventricles, and left ventricular myocardium. The results
illustrate that the proposed DPDM outperforms the SOTA by a no-
table margin: 4.0% of Dice accuracy on ACDC, 2.3% on M&Ms,
and 4.2% on M&Ms-2, respectively. Quantitative comparison with
details is given in Appendix C.2.

Fig. 6 shows that our predictions consistently capture both the anatomy and fine details of these
challenging regions, while TDAC is less sensitive to the sharp edges. Although we observe that
TDAC is able to recover the ventricle boundaries, the predicted details of both the ventricles (green
& red) and the myocardium (yellow) are not smooth. More importantly, we note that our method can
always preserve the topology changes of the objects, but TDAC only partially recovers the shape.

4.6 ABLATION STUDIES

4.6.1 IMPACT OF LOSS COMPONENTS

To evaluate the alignment performance of the predicted parameters, we train several partial variants
of our method using different combinations of the loss functions. We first remove the external
model loss Lext, and only keep the generalized model loss Lgen during training. We then experiment
with the variant where only Lext is employed, and the full model including both Lext and Lgen for
reconstruction. The results are shown in Table 2 and Fig. 8. We can see that our approach which uses
multi-domain optimization performs better than those variants with partial components, suggesting
the effectiveness of each technique component in DPDM.

8
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Figure 7: Visual results on ShapeNet when fitting multiple primitives to the target shapes. The
number of primitives used is given as prior. We employ 3 and 2 primitives for chairs and earphones,
respectively. Semantic consistency within the same category is illustrated with colors.

(a1) Target (b1) w/o ℒext (c1) w/o ℒgen (d1) DPDM (a2) Target (b2) w/o global (c2) w/o local (d2) DPDM

Figure 8: Ablation study on losses. We ablate the loss components as well as the global and local
deformations, and show their impact qualitatively.

4.6.2 IMPACT OF PARAMETERIZED DEFORMATIONS

DPDM employs parameterized global deformations to abstract object shapes, and local deforma-
tions to estimate finer details. We study the effect of global and local deformations by training
variants of our model by removing one component at a time. The results are reported in Table 2 and
Fig. 8. We note that removing global parameter functions leads to significant performance drops.
We hypothesize this is due to the major role of the global deformations, modeled as parameter func-
tions, in capturing salient object structures. Compared to global deformations, local deformations
focus on accurate estimation of shape details, especially for the object boundaries.

We also ablate the type of parameters of the primitive definitions and global deformations in Fig. 9.
We observe that using parameter functions for both the primitive definitions and global deformations
allows DPDM to capture the complex shape structure of the rifle with significant high fidelity.

(a) Target (b) Fixed global

(c) Fixed primitive (d) DPDM

Figure 9: Ablation study on
parameters of the primitives
and deformations.

Settings M&Ms-2 ShapeNet

Lext Lgen global local Dice (↑) HD (↓) CD (↓) IoU (↑)

✗ ✓ ✓ ✓ 86.09 11.88 0.181 0.531
✓ ✗ ✓ ✓ 86.54 11.32 0.125 0.562

✓ ✓ ✗ ✓ 85.32 11.62 0.136 0.597
✓ ✓ ✓ ✗ 86.74 11.10 0.109 0.621

✓ ✓ ✓ ✓ 87.24 10.51 0.097 0.637

Table 2: Ablation studies on losses and deformations. We report
Dice Score and Hausdorff Distance (HD) on M&Ms-2 as well as
Chamfer-L1 Distance (CD) and IoU on ShapeNet.

5 CONCLUSION

In this work, we have introduced a novel and efficient physics-based learning approach for im-
proved object shape abstractions. The generalized primitive formulation using parameter functions
allows the proposed model to accurately capture the geometric structures of object shapes using
significantly fewer shape components. Moreover, our physics-based modeling provides multiscale
parameterized shape representation ability while preserving the semantic interpretation of the shape.
Extensive experiments demonstrate that our automated approach yields both accurate and explain-
able shape abstractions on both shape reconstruction and object segmentation tasks. Our future
work will consider including more primitive definitions (e.g., supertoroids, multigenous primitives)
and global deformations (e.g., generalized shearing, twisting) to enhance the expressiveness of our
primitives in more general and complex shape abstraction scenarios.

9
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A DETAILS OF THE DPDM FORMULATIONS

In this section, we provide more details of the formulation in the main paper and more examples of
the global deformation functions we used in DPDM.

