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Abstract

Recent advancements in text-to-image (T2I)
generative models have shown remarkable ca-
pabilities in producing diverse and imaginative
visuals based on text prompts. Despite the ad-
vancement, these diffusion models sometimes
struggle to translate the semantic content from
the text into images entirely. While condition-
ing on the layout has shown to be effective in
improving the compositional ability of T21 dif-
fusion models, they typically require manual
layout input. In this work, we introduce a novel
approach to improving T2I diffusion models us-
ing Large Language Models (LLMs) as layout
generators. Our method leverages the Chain-
of-Thought (CoT) prompting of LLMs to inter-
pret text and generate spatially reasonable ob-
ject layouts. The generated layout is then used
to enhance the generated images’ composition
and spatial accuracy. Moreover, we propose
an efficient adapter based on a cross-attention
mechanism, which explicitly integrates the lay-
out information into the stable diffusion mod-
els. Our experiments demonstrate significant
improvements in image quality and layout ac-
curacy, showcasing the potential of LLMs in
augmenting generative image models.

1 Introduction

Recent developments in image generation, particu-
larly with DELL-E 2 (Ramesh et al., 2022) and Sta-
ble Diffusion (SD) (Rombach et al., 2022). Specifi-
cally, text-to-image (T2I) models, which create im-
ages from textual descriptions using autoregressive
and diffusion methods, have shown a notable abil-
ity to produce high-quality images (Saharia et al.,
2022; Ramesh et al., 2021, 2022). SD-based mod-
els, in particular, have obtained significant atten-
tion in the research community due to their public
availability. However, creating realistic images
from complex descriptions still remains challeng-
ing. For instance, when dealing with descriptions
that include multiple objects with complex spatial
relationships, SD-based models often struggle to

compose these elements within an image accurately.
Fig. 1(a) shows some examples when multiple ob-
jects are described in the text prompt, SD-based
models fail to capture them all in the images.

The compositional challenges in SD-based mod-
els, including attribute leakage, incorrect attribute
binding, omission of objects, or misinterpretation
of relationships between objects, are well docu-
mented (Wu et al., 2023; Feng et al., 2022). To
improve compositional capabilities, a common
strategy is to manually provide object positions
as model inputs, circumventing the need for the
model to infer the layout independently (Zhang
etal., 2023; Liet al., 2023). Li et al. (2023), specifi-
cally, suggest using bounding boxes to guide image
generation, encoding object positions and descrip-
tions into vectors that influence the latent image
development via an attention module. Addition-
ally, other research, such as that by Chefer et al.
(2023) and Liu et al. (2022), proposes modifica-
tions to the generation process by adjusting the
attention mechanism. Additionally, Chefer et al.
(2023); Liu et al. (2022) propose attention mecha-
nism adjustments, e.g., modifying attention scores
to ensure visual features adequately represent each
object, thereby reducing object omissions in im-
ages. While these layout-augmented methods have
been effective, they suffer from the reliance on
human-annotated object locations. Furthermore,
the integration methods for layout information in
these models can be seen as unnatural, as they fail
to utilize the spatial details explicitly (Li et al.,
2023) or heavily alter the image formation pro-
cess (Liu et al., 2022; Chefer et al., 2023).

To minimize human intervention in the training
process of text-to-image (T2I) generative models,
we leverage the capabilities of Large Language
Models (LLMs) (Touvron et al., 2023a; Brown
et al., 2020) for generating coherent layouts using
Chain-of-Thought (CoT) prompting (Wei et al.,
2022) (Fig. 1(b)). In particular, we activate LLMs’



wi view of three cups placed
able, with orange juice in A white swan is swimming near a
o them there are two apples. docked

mobile phone on display.

Stable Diffusion

Ours

A smart phone, digital camera and

(6] 2 (3)
I caption | I caption ” |:| ] I caption |
D
v v *
Diffusion Model Diffusion Model Diffusion Model
o
Stable Diffusion GLIGEN / ControlNet Ours
()

Figure 1: (a) Our method enhances the compositional capability of a pre-trained text-to-image diffusion model (Rom-
bach et al., 2022) by conditioning on object layouts; (b) Unlike GLIGEN or ControlNet, which requires manually
annotating the layout modality, our method uses LLMs to generate one from the given text prompt.

potential in generating coherent layouts using CoT
prompting (Wei et al., 2022). The layouts gener-
ated by LLMs provide bounding boxes for each
object mentioned in the text prompts. For incorpo-
rating the LLM-generated layout into the input of
SD-based models, we propose an effective adapter
that integrates layout information through a cross-
attention mask. This adapter explicitly utilizes the
spatial details provided by the layout and is de-
signed to align seamlessly with the conditioning
mechanisms of SD.

We empirically our method’s efficacy in terms of
generation quality, layout accuracy, and composi-
tion accuracy. Layout generation accuracy accesses
the adapter’s precision in placing objects within
specified bounding boxes. Composition accuracy,
a universal metric for T2I models, measures the
successful depiction of text-mentioned objects in
the generated images. We also explore how differ-
ent prompting strategies influence layout creation
and, consequently, image quality. We summarize
our contributions as follows:

* we propose a new pipeline for layout-aware
text-to-image diffusion models;

* we use LLMs as layout generators and im-
prove their performance via CoT prompting,
which elicits reasoning steps in LLMs for
more accurate layout generation;

* we propose LACA,an adapter designed to in-
corporate spatial information from given lay-
outs explicitly into Stable Diffusion models;

* our empirical study demonstrates that our pro-
posed LLM-based layout generator can gener-
ate layouts that resemble the real ones, thereby
enhancing the composition accuracy of the

generated images.

2 Related Work
2.1 Text-to-Image Generation

Text-conditional image generation is a key focus in
multi-modal learning, with substantial progress in
creating realistic images (Goodfellow et al., 2014;
Reed et al., 2016; Ding et al., 2021; Yu et al.,
2022; Rombach et al., 2022; Nichol et al., 2021).
Diffusion models, particularly those introduced
by (Sohl-Dickstein et al., 2015; Ho et al., 2020),
have gained prominence in this field, thanks to their
iterative refinement process and training stability.
For instance, Rombach et al. (2022) introduced
a latent diffusion model that achieves high perfor-
mance on minimal computing power, while (Nichol
et al., 2021) developed a method for effectively
guiding text to create and edit photorealistic im-
ages. Despite these advancements, generating pho-
torealistic images from complex text prompts re-
mains a challenge, as highlighted by (Huang et al.,
2023; Cong et al., 2023; Li et al., 2022b). Real-
world descriptions often involve detailed scenes
with complex object interactions, a task that has
been approached previously through scene graph
parsing (Johnson et al., 2018; Zellers et al., 2018).
However, few studies have managed to generate
images that closely match intricate text prompts.
Some researchers have suggested conditioning spa-
tial features, like segmentation or bounding boxes,
to enhance spatial relation modeling (Li et al., 2023;
Zhang et al., 2023). These methods, however, rely
on manually created spatial features. For example,
Li et al. (2023) require manual layout annotation
with bounding boxes, and Zhang et al. (2023) ex-



tract the layout (edge map, segmentation, etc) from
a template image, and ask the diffusion models
to generate a new one conditioning on it. These
approaches require special and often manual treat-
ments for layout creation.

