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Abstract
Recent advancements in text-to-image (T2I)001
generative models have shown remarkable ca-002
pabilities in producing diverse and imaginative003
visuals based on text prompts. Despite the ad-004
vancement, these diffusion models sometimes005
struggle to translate the semantic content from006
the text into images entirely. While condition-007
ing on the layout has shown to be effective in008
improving the compositional ability of T2I dif-009
fusion models, they typically require manual010
layout input. In this work, we introduce a novel011
approach to improving T2I diffusion models us-012
ing Large Language Models (LLMs) as layout013
generators. Our method leverages the Chain-014
of-Thought (CoT) prompting of LLMs to inter-015
pret text and generate spatially reasonable ob-016
ject layouts. The generated layout is then used017
to enhance the generated images’ composition018
and spatial accuracy. Moreover, we propose019
an efficient adapter based on a cross-attention020
mechanism, which explicitly integrates the lay-021
out information into the stable diffusion mod-022
els. Our experiments demonstrate significant023
improvements in image quality and layout ac-024
curacy, showcasing the potential of LLMs in025
augmenting generative image models.026

1 Introduction027

Recent developments in image generation, particu-028

larly with DELL-E 2 (Ramesh et al., 2022) and Sta-029

ble Diffusion (SD) (Rombach et al., 2022). Specifi-030

cally, text-to-image (T2I) models, which create im-031

ages from textual descriptions using autoregressive032

and diffusion methods, have shown a notable abil-033

ity to produce high-quality images (Saharia et al.,034

2022; Ramesh et al., 2021, 2022). SD-based mod-035

els, in particular, have obtained significant atten-036

tion in the research community due to their public037

availability. However, creating realistic images038

from complex descriptions still remains challeng-039

ing. For instance, when dealing with descriptions040

that include multiple objects with complex spatial041

relationships, SD-based models often struggle to042

compose these elements within an image accurately. 043

Fig. 1(a) shows some examples when multiple ob- 044

jects are described in the text prompt, SD-based 045

models fail to capture them all in the images. 046

The compositional challenges in SD-based mod- 047

els, including attribute leakage, incorrect attribute 048

binding, omission of objects, or misinterpretation 049

of relationships between objects, are well docu- 050

mented (Wu et al., 2023; Feng et al., 2022). To 051

improve compositional capabilities, a common 052

strategy is to manually provide object positions 053

as model inputs, circumventing the need for the 054

model to infer the layout independently (Zhang 055

et al., 2023; Li et al., 2023). Li et al. (2023), specifi- 056

cally, suggest using bounding boxes to guide image 057

generation, encoding object positions and descrip- 058

tions into vectors that influence the latent image 059

development via an attention module. Addition- 060

ally, other research, such as that by Chefer et al. 061

(2023) and Liu et al. (2022), proposes modifica- 062

tions to the generation process by adjusting the 063

attention mechanism. Additionally, Chefer et al. 064

(2023); Liu et al. (2022) propose attention mecha- 065

nism adjustments, e.g., modifying attention scores 066

to ensure visual features adequately represent each 067

object, thereby reducing object omissions in im- 068

ages. While these layout-augmented methods have 069

been effective, they suffer from the reliance on 070

human-annotated object locations. Furthermore, 071

the integration methods for layout information in 072

these models can be seen as unnatural, as they fail 073

to utilize the spatial details explicitly (Li et al., 074

2023) or heavily alter the image formation pro- 075

cess (Liu et al., 2022; Chefer et al., 2023). 076

To minimize human intervention in the training 077

process of text-to-image (T2I) generative models, 078

we leverage the capabilities of Large Language 079

Models (LLMs) (Touvron et al., 2023a; Brown 080

et al., 2020) for generating coherent layouts using 081

Chain-of-Thought (CoT) prompting (Wei et al., 082

2022) (Fig. 1(b)). In particular, we activate LLMs’ 083
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Figure 1: (a) Our method enhances the compositional capability of a pre-trained text-to-image diffusion model (Rom-
bach et al., 2022) by conditioning on object layouts; (b) Unlike GLIGEN or ControlNet, which requires manually
annotating the layout modality, our method uses LLMs to generate one from the given text prompt.

potential in generating coherent layouts using CoT084

prompting (Wei et al., 2022). The layouts gener-085

ated by LLMs provide bounding boxes for each086

object mentioned in the text prompts. For incorpo-087

rating the LLM-generated layout into the input of088

SD-based models, we propose an effective adapter089

that integrates layout information through a cross-090

attention mask. This adapter explicitly utilizes the091

spatial details provided by the layout and is de-092

signed to align seamlessly with the conditioning093

mechanisms of SD.094

We empirically our method’s efficacy in terms of095

generation quality, layout accuracy, and composi-096

tion accuracy. Layout generation accuracy accesses097

the adapter’s precision in placing objects within098

specified bounding boxes. Composition accuracy,099

a universal metric for T2I models, measures the100

successful depiction of text-mentioned objects in101

the generated images. We also explore how differ-102

ent prompting strategies influence layout creation103

and, consequently, image quality. We summarize104

our contributions as follows:105

• we propose a new pipeline for layout-aware106

text-to-image diffusion models;107

• we use LLMs as layout generators and im-108

prove their performance via CoT prompting,109

which elicits reasoning steps in LLMs for110

more accurate layout generation;111

• we propose LACA,an adapter designed to in-112

corporate spatial information from given lay-113

outs explicitly into Stable Diffusion models;114

• our empirical study demonstrates that our pro-115

posed LLM-based layout generator can gener-116

ate layouts that resemble the real ones, thereby117

enhancing the composition accuracy of the118

generated images. 119

2 Related Work 120

2.1 Text-to-Image Generation 121

Text-conditional image generation is a key focus in 122

multi-modal learning, with substantial progress in 123

creating realistic images (Goodfellow et al., 2014; 124

Reed et al., 2016; Ding et al., 2021; Yu et al., 125

2022; Rombach et al., 2022; Nichol et al., 2021). 126

Diffusion models, particularly those introduced 127

by (Sohl-Dickstein et al., 2015; Ho et al., 2020), 128

have gained prominence in this field, thanks to their 129

iterative refinement process and training stability. 130

For instance, Rombach et al. (2022) introduced 131

a latent diffusion model that achieves high perfor- 132

mance on minimal computing power, while (Nichol 133

et al., 2021) developed a method for effectively 134

guiding text to create and edit photorealistic im- 135

ages. Despite these advancements, generating pho- 136

torealistic images from complex text prompts re- 137

mains a challenge, as highlighted by (Huang et al., 138

2023; Cong et al., 2023; Li et al., 2022b). Real- 139

world descriptions often involve detailed scenes 140

with complex object interactions, a task that has 141

been approached previously through scene graph 142

parsing (Johnson et al., 2018; Zellers et al., 2018). 143

However, few studies have managed to generate 144

images that closely match intricate text prompts. 145

Some researchers have suggested conditioning spa- 146

tial features, like segmentation or bounding boxes, 147

to enhance spatial relation modeling (Li et al., 2023; 148

Zhang et al., 2023). These methods, however, rely 149

on manually created spatial features. For example, 150

Li et al. (2023) require manual layout annotation 151

with bounding boxes, and Zhang et al. (2023) ex- 152
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tract the layout (edge map, segmentation, etc) from153