A.1 GENERALIZED SUPERQUADRIC-LIKE PRIMITIVE DEFINITION

DPDM employs superquadric-like primitive definitions with parameter functions that are useful in
computer vision and medical imaging applications (Oblak et al., 2019; Paschalidou et al., 2019; Park
et al., 1995). The definition of the parameterized primitive surface formulation e is given as:

e = a0(u)

 a1(u)C
ε1(u)
u C

ε2(u)
v

a2(u)C
ε1(u)
u S

ε2(u)
v

a3(u)S
ε1(u)
u

 , (13)

where u = (u, v) is the material coordinates with −π/2 ≤ u ≤ π/2 and −π ≤ v ≤ π (Wang et al.,
2008). The shape reference Sε

γ = sgn(sin γ)|sin γ|ε and Cε
γ = sgn(cos γ)|cos γ|ε. Here, a0(u)

is a scaling function, a1(u), a2(u), a3(u) are aspect ratio parameter functions, and ε1(u), ε2(u) are
squareness parameter functions. In our definition, these parameters are no longer fixed values but
extended to functional variables for improved expressivity and flexibility of the primitives. Note
that u = (u, v) is not the input of the network, but the material (intrinsic) coordinates following the
sampling strategy given in Sec. 4.2. This means, for each point in u, there is a learned value for the
parameter functions ai(u), εi(u), ti(u) and bi(u), which provide broad geometry coverage for the
primitives.

Without loss of generality, we assume that all the parameter functions used in this paper are functions
of u, i.e., ai(u) = ai(u), εi(u) = εi(u), ti(u) = ti(u) and bi(u) = bi(u), allowing them to vary
along one of the two material coordinates. We may also define the parameter functions as functions
of v, which empirically lead to similar abstraction performance. Using parameters as functions of
both u and v is not necessary for the experiments in this paper.

A.2 GLOBAL DEFORMATION FUNCTIONS

We provide detailed formulations for two examples with global deformation functions: 1)
superquadric-like primitives with tapering and bending parameter functions; 2) superquadric-like
primitives with twisting and bending parameter functions.

Superquadric-like primitives with tapering and bending. We follow the idea from Barr (1987);
Solina & Bajcsy (1990) and define these global deformations as continuously differentiable as well
as commutative. We integrate linear tapering and bending of the superquadric e = (e1, e2, e3)

⊤ into
one single parameterized deformation T and give the formulation of the reference shape as:

stp,b = T(e, t1(u), t2(u), b1(u), b2(u), b3(u))

=

 ( t1(u)e3
a0(u)a3(u)w

+ 1)e1 + b1(u) cos(
e3(u)+b2(u)
a0(u)a3(u)w

)πb3(u)

( t2(u)e3
a0(u)a3(u)w

+ 1)e2
e3

 ,
(14)

where t1(u), t2(u) are the tapering parameter functions, b1(u) is the magnitude function, b2(u)
is the location function, and b3(u) is the influence region function of bending. Here the material
coordinate w = 1 since we use the primitive surface formulation in this paper instead of volumetric
formulation.

Superquadric-like primitives with twisting and bending: We present another example of
superquadric-like models with twisting and bending parameter functions. For a primitive e =
(e1, e2, e3)

⊤, the bending of the first axis along the other two axes is defined as a parameterized
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deformation Tb. Then the formulation of the reference shape is given as:

sb = Tb(e, b0(u), b1(u), b2(u), b3(u))

=

 e1
e2 + b0(u) cos(

e1+b1(u)
e1

π)

e3 + b2(u) cos(
e1+b3(u)

e1
π)

 .
(15)

Here b0(u) and b2(u) are the bending magnitude functions, while b1(u) and b3(u) are the location
functions where maximum bending performs.

Let sb = (s1, s2, s3)
⊤, we further express the formulation of the reference shape with twisting along

the third axis as:
stw,b = Ttw(sb; tw(u))

= Ttw(Tb(e, b0(u), b1(u), b2(u), b3(u)); tw(u))

=

(
s1 cos(tw(u))− s2 sin(tw(u))
s2 cos(tw(u)) + s1 sin(tw(u))
s3

)
,

(16)

where the twisting parameter function tw(u) is defined on the third axis.