2.2 Chain-of-Thought Prompting for LLMs

In this study, we explore the use of a Large
Language Model (LLM) to automatically gen-
erate layouts directly from textual descriptions.
LLMs, characterized by their transformer-based
architecture and enormous size—often comprising
hundreds of billions of parameters—include no-
table examples like GPT-3 (Brown et al., 2020),
PalLM (Chowdhery et al., 2022), and LLaMA (Tou-
vron et al., 2023a,b). Trained on extensive textual
datasets (Shanahan, 2022), these models exhibit ex-
ceptional ability in understanding natural language
and performing complex text generation tasks.
The specific technique we use to extract the lay-
out from an LLM is CoT prompting (Wei et al.,
2022). This is a method that directs LLMs to de-
construct problems into logical steps, facilitating
complex reasoning without iterative modifications
to the model’s parameters. This approach is partic-
ularly effective in scenarios with limited example-
based learning. It functions by using straightfor-
ward instructional sentences to prompt LLMs to
process information sequentially (Kojima et al.,
2022; Wang et al., 2023), or by presenting them
with a series of examples that illustrate the reason-
ing process step-by-step (Wei et al., 2022; Zhang
et al., 2022). Typically, CoT is implemented in
single interactions, where the model generates a
continuous chain of reasoning before arriving at an
answer. In this work, we leverage the common
knowledge the LLMs accumulated during their
training processes to generate plausible object lay-
outs of an image. We further use CoT prompting
to enhance the accuracy of the LLMs’ responses.

3 Preliminaries
3.1 Latent Diffusion Models

Our method builds upon the Stable Diffusion
model (Rombach et al., 2022). The Stable Diffu-
sion model consists of an autoencoder and a latent
denoising model. In this setup, an encoder, &, first
transforms an image x € R7>*W>3 into a latent
code z = £(x). This latent code is then decoded
back to the original image by the decoder, D, as
% = D(&(x)). The latent code z € R"*®*¢ can
be viewed as a downsampled visual feature map,
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Figure 2: Generation pipeline of our proposed method:
Given a caption, we employ LLM to generate an object
layout. This layout is injected into the Stable Diffusion
model’s noise prediction via our proposed LACA.

where h < H and w < W. The training process
involves first training the autoencoder, followed by
the latent denoising model.

Once the autoencoder is trained, a denoising
model €y is trained to generate the latent code z =
&(x) starting from a Gaussian noise € ~ N (0, 1).
The generation process is the reverse of the diffu-
sion process, which progressively adds noise over
a series of timesteps 1" (Ho et al., 2020). Specifi-
cally, given an image x and the corresponding text
1y, the denoising model €y is optimized using the
following training loss:

L= Ezwg(x),ew./\f(o,l),t [HE - Eg(zta t, C(y)”%] (D

Here z; is a noisy version of z at timestep ¢, and the
text information is extracted by a CLIP text encoder
¢(+) (Radford et al., 2021). During training, the
conditioning text y is occasionally replaced with
empty input () with some probability p to enable
classifier-free guidance (CFG) (Ho and Salimans,
2022). The denoising model €y incorporates the
UNet architecture (Ronneberger et al., 2015) with
self-attention and cross-attention layers. The cross-
attention layers are primarily used to integrate text
information.

3.2 Guided Diffusion via Cross-Attention

In Stable Diffusion, text information is introduced
through cross-attention between the intermediate
visual features from the score network ey and the
text embeddings c(y). Let L be the number of
downsampling blocks or upsampling blocks in €y,



and p; : | € {1,..., L} be the resolution of the
visual feature map output by the /-th downsampling
blocks.! Note that py = h = w represents the
resolution of the latent code z;. Given the text input
y, its corresponding CLIP text embeddings c¢(y)
are in dimension R™V*¢, Here N is the number of
tokens and d is the dimension of each token vector.

For each intermediate visual feature map z!
and the text input c(y), An attention map Al €
RP*PXN s computed using the query (Q) linearly
projected from z. and the key (K) linearly projected
from the text embeddings ¢(y). Intuitively, in the
attention map, each N-dimensional slice Al[, , ]
is a probability vector that represents the portion
of information each semantic (token) should be ag-
gregated into the visual feature vector at location
(i,4) of z,. The vectors that carry the token seman-
tics are another linear projection (V) of the text
embeddings.

4 Methodology
4.1 LLM as Layout Generator

In this section, we explore the potential of LLMs
in generating bounding boxes for objects based on
text prompts. Two key factors enable LLMs to gen-
erate object layouts: defining precise task instruc-
tions and providing sufficient in-context exam-
ples. We elaborate on how to turn a general LLM
into a layout generator in § 4.1.1. In § 4.1.2, we
show how to improve its spatial sense by providing
in-context examples with CoT prompting. Fig. 2
demonstrates our proposed generation pipeline.

4.1.1 Task Instructions

We define clear and comprehensive task instruc-
tions for the LLMs to create accurate visual lay-
outs. These instructions focus on distinguishing
between visible and abstract elements, resolving
ambiguities, understanding spatial relationships,
and providing specific object coordinates within a
defined canvas area.

Correctly identifying visual objects. When
parsing objects from the caption, not all objects
can be depicted in visual format because they per-
tain to the other senses or are abstract concepts.
For example, in the phrase “in an office", the entity
“office" represents a scenario composed of multi-
ple objects. Thus, it should be considered as the
background of an image rather than an element in
object arrangement.

"For notation simplicity, we focus on downsampling
blocks here.

Resolving ambiguity. Ambiguities in language,
such as vague descriptions or pronouns lacking
clear referents, need clarification. For example,
pronouns like “it" or “they" require specific an-
tecedents to avoid confusion in visual representa-
tion. Additionally, exact object quantities should
be clarified when descriptions like “a group of" or
“several” are used.