a template image, and ask the diffusion models154

to generate a new one conditioning on it. These155

approaches require special and often manual treat-156

ments for layout creation.157

2.2 Chain-of-Thought Prompting for LLMs158

In this study, we explore the use of a Large159

Language Model (LLM) to automatically gen-160

erate layouts directly from textual descriptions.161

LLMs, characterized by their transformer-based162

architecture and enormous size—often comprising163

hundreds of billions of parameters—include no-164

table examples like GPT-3 (Brown et al., 2020),165

PaLM (Chowdhery et al., 2022), and LLaMA (Tou-166

vron et al., 2023a,b). Trained on extensive textual167

datasets (Shanahan, 2022), these models exhibit ex-168

ceptional ability in understanding natural language169

and performing complex text generation tasks.170

The specific technique we use to extract the lay-171

out from an LLM is CoT prompting (Wei et al.,172

2022). This is a method that directs LLMs to de-173

construct problems into logical steps, facilitating174

complex reasoning without iterative modifications175

to the model’s parameters. This approach is partic-176

ularly effective in scenarios with limited example-177

based learning. It functions by using straightfor-178

ward instructional sentences to prompt LLMs to179

process information sequentially (Kojima et al.,180

2022; Wang et al., 2023), or by presenting them181

with a series of examples that illustrate the reason-182

ing process step-by-step (Wei et al., 2022; Zhang183

et al., 2022). Typically, CoT is implemented in184

single interactions, where the model generates a185

continuous chain of reasoning before arriving at an186

answer. In this work, we leverage the common187

knowledge the LLMs accumulated during their188

training processes to generate plausible object lay-189

outs of an image. We further use CoT prompting190

to enhance the accuracy of the LLMs’ responses.191

3 Preliminaries192

3.1 Latent Diffusion Models193

Our method builds upon the Stable Diffusion194

model (Rombach et al., 2022). The Stable Diffu-195

sion model consists of an autoencoder and a latent196

denoising model. In this setup, an encoder, E , first197

transforms an image x ∈ RH×W×3 into a latent198

code z = E(x). This latent code is then decoded199

back to the original image by the decoder, D, as200

x̃ = D(E(x)). The latent code z ∈ Rh×w×c can201

be viewed as a downsampled visual feature map,202

a desk

a monitor 

a keyboard

Task instructions

In-context examples

A black and white photo of a desk 
with a keyboard and a monitor

Stable Diffusion
LACA

LLM (GPT-3.5-turbo)

A black and white photo of a desk 
with a keyboard and a monitor

LLM-based Layout 
Generator

Caption

❄

🔥

❄

🔥 Trainable         ❄ Frozen

Figure 2: Generation pipeline of our proposed method:
Given a caption, we employ LLM to generate an object
layout. This layout is injected into the Stable Diffusion
model’s noise prediction via our proposed LACA.

where h < H and w < W . The training process 203

involves first training the autoencoder, followed by 204

the latent denoising model. 205

Once the autoencoder is trained, a denoising 206

model ϵθ is trained to generate the latent code z = 207

E(x) starting from a Gaussian noise ϵ ∼ N (0,1). 208

The generation process is the reverse of the diffu- 209

sion process, which progressively adds noise over 210

a series of timesteps T (Ho et al., 2020). Specifi- 211

cally, given an image x and the corresponding text 212

y, the denoising model ϵθ is optimized using the 213

following training loss: 214

L = Ez∼E(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, c(y)∥22

]
. (1) 215

Here zt is a noisy version of z at timestep t, and the 216

text information is extracted by a CLIP text encoder 217

c(·) (Radford et al., 2021). During training, the 218

conditioning text y is occasionally replaced with 219

empty input ∅ with some probability p to enable 220

classifier-free guidance (CFG) (Ho and Salimans, 221

2022). The denoising model ϵθ incorporates the 222

UNet architecture (Ronneberger et al., 2015) with 223

self-attention and cross-attention layers. The cross- 224

attention layers are primarily used to integrate text 225

information. 226

3.2 Guided Diffusion via Cross-Attention 227

In Stable Diffusion, text information is introduced 228

through cross-attention between the intermediate 229

visual features from the score network ϵθ and the 230

text embeddings c(y). Let L be the number of 231

downsampling blocks or upsampling blocks in ϵθ, 232
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and pl : l ∈ {1, . . . , L} be the resolution of the233

visual feature map output by the l-th downsampling234

blocks.1 Note that p0 = h = w represents the235

resolution of the latent code zt. Given the text input236

y, its corresponding CLIP text embeddings c(y)237

are in dimension RN×d. Here N is the number of238

tokens and d is the dimension of each token vector.239

For each intermediate visual feature map zlt240

and the text input c(y), An attention map Al
t ∈241

Rpl×pl×N is computed using the query (Q) linearly242

projected from zlt and the key (K) linearly projected243

from the text embeddings c(y). Intuitively, in the244

attention map, each N -dimensional slice Al
t[i, j, :]245

is a probability vector that represents the portion246

of information each semantic (token) should be ag-247

gregated into the visual feature vector at location248

(i, j) of zlt. The vectors that carry the token seman-249

tics are another linear projection (V) of the text250

embeddings.251

4 Methodology252

4.1 LLM as Layout Generator253

In this section, we explore the potential of LLMs254

in generating bounding boxes for objects based on255

text prompts. Two key factors enable LLMs to gen-256

erate object layouts: defining precise task instruc-257

tions and providing sufficient in-context exam-258

ples. We elaborate on how to turn a general LLM259

into a layout generator in § 4.1.1. In § 4.1.2, we260

show how to improve its spatial sense by providing261

in-context examples with CoT prompting. Fig. 2262

demonstrates our proposed generation pipeline.263

4.1.1 Task Instructions264

We define clear and comprehensive task instruc-265

tions for the LLMs to create accurate visual lay-266

outs. These instructions focus on distinguishing267

between visible and abstract elements, resolving268

ambiguities, understanding spatial relationships,269

and providing specific object coordinates within a270

defined canvas area.271

Correctly identifying visual objects. When272

parsing objects from the caption, not all objects273

can be depicted in visual format because they per-274

tain to the other senses or are abstract concepts.275

For example, in the phrase “in an office", the entity276

“office" represents a scenario composed of multi-277

ple objects. Thus, it should be considered as the278

background of an image rather than an element in279

object arrangement.280
1For notation simplicity, we focus on downsampling

blocks here.