Note that in the main paper, we only train DPDM with the tapering and bending parameter func-
tions because they offer sufficient geometric coverage for most cases in our study. In more general
scenarios, such as 3D cardiac shape modeling, the twisting deformation will be included to capture
a wider range of shape structures.

In this study, we only give a limited number of examples for the primitives as well as global defor-
mation functions. However, global deformations are not restricted to only tapering, bending, and
twisting. Any other deformations (e.g., shearing) that can be given as a continuous and parameter-
ized function can be similarly integrated into our model. In addition, the type of primitives is not
restricted to only superquadric-like shapes, and other primitive forms (e.g., spheres, convexes, su-
pertoroids, etc.) can also be integrated into our unified framework, which opens up new possibilities
for more downstream shape abstraction tasks.

A.3 JACOBIAN MATRIX

We employ physics-based modeling for multiscale shape representation, where the kinematics using
Jacobian matrix J is essential for the external force transformation among multiple feature scales.
Here, we provide details of the Jacobian matrix for the example used in the main paper. We also
provide the Jacobian matrix for the pure definition of superquadric-like primitive without any global
deformations, which is used for the ablation study in the main paper.

For the pure superquadric-like primitive, the Jacobian matrix J is derived as a 3×6 matrix, while for
the superquadric-like primitive with tapering and bending parameter functions, J is a 3×11 matrix.
All the non-zero entries of the two Jacobian matrices are given in Table 3, where we abbreviate all
functions ai(·), ti(·), bi(·) as ai, ti, bi for simplicity.

For the p-th primitive, its model Jacobian matrix Lp = [Ip,Bp,RpJp,Rp] is the overall Jacobian
matrix for the deformable model, which includes the Jacobians for translation, rotation, global and
local deformations (Metaxas, 2012). Specifically, Ip is the identity matrix, Rp is the rotation matrix,
and the matrix B is defined using a closed formulation:

B = −Rp̂G, (17)

where p̂ is a 3× 3 matrix of the position vector p in Eq. 1. Let p = (p1, p2, p3), p̂ is expressed as:

p̂ =

 0 −p3 p2

p3 0 −p1
−p2 p1 0

 . (18)

G is defined based on qθ = [s, vq]⊤ which has unit magnitude, and is expressed as:

G = 2

−v1 s v3 −v2
−v2 −v3 s v1

−v3 v2 −v1 s

 , (19)
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Table 3: The non-zero entries of the Jacobian matrices for the two examples.

Pure Superquadric-like primitive Superquadric-like primitive w/ tapering & bending

J11 = wa1C
ε1
u C

ε2
v J11 = (t1S

ε1
u + 1)wa1C

ε1
u C

ε2
v + b1b2b3

a2
0wa3

π sin(r)

J12 = a0wC
ε1
u C

ε2
v J21 = (t2S

ε1
u + 1)wa2C

ε1
u S

ε2
v

J15 = a0wa1 ln(|cosu|)Cε1
u C

ε2
v J31 = wa3S

ε1
u

J16 = a0wa1 ln(|cos v|)Cε1
u C

ε2
v J12 = (t1S

ε1
u + 1)a0wC

ε1
u C

ε2
v

J21 = wa2C
ε1
u S

ε2
v J23 = (t2S

ε1
u + 1)a0wC

ε1
u S

ε2
v

J23 = a0wC
ε1
u S

ε2
v J14 = b1b2b3

a0wa2
3
π sin(r)

J25 = a0wa2 ln(|cosu|)Cε1
u S

ε2
v J34 = a0wS

ε1
u

J26 = a0wa2 ln(|sin v|)Cε1
u S

ε2
v J15 = t1 ln(|sinu|)Sε1

u a0wa1C
ε1
u C

ε2
v + (t1S

ε1
u + 1)

a0wa1 ln(|cosu|)Cε1
u C

ε2
v − b1b3π ln(|sinu|)Sε1

u sin(r)
J31 = wa3S

ε1
u J25 = t2 ln(|sinu|)Sε1

u a0wa2C
ε1
u S

ε2
v + (t2S

ε1
u + 1)

a0wa2 ln(|cosu|)Cε1
u S

ε2
v

J34 = a0wS
ε1
u J35 = a0wa3 ln(|sinu|)Sε1

u
J35 = a0wa3 ln(|sinu|)Sε1

u J16 = (t1S
ε1
u + 1)a0wa1 ln(|cos v|)Cε1

u C
ε2
v

J26 = (t2S
ε1
u + 1)a0wa2 ln(|sin v|)Cε1

u S
ε2
v

J17 = Sε1
u a0wa1C

ε1
u C

ε2
v

J28 = Sε1
u a0wa2C

ε1
u S

ε2
v

J19 = cos(r)
J110 = − b1b3

a0wa3
π sin(r)

J111 = −b1π sin(r)r
*Sε

γ = sgn(sin γ)|sin γ|ε *r = e3+b2
a0wa3

πb3
*Cε

γ = sgn(cos γ)|cos γ|ε w = 1 for primitive surface formulation.

where vq = [v1, v2, v3]⊤.