Interpreting spatial relations. Grasping how ob-
jects relate to each other in space is crucial. Specif-
ically, recognizing spatial cues such as “behind",
“in front of", and “next to" can help generate accu-
rate object placement. Moreover, it is also essential
to correctly infer the spatial relationship in the ab-
sence of cues. For example, the sentence “a man
holding a tennis racket" implies that the object “ten-
nis racket" should be placed near the “man’s" hand.

Generating valid answers. We ask the LLMs to
arrange the objects within a 512 x 512 canvas. The
top-left coordinate of the canvas is the origin (0, 0).
For each object, LLMs are asked to provide the
bounding box’s top-left and bottom-right coordi-
nates. LLMs use the exact phrase from the caption
to represent the identified object.

4.1.2 In-Context Examples with CoT
Prompting

In addition to the specific task instructions, we
also offer in-context examples to enhance LLMs’
ability to produce higher-quality responses. While
constructing input-output pairs is straightforward,
in this section, we illustrate how to develop CoT
prompting to assist the LLMs in generating better
outcomes.

For intricate captions involving several objects,
it’s advantageous for the LLMs to break down the
task into multiple steps and address each sequen-
tially before generating the object layouts. Intro-
ducing examples for reasoning in these in-context
examples enables the LLMs to emulate such rea-
soning patterns and engage in CoT reasoning for
the caption query. More precisely, we design rea-
soning frameworks that adhere to the sequence out-
lined in the task instructions in Section 4.1.1: (1)
identifying both visual and non-visual elements in
the caption; (2) resolving any ambiguities regard-
ing the quantity of objects or their attributes, often
by making gentle assumptions for clarity; (3) de-
ducing the spatial relations among visual objects
in the scene, based on spatial indicators or com-
mon knowledge; (4) concluding the arrangement
of objects and ultimately deriving the answer from



In-Context Examples
LLM Input

Caption: A glass bowl full of oranges and apples.

Objects:

— A glass bowl:[(153, 153, 358, 358)]

—Oranges: [(179, 179, 23@, 230), (281, 179, 332, 230), (230, 281, 281,
332)]1

— Apples: [[(79, 281, 230, 332), (281, 281, 332, 332), (256, 204, 307,
256)1

Caption: A black and white photo of a desk with a keyboard and monitor.

LLM Output

Objects:

—A desk: [(37, 238, 475, 513)]

— A keyboard: [(148, 275, 420, 325)]
— A monitor: [(171, 214, 397, 274)]

Identifying visual objects
Clarifying ambiguity
Parsing object Hierarchy and relationship

Inferring bounding box arrangement

In-Context Examples with CoT
LLM Input

Caption: A glass bowl full of oranges and apples.

Reasoning: We can identify the following objects: A glass bowl, oranges, apples.
There is no specified number of oranges and apples, so we assume a reasonable
number that could fit within a bowl, such as three of each. The "glass bowl" is
the container for the other objects, meaning the oranges and apples are within
it. The "oranges and apples" are grouped together as they are contained in the
bowl. As a result, the glass bowl will take a central position on the canvas,
with a large bounding box, and there will be multiple bounding boxes for oranges
and apples within the bowl.

Objects:

— A glass bowl:[(153, 153, 358, 358)]

—Oranges: [(179, 179, 23e, 230), (281, 179, 332, 230), (230, 281, 281, 332)]
— Apples: [(179, 281, 23e, 332), (281, 281, 332, 332), (256, 204, 307, 256)]

Caption: A black and white photo of a desk with a keyboard and monitor.

LLM Output

Reasoning: We can identify the following objects: a desk, a keyboard, a monitor.
The "black and white photo" aspect suggests that the entire scene should be
imagined in grayscale, but this does not affect the spatial arrangement. The
"desk" is likely the base for the other objects, which means the keyboard and
the monitor will be placed on top of the desk. The monitor would be placed at
the back of the desk, with the keyboard in front of it based on a standard desk
setup. As a result, the desk would stretch across the bottom of the canvas,
covering the entire width but not extending too far upwards. The box of the
monitor would be vertical and centered horizontally on the desk. The Keyboard is
wider than it is deep, so the box would be placed in front of the monitor, wide
but not extending too far back or forward.

Objects:

— A desk: [(50, 190, 462, 462)]

— A keyboard: [(143, 350, 368, 420)]
—A monitor: [(165, 135, 347, 315)]

Figure 3: In-context examples with CoT reasoning enable LLM to give a more nuanced layout solution. Reasoning
processes of different perspectives are highlighted with different colors.

the preceding analysis. Figure 3 illustrates how
an LLM employs CoT prompting to successfully
determine a logical layout, while using standard
in-context examples fails to do so.

4.2 Stable Diffusion with Layout Conditions

We propose an attention-based adapter that in-
corporates the object layout into the score net-
work € by manipulating the attention mask M' €
{0, 1}p<pexN _ Following Li et al. (2023), we
freeze the original model weight of €g, and intro-
duce a learnable cross-attention module in each
transformer block. The original transformer block
in €y consists of a self-attention layer and a cross-
attention layer. After adding the layout-aware
cross-attention module (LACA), the computation
of z; can be written as

z; = 2z + SA(z; 0); ()
Z; = Zy + LACA(Zt7 C(y)7 M? ¢)7 (3)
zi = 71 + CA(zy, c(y); 0). 4)

We omit the superscript [ for notation simplicity.
We denote ¢ to be the parameters of the adapter. In

the following, we elaborate on the design details of
the proposed adapter.

4.2.1 Layout-Aware Cross-Attention

Recall that the visual feature vector z[7, j, :| is up-
dated with the weighted sum of the linear projec-
tion (V) of ¢(y), where the weight is determined by
the cross-attention map A;[, 7, :]. When the layout
indicates the presence of an object in a specific lo-
cation (i, j) of the feature map z, it is intuitive to
aggregate only the semantics of the specific object
into this area.
Composing attention mask from layout. Since
we specify the LLM to use the same phrase in
the caption to represent the object, it is easy to
locate the token indices corresponding to an object.
Given the token position information and the layout
spatial information of each object, we can construct
the attention mask M with the following rules:

* if the n-th token describes an object who is

assigned to location (i, j), M[i, j,n] = 1;
* if the n-th token does not describe any object,
Mli, j,n] = 1;

* otherwise, M[i, j,n] = 0.
When the n-th token is assigned to a specific ob-
ject, we use rule 1 and rule 3 to decide the attention
mask value based on the object’s location. When
the n-th token is not assigned to any object, we
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Figure 4: LACA injects layout information via cross-
attention mask. The cross attention mask indicates what
semantics (e.g., "a blue bird") should attend to the (i,j)-th
location (i,j) in the visual feature map. After computing
the attention score, the cross-attention mask will enforce
the (i,j)-th visual vector only aggregate the semantics
from the designated token embeddings.

set the attention mask M[:, :, n] to be 1 such that
the token attends to all visual features. Such con-
struction ensures the visual features z; aggregate
desired semantics from the text embeddings. Fig. 4
provides an example of constructing such an atten-
tion mask and how LACA computes a single visual
feature z[i, j, :|.