Resolving ambiguity. Ambiguities in language, 281

such as vague descriptions or pronouns lacking 282

clear referents, need clarification. For example, 283

pronouns like “it" or “they" require specific an- 284

tecedents to avoid confusion in visual representa- 285

tion. Additionally, exact object quantities should 286

be clarified when descriptions like “a group of" or 287

“several" are used. 288

Interpreting spatial relations. Grasping how ob- 289

jects relate to each other in space is crucial. Specif- 290

ically, recognizing spatial cues such as “behind", 291

“in front of", and “next to" can help generate accu- 292

rate object placement. Moreover, it is also essential 293

to correctly infer the spatial relationship in the ab- 294

sence of cues. For example, the sentence “a man 295

holding a tennis racket" implies that the object “ten- 296

nis racket" should be placed near the “man’s" hand. 297

Generating valid answers. We ask the LLMs to 298

arrange the objects within a 512× 512 canvas. The 299

top-left coordinate of the canvas is the origin (0, 0). 300

For each object, LLMs are asked to provide the 301

bounding box’s top-left and bottom-right coordi- 302

nates. LLMs use the exact phrase from the caption 303

to represent the identified object. 304

4.1.2 In-Context Examples with CoT 305

Prompting 306

In addition to the specific task instructions, we 307

also offer in-context examples to enhance LLMs’ 308

ability to produce higher-quality responses. While 309

constructing input-output pairs is straightforward, 310

in this section, we illustrate how to develop CoT 311

prompting to assist the LLMs in generating better 312

outcomes. 313

For intricate captions involving several objects, 314

it’s advantageous for the LLMs to break down the 315

task into multiple steps and address each sequen- 316

tially before generating the object layouts. Intro- 317

ducing examples for reasoning in these in-context 318

examples enables the LLMs to emulate such rea- 319

soning patterns and engage in CoT reasoning for 320

the caption query. More precisely, we design rea- 321

soning frameworks that adhere to the sequence out- 322

lined in the task instructions in Section 4.1.1: (1) 323

identifying both visual and non-visual elements in 324

the caption; (2) resolving any ambiguities regard- 325

ing the quantity of objects or their attributes, often 326

by making gentle assumptions for clarity; (3) de- 327

ducing the spatial relations among visual objects 328

in the scene, based on spatial indicators or com- 329

mon knowledge; (4) concluding the arrangement 330

of objects and ultimately deriving the answer from 331
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Caption: A glass bowl full of oranges and apples.


Objects:

- A glass bowl:[(153, 153, 358, 358)]

- Oranges: [(179, 179, 230, 230), (281, 179, 332, 230), (230, 281, 281, 
332)]


- Apples: [[(79, 281, 230, 332), (281, 281, 332, 332), (256, 204, 307, 
256)]


Caption: A black and white photo of a desk with a keyboard and monitor.

LLM Input

Objects:

- A desk: [(37, 238, 475, 513)]

- A keyboard: [(148, 275, 420, 325)]

- A monitor: [(171, 214, 397, 274)]

Caption: A glass bowl full of oranges and apples.


Reasoning: We can identify the following objects: A glass bowl, oranges, apples.

There is no specified number of oranges and apples, so we assume a reasonable 
number that could fit within a bowl, such as three of each. The "glass bowl" is 
the container for the other objects, meaning the oranges and apples are within 
it. The "oranges and apples" are grouped together as they are contained in the 
bowl. As a result, the glass bowl will take a central position on the canvas, 
with a large bounding box, and there will be multiple bounding boxes for oranges 
and apples within the bowl.


Objects:

- A glass bowl:[(153, 153, 358, 358)]

- Oranges: [(179, 179, 230, 230), (281, 179, 332, 230), (230, 281, 281, 332)]

- Apples: [(179, 281, 230, 332), (281, 281, 332, 332), (256, 204, 307, 256)]


Caption: A black and white photo of a desk with a keyboard and monitor.


LLM Input

Reasoning: We can identify the following objects: a desk, a keyboard, a monitor.

The "black and white photo" aspect suggests that the entire scene should be 
imagined in grayscale, but this does not affect the spatial arrangement. The 
"desk" is likely the base for the other objects, which means the keyboard and 
the monitor will be placed on top of the desk. The monitor would be placed at 
the back of the desk, with the keyboard in front of it based on a standard desk 
setup. As a result, the desk would stretch across the bottom of the canvas, 
covering the entire width but not extending too far upwards. The box of the 
monitor would be vertical and centered horizontally on the desk. The Keyboard is 
wider than it is deep, so the box would be placed in front of the monitor, wide 
but not extending too far back or forward.


Objects:

- A desk: [(50, 190, 462, 462)]

- A keyboard: [(143, 350, 368, 420)]

- A monitor: [(165, 135, 347, 315)]


LLM Output

LLM Output

In-Context Examples In-Context Examples with CoT

Identifying visual objects


Clarifying ambiguity


Parsing object Hierarchy and relationship


Inferring bounding box arrangement

a desk

a monitor 

a desk

a monitor 

a keyboard

a keyboard

Figure 3: In-context examples with CoT reasoning enable LLM to give a more nuanced layout solution. Reasoning
processes of different perspectives are highlighted with different colors.

the preceding analysis. Figure 3 illustrates how332

an LLM employs CoT prompting to successfully333

determine a logical layout, while using standard334

in-context examples fails to do so.335

4.2 Stable Diffusion with Layout Conditions336

We propose an attention-based adapter that in-337

corporates the object layout into the score net-338

work ϵθ by manipulating the attention mask Ml ∈339

{0, 1}pl×pl×N . Following Li et al. (2023), we340

freeze the original model weight of ϵθ, and intro-341

duce a learnable cross-attention module in each342

transformer block. The original transformer block343

in ϵθ consists of a self-attention layer and a cross-344

attention layer. After adding the layout-aware345

cross-attention module (LACA), the computation346

of zt can be written as347

zt = zt + SA(zt; θ); (2)348

zt = zt + LACA(zt, c(y),M;ϕ); (3)349

zt = zt +CA(zt, c(y); θ). (4)350

We omit the superscript l for notation simplicity.351
We denote ϕ to be the parameters of the adapter. In352

the following, we elaborate on the design details of353

the proposed adapter.354

4.2.1 Layout-Aware Cross-Attention 355

Recall that the visual feature vector zt[i, j, :] is up- 356

dated with the weighted sum of the linear projec- 357

tion (V) of c(y), where the weight is determined by 358

the cross-attention map At[i, j, :]. When the layout 359

indicates the presence of an object in a specific lo- 360

cation (i, j) of the feature map zt, it is intuitive to 361

aggregate only the semantics of the specific object 362

into this area. 363

Composing attention mask from layout. Since 364

we specify the LLM to use the same phrase in 365

the caption to represent the object, it is easy to 366

locate the token indices corresponding to an object. 367

Given the token position information and the layout 368

spatial information of each object, we can construct 369

the attention mask M with the following rules: 370

• if the n-th token describes an object who is 371

assigned to location (i, j), M[i, j, n] = 1; 372

• if the n-th token does not describe any object, 373

M[i, j, n] = 1; 374

• otherwise, M[i, j, n] = 0. 375

When the n-th token is assigned to a specific ob- 376

ject, we use rule 1 and rule 3 to decide the attention 377

mask value based on the object’s location. When 378

the n-th token is not assigned to any object, we 379
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“A blue bird and 
a fire hydrant’’