A.4 DIFFEOMORPHIC NON-RIGID DEFORMATION

To capture the finer local deformation beyond the coverage of global deformation, we employ a
diffeomorphic mapping to estimate the local non-rigid deformation qd. Specifically, we first use
a convolution layer to map the encoded feature l to a vector field v0, and then map v0 to a sta-
tionary velocity field (SVF) v using a Gaussian smoothing layer. v is defined through the ordinary
differential equation (Arsigny et al., 2006; Dalca et al., 2018):

dψ(t)

dt
= v(ψ(t)) = v ◦ ψ(t), (20)

where ◦ denotes composition operator, ψ(t) is the path of diffeomorphic non-rigid deformation field
parameterized by t ∈ [0, 1] and ψ(0) = Id is an identity transformation. To obtain the final local
non-rigid deformation qd = ψ(1) at time t = 1, we follow (Arsigny et al., 2006; Dalca et al.,
2018) and employ an Euler integration with a scaling and squaring layer (SS) to solve Eq. 20. To
be specific, starting with ψ(1/2T ) = v(k)/2T + k where T is the scaling and squaring step and k
is the spatial location of points on the primitive, we compute qd = ψ(1) = ψ(1/2) ◦ ψ(1/2) using
ψ(1/2t) = ψ(1/2t+1) ◦ ψ(1/2t+1). In general, the above diffeomorphic mapping makes the local
non-rigid deformation qd differentiable, invertible and topology-preserving.

B NETWORK ARCHITECTURE

We use the standard ResNet18 (He et al., 2016) in the main paper to compare with the other base-
lines. The architecture using ResNet is given in Fig. 10. In this section, we also present a novel
hybrid architecture with CNN and Transformer for the encoder ζ−1

µ (·) to improve the prediction
accuracy of the deformable model parameters (see Fig. 11). The proposed hybrid Trans-CNN
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Figure 10: Network architecture of the DPDM encoder ζ−1
µ (·) to estimate four vectorized parameters

that describe the target object shape.

encoder combines the strength of both convolutional and attention mechanisms, which can lever-
age the inductive bias of input through convolutional layers to avoid large-scale pre-training, and
also collect long-range dependencies through self-attention layers. We choose 2D residual and self-
attention blocks for both the cardiac MR segmentation and 3D shape reconstruction tasks due to their
same input form (i.e., images). Each residual block consists of two convolutional layers with pre-
activation and batch normalization, as well as skip connections. Each self-attention block contains
a Multi-Head Self-Attention (MHSA) Vaswani et al. (2017) and a convolutional layer with batch
normalization and pre-activation. we apply self-attention blocks to each level of the encoder (ex-
cept the first level to reduce computational cost), to draw long-range dependencies from multi-scale
feature representations. Notably, efficient attention strategies Wu et al. (2021) by downsampling or
reducing the size of the feature maps are not employed in our architecture, to avoid any information
loss from multiple scales, especially for high-resolution feature maps. The output of the encoder
is followed by two additional residual blocks to estimate four individual vectorized parameters that
represent translation qc, rotation qθ, global qs, and local deformations qd. Note that we employ the
same diffeomorphic mapping as in Fig. 10 after the last residual block to estimate qd. We evaluate
the performance of the hybrid encoder in the Appendix C.3.1.

Figure 11: Network architecture of the hybrid Trans-CNN encoder ζ−1
µ (·) to estimate four vectorized

parameters that describe the target object shape. The structures of the self-attention block (green)
and the residual block with pre-activation (blue).
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Table 4: Additional results of Cardiac MR segmentation on ACDC, M&Ms, and M&Ms-2. We com-
pare the proposed DPDM with more baselines which are not restricted to learning-based deformable
models. The results are measured in terms of Dice Score and Hausdorff Distance (HD).