Module designs. We directly initialize LACA
with the model weight from the cross-attention
module that follows it in the Stable Diffusion.
Moreover, we add zero convolution layer (Zhang
et al., 2023) at the output stage of LACA such that
the training is more stable.

4.2.2 Sampling

During generation, we only use LACA for the first
20% denoising steps, then the standard denoising
scheme for the rest steps. This is because once the
latent code z; encodes a certain amount of the se-
mantics of the objects, the original cross-attention
mechanism will function properly. In other words,
to improve compositional capability, all an LDM
needs is a boost in the early stage of the generation.
When using LACA, we employ the classifier-free

guidance similar to Brooks et al. (2023):

€ = eg(ze,t,0) + g1 (eo(ze, t,c(y)) — eo(z,t,0))
+ 92(€0,6(2e, t, c(y), M) — eg(z¢, ,¢(y))). (5)

Empirically we find such a setting works best for
our method. We also investigate other possible
CFG options in our experiment (see Appendix C).

S Experiments

In this section, we evaluate the quality of the LLM-
generated layouts and validate the effectiveness of
the proposed adapter. Our experimental details can
be found in Appendix A.

5.1 Quantitative Evaluation

We first evaluate our method’s generative quality
and its ability to accurately compose elements us-
ing the Flickr30K (Plummer et al., 2015) and the
COCO2017 (Lin et al., 2014). Both datasets are
standard benchmarks, in which each image sam-
ple comes with caption and object annotations like
bounding boxes and semantic masks. We focus on
bounding boxes in our work. A main distinction
between the two datasets is that Flickr30K derives
the bounding boxes’ noun entities directly from the
captions, whereas COCO2017’s boxes and captions
might refer to different objects in the images.

Baselines. We use GLIGEN (Li et al., 2023), Sta-
ble Diffusion (Rombach et al., 2022) and Attend-
and-Excite (Chefer et al., 2023) as our baseline
methods. We train GLIGEN following the setting
in Li et al. (2023) from the training data. For Sta-
ble Diffusion and Attend-and-Excite, we use the
v1-5 model weight from Huggingface (Wolf et al.,
2019).

Layout conditions. We consider two layout con-
ditions - one provided by the datasets, referred to
as ground-truth (GT), and one generated by LLMs.
The GT layouts in COCO2017 do not match the
ground-truth captions and are limited to 80 object
classes, whereas the GT layout for Flickr30K and
all LLM-generated layouts are matched with their
captions. Our proposed method, LACA, only ad-
dresses the latter scenario. For COC0O2017, with
its GT layouts, we modify the captions to include
all noun entities present in the layout, making them
compatible with LACA.

Evaluations. We evaluate the models in terms
of image quality and layout accuracy. Specifically,
we use FID (Heusel et al., 2017) for image quality,



Flickr30K C0CO02017

Layout YOLO / GLIP scoret . YOLO / GLIP scoret .
source Method FID| AP APso APss GLIP ratet FID| AP APso APss GLIP rate?

- Stable Diffusion 22.53 - - - 78.3 20.91 - - - 71.2

Attend-and-Excite | 34.05 - - - 84.1 32.12 - - - 77.6

GT GLIGEN 27.70 45.0 50.9 452 84.5 27.09 19.1 30.5 20.8 71.0

LACA 22.65 50.4 56.6 50.9 84.3 25.33 17.4 28.9 20.1 70.1

LLM GLIGEN 30.08 56.2 63.8 56.5 83.3 25.97 57.6 68.1 46.2 70.5

LACA 28.96 58.5 68.1 59.4 83.3 23.28 58.8 67.3 50.1 78.1

Table 1: Generative performance on Flickr30K and COCO2017 datasets. FID evaluates image quality, YOLO/GLIP
score evaluates correspondence to the conditioned layout, and GLIP rate evaluates composition accuracy. The
conditioned layout comes from either the dataset (GT) or the LLM generation.

and for layout accuracy, we consider using YOLO
score (Li et al., 2021) for independent layout con-
dition (COCO2017 with GT) and GLIP score (Li
et al., 2023) for derived layout condition (Li et al.,
2023). We report average precision (AP) for both
YOLO and GLIP scores. While layout accuracy
only applies to layout-conditioned models, we ad-
ditionally evaluate the composition accuracy of any
T2I models. Specifically, the composition accuracy
measures how many objects mentioned in the text
are present in the generated image. This can be
quantified by again using GLIP (Li et al., 2022a).
Since GLIP derives all entities from a caption and
tries to detect the entities in its corresponding im-
ages, we can quantify composition accuracy by
computing the ratio:

>, # entities detected in image i

(6)

>, # entities derived from caption ¢’

dupped GLIP rate. The numerator is always
smaller than the denominator as we only consider

known entities. All metrics composition-related
metrics (YOLO score, GLIP score, and GLIP rate)
are scaled by 100.

Results. Table 1 demonstrates the performance
of different models when combined with different
layout sources. We interpret the numbers with the
following perspectives: (1) There exists a trade-
off between image quality and compositional
accuracy in the investigated models. (2) By com-
paring the performance of different models under
the same layout source, we can see that LACA
consistently achieves better FID and GLIP scores.
The difference is more prominent in the Flickr30K
dataset. While in the COCO2017 dataset paired
with GT layouts, LACA works slightly falls short
of GLIGEN regarding the YOLO score. We hy-
pothesize this is because the adapted captions for
LACA are not as coherent as the original captions.
When compared to Stable Diffusion, all methods
except Stable Diffusion demonstrate superior GLIP

rates, indicating they are more effective at incorpo-
rating objects mentioned in the captions into the
generated images. (3) By comparing the perfor-
mance of the same models under different layout
sources, we can observe that in Flickr30K, the FID
scores from LLM-generated layouts are worse than
from the GT layouts, while in COCO2017, the
FID scores from LLM-generated layouts are better.
This discrepancy likely stems from the text-layout
consistency of the datasets — a text-consistent lay-
out eases the burden of the diffusion models to
integrate objects from multiple modalities.