× ×
renormalize

Output at 
location (i, j)

Layout

Caption

Construct attention mask

A
blue

bird
and

a
fire

hydrant
Attention mask M

(from caption) (from caption)

Layout-Aware Cross-Attention

mask

zt

zt[i, j, :]

M[i, j, :]

At[i, j, :]

Q[i, j, :]

K V

Figure 4: LACA injects layout information via cross-
attention mask. The cross attention mask indicates what
semantics (e.g., "a blue bird") should attend to the (i,j)-th
location (i,j) in the visual feature map. After computing
the attention score, the cross-attention mask will enforce
the (i,j)-th visual vector only aggregate the semantics
from the designated token embeddings.

set the attention mask M[:, :, n] to be 1 such that380

the token attends to all visual features. Such con-381

struction ensures the visual features zt aggregate382

desired semantics from the text embeddings. Fig. 4383

provides an example of constructing such an atten-384

tion mask and how LACA computes a single visual385

feature zt[i, j, :].386

Module designs. We directly initialize LACA387

with the model weight from the cross-attention388

module that follows it in the Stable Diffusion.389

Moreover, we add zero convolution layer (Zhang390

et al., 2023) at the output stage of LACA such that391

the training is more stable.392

4.2.2 Sampling393

During generation, we only use LACA for the first394

20% denoising steps, then the standard denoising395

scheme for the rest steps. This is because once the396

latent code zt encodes a certain amount of the se-397

mantics of the objects, the original cross-attention398

mechanism will function properly. In other words,399

to improve compositional capability, all an LDM400

needs is a boost in the early stage of the generation.401

When using LACA, we employ the classifier-free402

guidance similar to Brooks et al. (2023): 403

ϵ̃ = ϵθ(zt, t, ∅) + g1
(
ϵθ(zt, t, c(y))− ϵθ(zt, t, ∅)

)
404

+ g2
(
ϵθ,ϕ(zt, t, c(y),M)− ϵθ(zt, t, c(y))

)
. (5) 405

Empirically we find such a setting works best for 406

our method. We also investigate other possible 407

CFG options in our experiment (see Appendix C). 408

5 Experiments 409

In this section, we evaluate the quality of the LLM- 410

generated layouts and validate the effectiveness of 411

the proposed adapter. Our experimental details can 412

be found in Appendix A. 413

5.1 Quantitative Evaluation 414

We first evaluate our method’s generative quality 415

and its ability to accurately compose elements us- 416

ing the Flickr30K (Plummer et al., 2015) and the 417

COCO2017 (Lin et al., 2014). Both datasets are 418

standard benchmarks, in which each image sam- 419

ple comes with caption and object annotations like 420

bounding boxes and semantic masks. We focus on 421

bounding boxes in our work. A main distinction 422

between the two datasets is that Flickr30K derives 423

the bounding boxes’ noun entities directly from the 424

captions, whereas COCO2017’s boxes and captions 425

might refer to different objects in the images. 426

Baselines. We use GLIGEN (Li et al., 2023), Sta- 427

ble Diffusion (Rombach et al., 2022) and Attend- 428

and-Excite (Chefer et al., 2023) as our baseline 429

methods. We train GLIGEN following the setting 430

in Li et al. (2023) from the training data. For Sta- 431

ble Diffusion and Attend-and-Excite, we use the 432

v1-5 model weight from Huggingface (Wolf et al., 433

2019). 434

Layout conditions. We consider two layout con- 435

ditions - one provided by the datasets, referred to 436

as ground-truth (GT), and one generated by LLMs. 437

The GT layouts in COCO2017 do not match the 438

ground-truth captions and are limited to 80 object 439

classes, whereas the GT layout for Flickr30K and 440

all LLM-generated layouts are matched with their 441

captions. Our proposed method, LACA, only ad- 442

dresses the latter scenario. For COCO2017, with 443

its GT layouts, we modify the captions to include 444

all noun entities present in the layout, making them 445

compatible with LACA. 446

Evaluations. We evaluate the models in terms 447

of image quality and layout accuracy. Specifically, 448

we use FID (Heusel et al., 2017) for image quality, 449
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Flickr30K COCO2017
Layout Method FID↓ YOLO / GLIP score↑ GLIP rate↑ FID↓ YOLO / GLIP score↑ GLIP rate↑
source AP AP50 AP75 AP AP50 AP75

- Stable Diffusion 22.53 - - - 78.3 20.91 - - - 71.2
- Attend-and-Excite 34.05 - - - 84.1 32.12 - - - 77.6

GT GLIGEN 27.70 45.0 50.9 45.2 84.5 27.09 19.1 30.5 20.8 71.0

LACA 22.65 50.4 56.6 50.9 84.3 25.33 17.4 28.9 20.1 70.1

LLM GLIGEN 30.08 56.2 63.8 56.5 83.3 25.97 57.6 68.1 46.2 70.5

LACA 28.96 58.5 68.1 59.4 83.3 23.28 58.8 67.3 50.1 78.1

Table 1: Generative performance on Flickr30K and COCO2017 datasets. FID evaluates image quality, YOLO/GLIP
score evaluates correspondence to the conditioned layout, and GLIP rate evaluates composition accuracy. The
conditioned layout comes from either the dataset (GT) or the LLM generation.