Methods Datasets Dice (↑) HD (↓)

LV RV Myo Avg LV RV Myo Avg

UNet

ACDC

94.92 87.10 80.63 87.55 13.91 12.23 12.98 13.04
ResUNet 95.21 88.32 82.78 88.77 13.73 11.98 12.21 12.64

TransUNet 95.73 88.86 84.53 89.71 13.28 11.32 12.05 12.22
TDAC 93.27 86.23 82.36 87.29 13.94 12.01 12.24 12.73

DPDM (ResNet18) 95.96 90.76 85.72 90.81 10.48 9.49 10.73 10.23
UNet

M&Ms

89.77 84.01 79.28 84.35 13.91 12.20 13.41 13.17
ResUNet 90.19 84.97 80.78 85.52 13.72 11.92 12.78 12.81

TransUNet 90.38 85.77 80.61 85.59 13.01 11.29 12.53 12.28
TDAC 89.71 84.54 81.32 85.19 13.75 11.94 12.97 12.89
DPDM 92.31 86.78 82.37 87.15 12.19 10.03 11.98 11.40
UNet

M&Ms-2

87.02 88.85 79.07 84.98 13.78 12.10 12.23 12.70
ResUNet 87.98 89.63 79.28 85.63 13.80 11.61 12.09 12.50

TransUNet 87.91 88.69 78.67 85.06 13.80 10.29 13.45 12.51
TDAC 86.44 87.23 77.61 83.76 11.95 10.24 12.05 11.41

DPDM (ResNet18) 89.25 91.42 81.06 87.24 11.13 9.14 11.26 10.51

C ADDITIONAL EXPERIMENTS

C.1 ADDITIONAL RESULTS ON ShapeNet

In this section, we provide additional qualtitative results on ShapeNet. We compare DPDM with
Suq Paschalidou et al. (2019) which also uses superquadric-like definition for the primitive. We
train DPDM with one single primitive, and train Suq with a maximum of 20 primitives. The results
are given in Fig. 12. We observe that DPDM can capture the object shapes more accurately due to the
broader geometry coverage the model provided. In addition, our model reconstructs the target shape
with better details. This is because the global parameter functions allow object shape modeling with
continuous and curved surfaces, and the local deformations further facilitate the fitting to the shape
boundaries.

C.2 ADDITIONAL RESULTS ON ACDC, M&Ms AND M&Ms-2

We provide comprehensive experiments with more baselines for cardiac MR segmentation in Ta-
ble 4. These baseline methods (Chen et al., 2021; Ronneberger et al., 2015) are classic learning
approaches for medical image segmentation and are not restricted to learning-based deformable
models as TDAC (Hatamizadeh et al., 2020).

C.3 ADDITIONAL ABLATION STUDIES

C.3.1 IMPACT OF NETWORK ARCHITECTURES

We evaluate the impact of our hybrid Trans-CNN encoder through a comparison with ResNet18 He
et al. (2016) on cardiac segmentation task (see Table 5). The result demonstrates that the hybrid
Trans-CNN encoder outperforms ResNet18 (He et al., 2016) in terms of both metrics. We attribute
this to the ability of the Transformer in capturing long-range dependencies for more accurate ab-
stractions.
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(a) Target object (b) Suq (c) DPDM (a) Target object (b) Suq (c) DPDM

Figure 12: Additional visual results for 3D reconstruction on ShapeNet, including (a) target objects
(ground truth), (b) Suq Paschalidou et al. (2019), and (c) DPDM.

Table 5: Ablation study on network architectures. We report Dice Score and Hausdorff Distance
(HD) on the cardiac MR segmentation task.

Backbone Datasets Dice (↑) HD (↓)

LV RV Myo Avg LV RV Myo Avg

ResNet18 ACDC 95.96 90.76 85.72 90.81 10.48 9.49 10.73 10.23
Trans-CNN 96.19 90.93 86.27 91.13 10.25 9.33 10.33 9.97
ResNet18 M&Ms 92.31 86.78 82.37 87.15 12.19 10.03 11.98 11.40

Trans-CNN 92.53 86.91 82.52 87.32 11.99 9.87 11.95 11.27
ResNet18 M&Ms-2 89.25 91.42 81.06 87.24 11.13 9.14 11.26 10.51

Trans-CNN 89.44 91.76 81.09 87.43 11.06 9.04 10.89 10.33
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