5.2 Ablation Study of Prompting Strategies

We investigate the effect of different prompting ap-
proaches on layout generation using the Flickr30K
dataset. Our focus is to compare the resemblance
of LLM-generated bounding boxes to the original
GT bounding boxes.

Evaluation protocol. We randomly sample 5000
caption-layout pairs from the dataset. For each
caption, an LLM is used to generate layouts using
different prompting strategies. Given the GT lay-
out and the LLM-generated layouts, we measure
two metrics: (1) the object hit rate, which mea-
sures how many objects in the GT layouts have
been identified by the LLMs; (2) the intersection
over union (IoU) of the GT and the LLM-generated
bounding boxes. While the generated boxes can be
completely different from the ground-truths for an
individual comparison, the mloU is still a reliable
measure of the goodness of a layout generator. Ad-
ditionally, we assess the image quality produced
from LLM-generated layouts using the FID score.

Prompting variants. We study three types of
prompting strategies: (1) task instructions only;
(2) task instructions followed by eight in-context
examples, but without CoT reasoning; (3) task in-
structions followed by eight in-context examples,
each come with a CoT reasoning.



A dog sitting on a giant cell phone.

In-context examples

LLM Output

Objects:
—a dog [(156, 206, 356, 356)]
—a giant cell phone [(106, 256, 406, 512)]

In-context examples with CoT

LLM Output

Reasoning: We can identify the following objects:
a dog, a giant cell phone. The cell phone is
described as giant, which implies it will take up
a significant portion of the canvas. The dog,
being smaller in comparison, will be sitting on
the cell phone. We can assume the dog is centrally
placed on the phone to give a clear visual that it
is sitting on it. The cell phone will be placed
horizontally to allow enough space for the dog to
sit on it.

Objects:
- 'a dog [(200, 156, 400, 456)]
- a giant cell phone [(0, 350, 512, 500)]

_ LLM Output

Objects:
- a keyboard [(0, 0, 128, 64)]

—an orange and white cat [(128, 0, 256, 256)]
—a desk [(256, 0, 384, 128)]

- a monitor [(384, 0, 512, 128)]

{ LLM Output .

Reasoning: We identify the following objects: a keyboard, an
orange and white cat, a desk, a monitor. The desk will be the base
for the other objects, as typically, a keyboard and a monitor are
placed on a desk. The keyboard will be smaller than the desk and
placed on top of it, probably in the lower center to leave room
for the monitor. The monitor will be larger than the keyboard but
still on the desk, likely at the back of the keyboard. The orange
and white cat could be either on the desk or beside it. For this
layout, we'll assume the cat is sitting on the desk, next to the
keyboard. Here is a possible layout. The desk occupies a large
area at the bottom of the canvas. The keyboard is placed centrally
on the desk. The monitor is behind the keyboard, taking up a
significant vertical space. The cat is sitting to the side of the
keyboard on the desk.

Objects:

—a keyboard [(206, 306, 406, 356)]

—an orange and white cat [(50, 200, 200, 350)]
—a desk [(50, 250, 462, 512)]

—a monitor [(206, 106, 406, 306)]

\

Figure 5: Demonstration of how in-context examples with CoT improve the quality of the generative layout. When
the caption describes a counterfactual scene (left) or does not explicitly provide object relation(right), CoT enables
LLMs to make assumptions and inferences before generating the layout.

Prompting strategy | hitrate mloU  FID

Instruction only 922% 1654 3243
+ICL 97.1% 19.84 31.95
+ ICL w/ CoT 97.4% 2398 28.96

Table 2: In-context examples with CoT help improve the
layout performance, thus the generated image quality.
ICL stands for in-context learning.

Results. Table 2 reports and mloU and the object
hit rate of the generated layouts. As we can observe,
when providing in-context examples, the object hit
rate reaches almost 100% and no longer increases.
Moreover, when CoT reasoning is employed, we
achieve the highest mloU, indicating the generated
layouts are most similar to the real ones.

5.3 Generative Counting Accuracy

We evaluate the performance of different models in
generative counting accuracy, which is their abil-
ity to replicate the exact number of objects as de-
scribed in the text. For this purpose, we curated
a set of captions from the COCO2017 validation
set that specifically include the numeral keywords
“two”, “three” or “four”, in which 150 captions
were collected for each number category. Using
LLMs, we generate object layouts for the collected
captions. From Fig. 6, we can see that LLM-
generated layout generally improves the model’s
accuracy in depicting the precise count of objects.
The improvement becomes more notable when the
object count rises. Moreover, we can observe that
LACA surpasses GLIGEN in its effectiveness in

704
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>
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@G 40
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Object counts

Figure 6: LACA achieves better generative counting
accuracy compared to GLIGEN and Stable Diffusion.

employing the layout modality.

6 Conclusion and Discussion

In this work, we propose to use LLMs to generate
object layouts from the given captions. By intro-
ducing the CoT prompting and carefully designing
the reasoning steps for the in-context examples, we
enable the LLMs’ to generate more nuanced layout
solutions and showcase the potential of LLMs in
understanding and generating complex visual lay-
outs. We further propose LACA, an adapter that
explicitly incorporates the object layout informa-
tion into the Stable Diffusion. We demonstrate that
LACA is superior in yielding high composition ac-
curacy, without conditioning on human-annotated
layout modality. This work provides clear direction
for ongoing research to refine the synergy between
textual descriptions and visual generation, paving
the way for more sophisticated and accurate visual
content creation by LLMs.
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Appendix
A Implementation Details

A.1 Experimental Setup

We follow Li et al. (2023) to train the LACA adapter on a combination of four grounding datasets:
Object365 (Shao et al., 2019), GoldG (Li et al., 2022a), CC3M (Sharma et al., 2018) and SBU (Ordonez
et al., 2011). We train LACA with batch size 128 and a learning rate 5e-5 for 700k iterations using 8
A100 GPUs, which requires approximately two days to finish. To enable classifier-free guidance, we
randomly drop captions with 5% probability and both caption and layout with another 5% probability.
We set g1 = g2 = 5.5 during generation for all experiments. We generate all layouts using GPT-3.5-
turbo (OpenAl, 2023).

A.2 Prompt Designs

We first elaborate on the realization of task instructions, and then we explore different variants of chain-of-
thought prompting provided in the In-Context examples.