and for layout accuracy, we consider using YOLO450

score (Li et al., 2021) for independent layout con-451

dition (COCO2017 with GT) and GLIP score (Li452

et al., 2023) for derived layout condition (Li et al.,453

2023). We report average precision (AP) for both454

YOLO and GLIP scores. While layout accuracy455

only applies to layout-conditioned models, we ad-456

ditionally evaluate the composition accuracy of any457

T2I models. Specifically, the composition accuracy458

measures how many objects mentioned in the text459

are present in the generated image. This can be460

quantified by again using GLIP (Li et al., 2022a).461

Since GLIP derives all entities from a caption and462

tries to detect the entities in its corresponding im-463

ages, we can quantify composition accuracy by464

computing the ratio:465 ∑
i # entities detected in image i∑

i # entities derived from caption i
, (6)466

dupped GLIP rate. The numerator is always467
smaller than the denominator as we only consider468

known entities. All metrics composition-related469

metrics (YOLO score, GLIP score, and GLIP rate)470

are scaled by 100.471

Results. Table 1 demonstrates the performance472

of different models when combined with different473

layout sources. We interpret the numbers with the474

following perspectives: (1) There exists a trade-475

off between image quality and compositional476

accuracy in the investigated models. (2) By com-477

paring the performance of different models under478

the same layout source, we can see that LACA479

consistently achieves better FID and GLIP scores.480

The difference is more prominent in the Flickr30K481

dataset. While in the COCO2017 dataset paired482

with GT layouts, LACA works slightly falls short483

of GLIGEN regarding the YOLO score. We hy-484

pothesize this is because the adapted captions for485

LACA are not as coherent as the original captions.486

When compared to Stable Diffusion, all methods487

except Stable Diffusion demonstrate superior GLIP488

rates, indicating they are more effective at incorpo- 489

rating objects mentioned in the captions into the 490

generated images. (3) By comparing the perfor- 491

mance of the same models under different layout 492

sources, we can observe that in Flickr30K, the FID 493

scores from LLM-generated layouts are worse than 494

from the GT layouts, while in COCO2017, the 495

FID scores from LLM-generated layouts are better. 496

This discrepancy likely stems from the text-layout 497

consistency of the datasets – a text-consistent lay- 498

out eases the burden of the diffusion models to 499

integrate objects from multiple modalities. 500

5.2 Ablation Study of Prompting Strategies 501

We investigate the effect of different prompting ap- 502

proaches on layout generation using the Flickr30K 503

dataset. Our focus is to compare the resemblance 504

of LLM-generated bounding boxes to the original 505

GT bounding boxes. 506

Evaluation protocol. We randomly sample 5000 507

caption-layout pairs from the dataset. For each 508

caption, an LLM is used to generate layouts using 509

different prompting strategies. Given the GT lay- 510

out and the LLM-generated layouts, we measure 511

two metrics: (1) the object hit rate, which mea- 512

sures how many objects in the GT layouts have 513

been identified by the LLMs; (2) the intersection 514

over union (IoU) of the GT and the LLM-generated 515

bounding boxes. While the generated boxes can be 516

completely different from the ground-truths for an 517

individual comparison, the mIoU is still a reliable 518

measure of the goodness of a layout generator. Ad- 519

ditionally, we assess the image quality produced 520

from LLM-generated layouts using the FID score. 521

Prompting variants. We study three types of 522

prompting strategies: (1) task instructions only; 523

(2) task instructions followed by eight in-context 524

examples, but without CoT reasoning; (3) task in- 525

structions followed by eight in-context examples, 526

each come with a CoT reasoning. 527
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In-context examples with CoT

In-context examples
A dog sitting on a giant cell phone.

Objects:

- a dog [(156, 206, 356, 356)] 

- a giant cell phone [(106, 256, 406, 512)]

Reasoning: We can identify the following objects: 
a dog, a giant cell phone. The cell phone is 
described as giant, which implies it will take up 
a significant portion of the canvas. The dog, 
being smaller in comparison, will be sitting on 
the cell phone. We can assume the dog is centrally 
placed on the phone to give a clear visual that it 
is sitting on it. The cell phone will be placed 
horizontally to allow enough space for the dog to 
sit on it.


Objects:

-  a dog [(200, 156, 400, 456)]

-  a giant cell phone [(0, 350, 512, 500)]


LLM Output

LLM Output

A keyboard, an orange and white cat, a desk, and a monitor.

Objects:

- a keyboard [(0, 0, 128, 64)]

- an orange and white cat [(128, 0, 256, 256)]

- a desk [(256, 0, 384, 128)]

- a monitor [(384, 0, 512, 128)]

Reasoning: We identify the following objects: a keyboard, an 
orange and white cat, a desk, a monitor. The desk will be the base 
for the other objects, as typically, a keyboard and a monitor are 
placed on a desk. The keyboard will be smaller than the desk and 
placed on top of it, probably in the lower center to leave room 
for the monitor. The monitor will be larger than the keyboard but 
still on the desk, likely at the back of the keyboard. The orange 
and white cat could be either on the desk or beside it. For this 
layout, we'll assume the cat is sitting on the desk, next to the 
keyboard. Here is a possible layout. The desk occupies a large 
area at the bottom of the canvas. The keyboard is placed centrally 
on the desk. The monitor is behind the keyboard, taking up a 
significant vertical space. The cat is sitting to the side of the 
keyboard on the desk.


Objects:

- a keyboard [(206, 306, 406, 356)]

- an orange and white cat [(50, 200, 200, 350)]

- a desk [(50, 250, 462, 512)]

- a monitor [(206, 106, 406, 306)]


LLM Output

LLM Output

Figure 5: Demonstration of how in-context examples with CoT improve the quality of the generative layout. When
the caption describes a counterfactual scene (left) or does not explicitly provide object relation(right), CoT enables
LLMs to make assumptions and inferences before generating the layout.

Prompting strategy hit rate mIoU FID
Instruction only 92.2% 16.54 32.43
+ ICL 97.1% 19.84 31.95
+ ICL w/ CoT 97.4% 23.98 28.96

Table 2: In-context examples with CoT help improve the
layout performance, thus the generated image quality.
ICL stands for in-context learning.

Results. Table 2 reports and mIoU and the object528

hit rate of the generated layouts. As we can observe,529

when providing in-context examples, the object hit530

rate reaches almost 100% and no longer increases.531

Moreover, when CoT reasoning is employed, we532

achieve the highest mIoU, indicating the generated533

layouts are most similar to the real ones.534

5.3 Generative Counting Accuracy535

We evaluate the performance of different models in536

generative counting accuracy, which is their abil-537

ity to replicate the exact number of objects as de-538

scribed in the text. For this purpose, we curated539

a set of captions from the COCO2017 validation540

set that specifically include the numeral keywords541

“two”, “three” or “four”, in which 150 captions542

were collected for each number category. Using543

LLMs, we generate object layouts for the collected544

captions. From Fig. 6, we can see that LLM-545

generated layout generally improves the model’s546

accuracy in depicting the precise count of objects.547

The improvement becomes more notable when the548

object count rises. Moreover, we can observe that549

LACA surpasses GLIGEN in its effectiveness in550

2 3 4
Object counts

0

10

20
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40
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60

70
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cu

ra
cy

Stable Diffusion
GLIGEN
LACA

Figure 6: LACA achieves better generative counting
accuracy compared to GLIGEN and Stable Diffusion.