Task instructions. The task instructions implemented are shown in Table 3. While most of the
instructions are straightforward, we specifically focus on the different ways to depict object placement
in the responses from the LLMs. We explore variations from two perspectives: (1) using a normalized
1x1 canvas as opposed to a more expansive 512x512 canvas, and (2) two methods of representing object
locations - either through top-left and bottom-right coordinates (XYXY) or by indicating the top-left
coordinate with width and height descriptions for the bounding box (XYWH). Our ablation study, which
assesses the quality of images produced under these different settings via the FID score, revealed a slightly
better performance with the combination of a 512x512 canvas and the XY XY method for bounding box
representation.

In-Context Examples. We explore the three formats of CoT reasoning. The first CoT variant includes a
two-step reasoning process: first interpreting the visual objects from text, then creating their arrangements.
This basic approach generally suffices for accurate layout creation. However, for cases with complex or
vague object relationships, it’s advantageous for LLMs to engage in inference and assumption before
solution generation. In the second variant, we integrate clarification steps within the CoT reasoning of the
first version. The clarification steps are mostly useful for prompts that do not carry enough information
on the object position or specification information, such as e.g., quantity, attribute, etc. For the first two
variants, each reasoning step in the first two formats is separated by bullet points in order to make it easier
for the LLMs to mimic. The final CoT format adheres to the reasoning approach of the second variant
but combines all reasoning steps continuously without explicitly delineating each reasoning phase. We
provide an example demonstrating those variants in Table 4

A.3 Layout Conversion from LLMs Response

We extract bounding boxes for objects identified in the responses from LLMs. These bounding boxes are
then transformed into the cross-attention mask M’ used by LACA. Without loss of generality, we denote
M := M? € R64*64xN and use M for the discussions below. .

Bounding boxes extraction. As stated in our task instructions, the canvas that an LLM operates on
is a size 512x512. An LLM will first parse objects from the caption and then classify them into either
“visual” or “non-visual”. Only "visual" objects are assigned bounding boxes, which are determined by
their top-left and bottom-right coordinates. If an object is mentioned in multiple quantities, the LLM will
generate a corresponding number of bounding boxes, based on either the specified quantity or its own
estimations. After extraction, these coordinates are normalized to a scale ranging from O to 1.

Cross-attention mask construction. For each object, we first locate its indices in the text caption in
order to properly assign values to M. For example, in the text prompt “a red apple and a blue bird”,
the indices of the object “a red apple” will be [0, 1, 2] (assuming the index starts from 0). In practice,
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Instructions You are an expert photographer who can infer the best layout of the given objects inside a photo or a picture.
Now, given a description of the picture, you are asked to perform the following tasks.
1. Given the description, parse the objects that appear in the text in a hierarchical manner.
2. Based on your parsed result, arrange the objects within a canvas with a width of 512 and a height of 512.
The top-left coordinate in the canvas is the origin (0, 0).
3. For each object, you need to specify its location by listing the top-left coordinate and the bottom-left
coordinate. Your answer for each object should be (x1, y1, x2, y2), where (x1, y1) is the top-left coordinate
and (x2, y2) is the bottom-right coordinate.
4. In the description, if there is any ambiguity about the number of objects or the spatial relationship between
objects, you should first concretize it through reasoning before giving the answer.
5. When representing the identified objects in your answer, you should use the exact same words that appear
in the caption.
Below are a few examples:
In-Context ## Caption: A man in a white shirt and blue shorts swinging a tennis racket.
Example 1 . o )
### Parsing the description into objects
From this caption, we can identify the following objects: A man, A white shirt, Blue shorts, A tennis
racket.
### Hierarchy and relationships
- “A man” is the main subject, and his clothing (a white shirt and blue shorts) is part of his description.
- “A tennis racket” is being swung by the man, so it will be in motion, likely extending from one side of
the man.
### Arranging objects on the canvas
- The canvas is in a size of width and height of 512, with the origin at the top-left (0, 0).
- The man should be centrally located to be the focus, with space around him to show the movement of
swinging the racket.
- The clothing (white shirt and blue shorts) is part of the man’s bounding box, with the shirt on the upper
part of the torso and the shorts below.
- The tennis racket, since in motion, should extend out from the man’s hand, likely to the right side if we
imagine the swing.
### Reasoning and concretizing ambiguity
- The exact positions of the shirt and shorts within the man’s bounding box are based on their natural
position on the body.
- The tennis racket’s position is determined by the typical posture of swinging, which generally extends to
the side and slightly upward.
### Specifying locations
- “A man” will have a bounding box that covers a significant portion of the canvas to show his presence
and the action.
- “A white shirt” will have a bounding box within the upper half of the man’s bounding box, representing
the torso area.
- “Blue shorts” will have a bounding box below the shirt’s, indicating the lower part of the torso and upper
legs.
- “A tennis racket” will have a bounding box that overlaps with the man’s hand and extends outward to
represent the swing.
### Answer
- #*A man**: visual [[158, 51, 337, 404]]
- **a white shirt**: visual [[204, 153, 317, 256]]
- **plue shorts**: visual [[220, 235, 327, 307]]
- *%3 tennis racket™*: visual [[153, 46, 235, 143]]
In-Context
Example 2
Query Now given the caption below, can you give a similar reasoning and derive the resulting bounding box for

those objects? then give the answer, strictly following the format of the answer given in the examples.
## Caption: a red apple and a blue bird.
HitH

Table 3: Prompts for LLMs to generate layout for caption “a red apple and a blue bird.”.
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## Caption: A glass bowl full of oranges and apples.

CoT variant 1

### Identifying Objects

From this caption, we can identify the
following objects: A glass bowl, oranges,
and apples.

### Specifying Locations

- The glass bowl, being the central
object, will have a bounding box in the
middle of the canvas, perhaps taking up
a significant area but not touching the
edges to allow for visual clarity.

- The oranges and apples will each
have their own bounding box within the
bowl. Since they are grouped together,
their boxes may overlap or be side by
side.

CoT variant 2

### Identifying Objects

From this caption, we can identify the
following objects: A glass bowl, oranges,
and apples.

### Hierarchy and Relationships
- The glass bowl serves as the container
for the oranges and apples.

### Arranging objects on the canvas
- Canvas Size: 512x512 square with

the origin at the top-left (0, 0).

- Bowl Placement: Centrally on the can-
vas to emphasize its role as a container.

- Fruit Placement: Oranges and apples
inside the bowl, possibly overlapping or
side by side.

### Reasoning and concretizing ambigu-
ity

- Quantity of Fruit: Assuming a reason-
able number, such as three oranges and
three apples.