employing the layout modality. 551

6 Conclusion and Discussion 552

In this work, we propose to use LLMs to generate 553

object layouts from the given captions. By intro- 554

ducing the CoT prompting and carefully designing 555

the reasoning steps for the in-context examples, we 556

enable the LLMs’ to generate more nuanced layout 557

solutions and showcase the potential of LLMs in 558

understanding and generating complex visual lay- 559

outs. We further propose LACA, an adapter that 560

explicitly incorporates the object layout informa- 561

tion into the Stable Diffusion. We demonstrate that 562

LACA is superior in yielding high composition ac- 563

curacy, without conditioning on human-annotated 564

layout modality. This work provides clear direction 565

for ongoing research to refine the synergy between 566

textual descriptions and visual generation, paving 567

the way for more sophisticated and accurate visual 568

content creation by LLMs. 569
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Appendix805

A Implementation Details806

A.1 Experimental Setup807

We follow Li et al. (2023) to train the LACA adapter on a combination of four grounding datasets:808

Object365 (Shao et al., 2019), GoldG (Li et al., 2022a), CC3M (Sharma et al., 2018) and SBU (Ordonez809

et al., 2011). We train LACA with batch size 128 and a learning rate 5e-5 for 700k iterations using 8810

A100 GPUs, which requires approximately two days to finish. To enable classifier-free guidance, we811

randomly drop captions with 5% probability and both caption and layout with another 5% probability.812

We set g1 = g2 = 5.5 during generation for all experiments. We generate all layouts using GPT-3.5-813

turbo (OpenAI, 2023).814

A.2 Prompt Designs815

We first elaborate on the realization of task instructions, and then we explore different variants of chain-of-816

thought prompting provided in the In-Context examples.817

Task instructions. The task instructions implemented are shown in Table 3. While most of the818

instructions are straightforward, we specifically focus on the different ways to depict object placement819

in the responses from the LLMs. We explore variations from two perspectives: (1) using a normalized820

1x1 canvas as opposed to a more expansive 512x512 canvas, and (2) two methods of representing object821

locations - either through top-left and bottom-right coordinates (XYXY) or by indicating the top-left822

coordinate with width and height descriptions for the bounding box (XYWH). Our ablation study, which823

assesses the quality of images produced under these different settings via the FID score, revealed a slightly824

better performance with the combination of a 512x512 canvas and the XYXY method for bounding box825

representation.826

In-Context Examples. We explore the three formats of CoT reasoning. The first CoT variant includes a827

two-step reasoning process: first interpreting the visual objects from text, then creating their arrangements.828

This basic approach generally suffices for accurate layout creation. However, for cases with complex or829

vague object relationships, it’s advantageous for LLMs to engage in inference and assumption before830

solution generation. In the second variant, we integrate clarification steps within the CoT reasoning of the831

first version. The clarification steps are mostly useful for prompts that do not carry enough information832

on the object position or specification information, such as e.g., quantity, attribute, etc. For the first two833

variants, each reasoning step in the first two formats is separated by bullet points in order to make it easier834

for the LLMs to mimic. The final CoT format adheres to the reasoning approach of the second variant835

but combines all reasoning steps continuously without explicitly delineating each reasoning phase. We836

provide an example demonstrating those variants in Table 4837

A.3 Layout Conversion from LLMs Response838

We extract bounding boxes for objects identified in the responses from LLMs. These bounding boxes are839

then transformed into the cross-attention mask Ml used by LACA. Without loss of generality, we denote840

M := M0 ∈ R64×64×N and use M for the discussions below. .841

Bounding boxes extraction. As stated in our task instructions, the canvas that an LLM operates on842

is a size 512x512. An LLM will first parse objects from the caption and then classify them into either843

“visual” or “non-visual”. Only "visual" objects are assigned bounding boxes, which are determined by844

their top-left and bottom-right coordinates. If an object is mentioned in multiple quantities, the LLM will845

generate a corresponding number of bounding boxes, based on either the specified quantity or its own846

estimations. After extraction, these coordinates are normalized to a scale ranging from 0 to 1.847

Cross-attention mask construction. For each object, we first locate its indices in the text caption in848

order to properly assign values to M. For example, in the text prompt “a red apple and a blue bird”,849

the indices of the object “a red apple” will be [0, 1, 2] (assuming the index starts from 0). In practice,850
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Instructions You are an expert photographer who can infer the best layout of the given objects inside a photo or a picture.
Now, given a description of the picture, you are asked to perform the following tasks.

1. Given the description, parse the objects that appear in the text in a hierarchical manner.
2. Based on your parsed result, arrange the objects within a canvas with a width of 512 and a height of 512.
The top-left coordinate in the canvas is the origin (0, 0).
3. For each object, you need to specify its location by listing the top-left coordinate and the bottom-left
coordinate. Your answer for each object should be (x1, y1, x2, y2), where (x1, y1) is the top-left coordinate
and (x2, y2) is the bottom-right coordinate.
4. In the description, if there is any ambiguity about the number of objects or the spatial relationship between
objects, you should first concretize it through reasoning before giving the answer.
5. When representing the identified objects in your answer, you should use the exact same words that appear
in the caption.
Below are a few examples:

In-Context
Example 1

## Caption: A man in a white shirt and blue shorts swinging a tennis racket.

### Parsing the description into objects
From this caption, we can identify the following objects: A man, A white shirt, Blue shorts, A tennis

racket.

### Hierarchy and relationships
- “A man” is the main subject, and his clothing (a white shirt and blue shorts) is part of his description.
- “A tennis racket” is being swung by the man, so it will be in motion, likely extending from one side of

the man.

### Arranging objects on the canvas
- The canvas is in a size of width and height of 512, with the origin at the top-left (0, 0).
- The man should be centrally located to be the focus, with space around him to show the movement of

swinging the racket.
- The clothing (white shirt and blue shorts) is part of the man’s bounding box, with the shirt on the upper

part of the torso and the shorts below.
- The tennis racket, since in motion, should extend out from the man’s hand, likely to the right side if we

imagine the swing.

### Reasoning and concretizing ambiguity
- The exact positions of the shirt and shorts within the man’s bounding box are based on their natural

position on the body.
- The tennis racket’s position is determined by the typical posture of swinging, which generally extends to

the side and slightly upward.

### Specifying locations
- “A man” will have a bounding box that covers a significant portion of the canvas to show his presence

and the action.
- “A white shirt” will have a bounding box within the upper half of the man’s bounding box, representing

the torso area.
- “Blue shorts” will have a bounding box below the shirt’s, indicating the lower part of the torso and upper

legs.
- “A tennis racket” will have a bounding box that overlaps with the man’s hand and extends outward to

represent the swing.