- Fruit Arrangement: Random scatter-
ing within the bowl.

### Specitying Locations

- The glass bowl, being the central
object, will have a bounding box in the
middle of the canvas, perhaps taking up
a significant area but not touching the
edges to allow for visual clarity.

- The oranges and apples will each
have their own bounding box within the
bowl. Since they are grouped together,
their boxes may overlap or be side by
side.

CoT variant 3

We can identify the following objects: A
glass bowl, oranges, apples. There is no
specified number of oranges and apples,
so we assume a reasonable number that
could fit within a bowl, such as three
of each. The "glass bowl" is the con-
tainer for the other objects, meaning the
oranges and apples are within it. The "or-
anges and apples" are grouped together
as they are contained in the bowl. As
a result, the glass bowl will take a cen-
tral position on the canvas, with a large
bounding box, and there will be multiple
bounding boxes for oranges and apples
within the bowl.

### Answer

- *¥*A glass bowl**: visual [[153, 153, 358, 358]]
- *¥*Qranges**: visual [[179, 179, 230, 230], [281, 179, 332, 230], [230, 281, 281, 332]]
- **Apples**: visual [[179, 281, 230, 332], [281, 281, 332, 332], [256, 204, 307, 256]]

Table 4: An in-context example with different CoT variants.
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since Stable Diffusion uses a CLIP model to encode the prompt, we find such correspondence after the
text prompt and the object description are both tokenized. Suppose we have “a red apple” matched
the (i,7 + 1,...,7) tokens in the tokenized text prompt, and the top-left coordinate being (z1, y1), the
bottom-right coordinate being (x2, y2), we then will set

M| [6421] : [6422], [64y1] : [64y2]),i: 4] = 1. @)

Note that M is initialized with all zeros before composing the layouts on it. | -] is the floor operation. For
any token index 7 that does not represent an object, we set the cross-attention mask M[:, :, ] = 1.

A.4 Classfier-Free Guidance

Recall that in § 4.2.2, while we estimate the predictive noise using

€ = eg(z1,1,0) + g1(eo (1, 1, c(y)) — €o(2,1,0))
+ 92 (€0,6(2, t, c(y), M) — eg(21, t, c(y))), 3

we also explore other possible choices. The first alternative is the one used by Li et al. (2023), which
jointly considers the text and the layout modality and has

€= 69,¢>(Zt7 ta ®> + 9(69,95 (Ztv t7 C(y), M)
_69,¢>(Zt7t7®))' (9)

For this alternative, we drop both modalities at the same time with a probability of 10% during the training.
The second alternative regarding the choice between using score networks €y and ¢y 4. Intuitively, one
should use €g 4 for all combination of input modality, which yields

€= 69,¢(Zt7 t, (D) + g1 (60,¢(Zta t, C(y)) - 69,¢(Zt7 t, Q)))
+ 92(€e0,6(21, t, c(y), M) — €g.9(2¢, 1, ¢(y))). (10)

However, we empirically found that the setting in Eq. 8 works slightly better than Eq. 10 in terms of
generated image quality. And both of Eq. 8 and Eq. 10 demonstrate better performance than the one using
Eq. 9. We report the FID score of those settings in the experiment proposed by Appendix C.2.

A.5 Details for mloU Computation

In § 5.2, we measure how the LLM-generated layouts resemble the ground-truths via mloU. The mloU
score directly computed between two sets of bounding boxes is extremely low since first, the object
labels are open-set, and second, there are many possible layouts for a given caption. To better match the
bounding boxes, we make two modifications to the original matching algorithms to increase the reliability
of the metric.

Relaxed object matching. While current tools for mloU computation find correspondence between
objects from the GT and LLM-generated layouts by matching their noun entities, we build such correspon-
dence by checking whether one is a substring of the other. For example, while the GT layouts describe the
phrase “a woman in a blue shirt” with one bounding box, an LLM might provide two bounding boxes for
“a woman” and “a blue shirt” respectively. Our approach relates both the bounding boxes of “a woman”
and “a blue shirt” to the GT bounding box for “a woman in a blue shirt”.

Bounding box flipping. For each image, we compute two sets of loU values, one with the GT bounding
boxes and one with the horizontally flipped ones. We then take the set that has a higher mIoU score as the
result. We only perform horizontal flips on the bounding boxes since it does not change the spatial sense
of an image.

A proper metric used to measure the layout generative performance under the open-set setting is still
underexplored. While our proposed method is shown effective, there might exist a principal solution to
such a problem. We would like to leave it to the future work.
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Model # Parameters (in billions)

Stable Diffuison 1.06B
GLIGEN 1.27B
LACA 1.12B
LACA+LASA 1.16B

Table 5: Model parameters.

A.6 Model Size

We list the number of model parameters in Table 5. The architecture of adapter LACA+LASA is detailed
in Appendix B. Our proposed adapters have significantly fewer parameters compared to GLIGEN.

B Layout-Aware Self-Attention Module

Inspired by LACA, we further investigate a possible variant of the proposed adapter - Layout-Aware
Self-Attention Module, dupped LASA. In this section, we first demonstrate the development of LASA,
then we show how to jointly compose the LACA and LASA adapters in the Stable Diffusion model. The
proposed LASA adapter aims to make sure an object has coherent visual features during the generation.
The object coherence is enforced by the layout modality — visual features that belong to the same object
should self-attend to each other. Similar to LACA, the I-th LASA adapter injects such spatial information
explicitly through the self-attention mask SM!. Note that SM! € RPUXP} s designed to specify whether
the visual features should attend to one another or not. We omit the superscript / in the following
discussion.

Constructing self-attention mask from layout. We propose to compose SM from the layout. First,
we make an assumption that there are K objects depicted by the layout. Note that objects that share the
same noun entities are considered differently, for example, “four apples and an orange” leads to K = 5.
Second, we need to define the flattened visual index set Z;, for each object k:

T = {pi + j|(4, j)-th visual feature belongs to object k}

Then, we can compose SM using the following rules:
e if i € UpZy, then SM][i, j] = 1 if we have ¢ and j assigned to the same object k, otherwise 0.
Mathematically, the condition can expressed as Z,If:l 1[i € Ty]1[j € Zx] > 0

e if i ¢ UpZy, then we have SM]i,:] = 1.

Here 1[-] is an indicator function. The intuition of rule 1 is that a visual feature will aggregate
information from all other visual features that share the same objects. Rule 2 allows non-object visual
features to aggregate information from all the others. We highlight how to compose such an attention
mask in Alg.1.