### Answer
- **A man**: visual [[158, 51, 337, 404]]
- **a white shirt**: visual [[204, 153, 317, 256]]
- **blue shorts**: visual [[220, 235, 327, 307]]
- **a tennis racket**: visual [[153, 46, 235, 143]]

In-Context
Example 2

...

Query Now given the caption below, can you give a similar reasoning and derive the resulting bounding box for
those objects? then give the answer, strictly following the format of the answer given in the examples.

## Caption: a red apple and a blue bird.

###

Table 3: Prompts for LLMs to generate layout for caption “a red apple and a blue bird.”.
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## Caption: A glass bowl full of oranges and apples.

CoT variant 1 CoT variant 2 CoT variant 3

### Identifying Objects
From this caption, we can identify the

following objects: A glass bowl, oranges,
and apples.

### Specifying Locations
- The glass bowl, being the central

object, will have a bounding box in the
middle of the canvas, perhaps taking up
a significant area but not touching the
edges to allow for visual clarity.

- The oranges and apples will each
have their own bounding box within the
bowl. Since they are grouped together,
their boxes may overlap or be side by
side.

### Identifying Objects
From this caption, we can identify the

following objects: A glass bowl, oranges,
and apples.

### Hierarchy and Relationships
- The glass bowl serves as the container

for the oranges and apples.

### Arranging objects on the canvas
- Canvas Size: 512x512 square with

the origin at the top-left (0, 0).
- Bowl Placement: Centrally on the can-

vas to emphasize its role as a container.
- Fruit Placement: Oranges and apples

inside the bowl, possibly overlapping or
side by side.

### Reasoning and concretizing ambigu-
ity

- Quantity of Fruit: Assuming a reason-
able number, such as three oranges and
three apples.

- Fruit Arrangement: Random scatter-
ing within the bowl.

### Specifying Locations
- The glass bowl, being the central

object, will have a bounding box in the
middle of the canvas, perhaps taking up
a significant area but not touching the
edges to allow for visual clarity.

- The oranges and apples will each
have their own bounding box within the
bowl. Since they are grouped together,
their boxes may overlap or be side by
side.

We can identify the following objects: A
glass bowl, oranges, apples. There is no
specified number of oranges and apples,
so we assume a reasonable number that
could fit within a bowl, such as three
of each. The "glass bowl" is the con-
tainer for the other objects, meaning the
oranges and apples are within it. The "or-
anges and apples" are grouped together
as they are contained in the bowl. As
a result, the glass bowl will take a cen-
tral position on the canvas, with a large
bounding box, and there will be multiple
bounding boxes for oranges and apples
within the bowl.

### Answer
- **A glass bowl**: visual [[153, 153, 358, 358]]
- **Oranges**: visual [[179, 179, 230, 230], [281, 179, 332, 230], [230, 281, 281, 332]]
- **Apples**: visual [[179, 281, 230, 332], [281, 281, 332, 332], [256, 204, 307, 256]]

Table 4: An in-context example with different CoT variants.
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since Stable Diffusion uses a CLIP model to encode the prompt, we find such correspondence after the 851

text prompt and the object description are both tokenized. Suppose we have “a red apple” matched 852

the (i, i+ 1, . . . , j) tokens in the tokenized text prompt, and the top-left coordinate being (x1, y1), the 853

bottom-right coordinate being (x2, y2), we then will set 854

M
[
⌊64x1⌋ : ⌊64x2⌋, ⌊64y1⌋ : ⌊64y2⌋, i : j

]
= 1. (7) 855

Note that M is initialized with all zeros before composing the layouts on it. ⌊·⌋ is the floor operation. For 856

any token index i that does not represent an object, we set the cross-attention mask M[:, :, i] = 1. 857

A.4 Classfier-Free Guidance 858

Recall that in § 4.2.2, while we estimate the predictive noise using 859

ϵ̃ = ϵθ(zt, t, ∅) + g1
(
ϵθ(zt, t, c(y))− ϵθ(zt, t, ∅)

)
860

+ g2
(
ϵθ,ϕ(zt, t, c(y),M)− ϵθ(zt, t, c(y))

)
, (8) 861

we also explore other possible choices. The first alternative is the one used by Li et al. (2023), which 862

jointly considers the text and the layout modality and has 863

ϵ̃ = ϵθ,ϕ(zt, t, ∅) + g
(
ϵθ,ϕ(zt, t, c(y),M) 864

−ϵθ,ϕ(zt, t, ∅)
)
. (9) 865

For this alternative, we drop both modalities at the same time with a probability of 10% during the training. 866

The second alternative regarding the choice between using score networks ϵθ and ϵθ,ϕ. Intuitively, one 867

should use ϵθ,ϕ for all combination of input modality, which yields 868

ϵ̃ = ϵθ,ϕ(zt, t, ∅) + g1
(
ϵθ,ϕ(zt, t, c(y))− ϵθ,ϕ(zt, t, ∅)

)
869

+ g2
(
ϵθ,ϕ(zt, t, c(y),M)− ϵθ,ϕ(zt, t, c(y))

)
. (10) 870

However, we empirically found that the setting in Eq. 8 works slightly better than Eq. 10 in terms of 871

generated image quality. And both of Eq. 8 and Eq. 10 demonstrate better performance than the one using 872

Eq. 9. We report the FID score of those settings in the experiment proposed by Appendix C.2. 873

A.5 Details for mIoU Computation 874

In § 5.2, we measure how the LLM-generated layouts resemble the ground-truths via mIoU. The mIoU 875

score directly computed between two sets of bounding boxes is extremely low since first, the object 876

labels are open-set, and second, there are many possible layouts for a given caption. To better match the 877

bounding boxes, we make two modifications to the original matching algorithms to increase the reliability 878

of the metric. 879

Relaxed object matching. While current tools for mIoU computation find correspondence between 880

objects from the GT and LLM-generated layouts by matching their noun entities, we build such correspon- 881

dence by checking whether one is a substring of the other. For example, while the GT layouts describe the 882

phrase “a woman in a blue shirt” with one bounding box, an LLM might provide two bounding boxes for 883

“a woman” and “a blue shirt” respectively. Our approach relates both the bounding boxes of “a woman” 884

and “a blue shirt” to the GT bounding box for “a woman in a blue shirt”. 885

Bounding box flipping. For each image, we compute two sets of IoU values, one with the GT bounding 886

boxes and one with the horizontally flipped ones. We then take the set that has a higher mIoU score as the 887

result. We only perform horizontal flips on the bounding boxes since it does not change the spatial sense 888

of an image. 889

A proper metric used to measure the layout generative performance under the open-set setting is still 890

underexplored. While our proposed method is shown effective, there might exist a principal solution to 891

such a problem. We would like to leave it to the future work. 892
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Model # Parameters (in billions)
Stable Diffuison 1.06B
GLIGEN 1.27B
LACA 1.12B
LACA+LASA 1.16B

Table 5: Model parameters.