Module designs. Similar to LACA, we directly initialize LASA using the self-attention weight from the
Stable Diffusion models. We only apply LASA to the low-resolution visual maps (the intermediate visual
feature map with resolutions 16x16 and 8x8), which are more computationally affordable. We also add a
zero convolution layer on top of LASA’s output.

Composing LACA and LASA adapters. For each transformer block, we add a LASA module in be-
tween the LACA module and the cross-attention module. We only add LASA to the last two downsampling
blocks and the first two upsampling blocks.

C Additional Results
C.1 Ablation Study on CoT Variants

The CoT strategy is directly linked to the performance of the generated layout. Following § 5.2, we assess
the effectiveness of different CoT variants by evaluating the performance of the LLM-generated layout. In
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Algorithm 1 Construction of self-attention mask SM.

Input: K index sets 71, ..., Zx, and an all-zeros tensor M &€ RP*XP?XK
[Composing self-attention mask for each object]
fork=0,...., K —1do
Set M[i, j, k] = 1,Vi,j € I},
Set M[i,:, k| = 1,Vi ¢ I,
end for
[Reducing M to SM]
Intialize SM = M:, :, 0]
fork=1,..., K —1do
Obtain non-zero index set Zy j, = {i|M]i,:, k] # 1}
Obtain non-zero index set Zp gpg = {4[SM[i, :, k] # 1}
For i € Zy ;. N Zp s, We set
SM[i,:] = SM[i,:] or M[i,:, k]
Fori € Ty, \ (Zg N Zygm), We set
SM[i, :| = M[i,:, k]
end for
Output: Self-attention mask SM

CoT strategy | hitrate mloU FID

no CoT 97.1% 19.84 31.95
variant 1 97.4% 2131 31.64
variant 2 97.4% 23.98 28.96
variant 3 96.9% 19.28 32.49

Table 6: Layout performance of different CoT variants on Flickr30K.

particular, We report the object hit rate, mloU, and the FID score of generated images in Table 6. The
second variant, which we use in our major experiment, has shown superior performance over others.
Surprisingly, variant 3, which does not separate each reasoning step explicitly, performs even worse than
the one without CoT reasoning.

C.2 Ablation Study on Classifier-Free Guidance

Performance vs CFG variants. We investigate the generative performance under different CFG
guidances (Eq. 8, Eq. 9 and Eq. 10). We report the FID score on Flickr30K in Table 7. Empirically,
we observe that the employed CFG guidance works the best among others. We only incorporate layout
modality into SD via the mentioned CFG guidances for the first 20% denoising steps.

CFG guidance | FID
Eq. 8 28.96
Eq.9 30.20
Eq. 10 29.19

Table 7: Generative performance of different CFG guidance on Flickr30K

Sensitivity Analysis. We explore how the hyperparameters g;, g2 from classifier-free guidance affect
the quality of the generated images. We choose Eq. 8 as our inverstigation target. We explore g; €
{1.5,3.5,5.5,7.5} and g2 € {3.5,5.5,7.5} and report the FID scores in Table 8. We can observe that
g1 = g2 = 5.5 yields the best FID score.
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g1
1.5 3.5 5.5 7.5

35| 27.11 2634 2678 28.16
g2 552645 2380 2328 23.28
7.5 2492 23.67 2335 2330

Table 8: Classifier-free guidance weights over text and text-layout conditions. g; controls the text-layout condition
and go controls the text-only condition.

C.3 Generative Performance of LASA Adapter

We validate the effectiveness of the LASA adapter on both the Flickr30K and COCO2017 datasets. This
study involved a comparative analysis of the LACA adapter alone and its integration with the LASA
adapter. We use LLM-generated layouts to generate images and evaluate the FID score, GLIP score, and
GLIP rate of the models. Table 9 shows that the combination of LASA with LACA resulted in enhanced
capabilities in producing more realistic images. Notably, there was an improvement of 2.54 and 1.15 in
performance on the Flickr30K and COCO2017 datasets, respectively. The measures of layout accuracy
and composition accuracy demonstrated that both adapters were comparably effective in integrating
objects into images. Although LASA contributes to higher-quality image generation, it also leads to
increased sampling time. In speed tests conducted on an A100 GPU, the sampling time averaged 2.5
seconds for LACA but extended to 5.2 seconds when utilizing LACA combined with LASA.

Flick30K
GLIP score
FID AP APsy APy GLIP rate
LACA 2896 585 68.1 594 83.3
LACA+LASA | 2642 594 684 60.0 83.3
COC02017
GLIP score
FID AP APy, APr: GLIP rate
LACA 23.28 58.8 67.3 50.1 78.1
LACA+LASA | 22.13 584 689 49.7 78.2

Table 9: Generative performance of LASA adapter

C.4 Visualizations

We provide additional visualizations of the generated images in Fig. 7 and Fig. 8. Specifically, we
showcase 6 caption examples and their generated images. For each caption, we use an LLLM to generate
two layouts. Then we generate two images from the layout. As we can observe, our proposed method
can generate reasonable layouts most of the time. Note that the generated objects do not necessarily lie
within the given bounding boxes. We hypothesize this is because the layout information is only injected
via LACA at the early stage of the denoising process. When LACA is no longer employed, the Stable
Diffusion model takes its liberty to compose the objects. We believe this is beneficial since the generative
error from the layout can be alleviated by the Stable Diffusion model, thereby achieving higher image
quality.

D Limitations and Societal Impact

Limitations While our proposed method empowers LLMs with the ability to generate object layouts
via in-context learning, further finetuning may be a more effective strategy for generating high-quality
layouts. Moreover, it is observed when injecting layout information, the FID score of images generated
from Stable Diffusion variants is often worse than the FID of images generated only conditioned on text.
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A dog is standing to the left of a parking meter.
(b)

A man in blue shirt is sitting on a bench.
(©)

Figure 7: Additional visualization 1.

Societal Impact Generative models unlock a range of creative uses, thus broadening access and
encouraging wider exploration. However, this ease of access also raises concerns about the potential for
generating and spreading altered data, misinformation, and spam. Moreover, there’s the risk that these
models might inadvertently expose the data they were trained on. This is particularly worrisome when that
data includes sensitive or personal information gathered without clear consent. Finally, since our proposed
method generated objects following the given layout, the generated objects will be disproportionated.
While deep generative models are now becoming more prominent and are frequently used for intellectual
creation, how to maintain the authenticity of the generated image conditioned on the layout remains a
significant area for future research.
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(d)

A dog stands and four balloons are in the air.

®

Figure 8: Additional visualization 2.
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