A.6 Model Size893

We list the number of model parameters in Table 5. The architecture of adapter LACA+LASA is detailed894

in Appendix B. Our proposed adapters have significantly fewer parameters compared to GLIGEN.895

B Layout-Aware Self-Attention Module896

Inspired by LACA, we further investigate a possible variant of the proposed adapter - Layout-Aware897

Self-Attention Module, dupped LASA. In this section, we first demonstrate the development of LASA,898

then we show how to jointly compose the LACA and LASA adapters in the Stable Diffusion model. The899

proposed LASA adapter aims to make sure an object has coherent visual features during the generation.900

The object coherence is enforced by the layout modality – visual features that belong to the same object901

should self-attend to each other. Similar to LACA, the l-th LASA adapter injects such spatial information902

explicitly through the self-attention mask SMl. Note that SMl ∈ Rp2l ×p2l is designed to specify whether903

the visual features should attend to one another or not. We omit the superscript l in the following904

discussion.905

Constructing self-attention mask from layout. We propose to compose SM from the layout. First,906

we make an assumption that there are K objects depicted by the layout. Note that objects that share the907

same noun entities are considered differently, for example, “four apples and an orange” leads to K = 5.908

Second, we need to define the flattened visual index set Ik for each object k:909

Ik = {pi+ j|(i, j)-th visual feature belongs to object k}910

Then, we can compose SM using the following rules:911

• if i ∈ ∪kIk, then SM[i, j] = 1 if we have i and j assigned to the same object k, otherwise 0.912

Mathematically, the condition can expressed as
∑K

k=1 1[i ∈ Ik]1[j ∈ Ik] > 0913

• if i /∈ ∪kIk, then we have SM[i, :] = 1.914

Here 1[·] is an indicator function. The intuition of rule 1 is that a visual feature will aggregate915

information from all other visual features that share the same objects. Rule 2 allows non-object visual916

features to aggregate information from all the others. We highlight how to compose such an attention917

mask in Alg.1.918

Module designs. Similar to LACA, we directly initialize LASA using the self-attention weight from the919

Stable Diffusion models. We only apply LASA to the low-resolution visual maps (the intermediate visual920

feature map with resolutions 16x16 and 8x8), which are more computationally affordable. We also add a921

zero convolution layer on top of LASA’s output.922

Composing LACA and LASA adapters. For each transformer block, we add a LASA module in be-923

tween the LACA module and the cross-attention module. We only add LASA to the last two downsampling924

blocks and the first two upsampling blocks.925

C Additional Results926

C.1 Ablation Study on CoT Variants927

The CoT strategy is directly linked to the performance of the generated layout. Following § 5.2, we assess928

the effectiveness of different CoT variants by evaluating the performance of the LLM-generated layout. In929
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Algorithm 1 Construction of self-attention mask SM.

Input: K index sets I1, . . . , IK , and an all-zeros tensor M ∈ Rp2×p2×K .
[Composing self-attention mask for each object]
for k = 0, . . . ,K − 1 do

Set M[i, j, k] = 1, ∀i, j ∈ Ik
Set M[i, :, k] = 1, ∀i /∈ Ik

end for
[Reducing M to SM]
Intialize SM = M[:, :, 0]
for k = 1, . . . ,K − 1 do

Obtain non-zero index set I∅,k = {i|M[i, :, k] ̸= 1}
Obtain non-zero index set I∅,SM = {i|SM[i, :, k] ̸= 1}
For i ∈ I∅,k ∩ I∅,SM, we set
SM[i, :] = SM[i, :] or M[i, :, k]

For i ∈ I∅,k \ (I∅,k ∩ I∅,SM), we set
SM[i, :] = M[i, :, k]

end for
Output: Self-attention mask SM

CoT strategy hit rate mIoU FID
no CoT 97.1% 19.84 31.95
variant 1 97.4% 21.31 31.64
variant 2 97.4% 23.98 28.96
variant 3 96.9% 19.28 32.49

Table 6: Layout performance of different CoT variants on Flickr30K.

particular, We report the object hit rate, mIoU, and the FID score of generated images in Table 6. The 930

second variant, which we use in our major experiment, has shown superior performance over others. 931

Surprisingly, variant 3, which does not separate each reasoning step explicitly, performs even worse than 932

the one without CoT reasoning. 933

C.2 Ablation Study on Classifier-Free Guidance 934

Performance vs CFG variants. We investigate the generative performance under different CFG 935

guidances (Eq. 8, Eq. 9 and Eq. 10). We report the FID score on Flickr30K in Table 7. Empirically, 936

we observe that the employed CFG guidance works the best among others. We only incorporate layout 937

modality into SD via the mentioned CFG guidances for the first 20% denoising steps. 938

CFG guidance FID
Eq. 8 28.96
Eq. 9 30.20
Eq. 10 29.19

Table 7: Generative performance of different CFG guidance on Flickr30K

Sensitivity Analysis. We explore how the hyperparameters g1, g2 from classifier-free guidance affect 939

the quality of the generated images. We choose Eq. 8 as our inverstigation target. We explore g1 ∈ 940

{1.5, 3.5, 5.5, 7.5} and g2 ∈ {3.5, 5.5, 7.5} and report the FID scores in Table 8. We can observe that 941

g1 = g2 = 5.5 yields the best FID score. 942
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g1
1.5 3.5 5.5 7.5

g2

3.5 27.11 26.34 26.78 28.16
5.5 26.45 23.80 23.28 23.28
7.5 24.92 23.67 23.35 23.30

Table 8: Classifier-free guidance weights over text and text-layout conditions. g1 controls the text-layout condition
and g2 controls the text-only condition.

C.3 Generative Performance of LASA Adapter943

We validate the effectiveness of the LASA adapter on both the Flickr30K and COCO2017 datasets. This944

study involved a comparative analysis of the LACA adapter alone and its integration with the LASA945

adapter. We use LLM-generated layouts to generate images and evaluate the FID score, GLIP score, and946

GLIP rate of the models. Table 9 shows that the combination of LASA with LACA resulted in enhanced947

capabilities in producing more realistic images. Notably, there was an improvement of 2.54 and 1.15 in948

performance on the Flickr30K and COCO2017 datasets, respectively. The measures of layout accuracy949

and composition accuracy demonstrated that both adapters were comparably effective in integrating950

objects into images. Although LASA contributes to higher-quality image generation, it also leads to951

increased sampling time. In speed tests conducted on an A100 GPU, the sampling time averaged 2.5952

seconds for LACA but extended to 5.2 seconds when utilizing LACA combined with LASA.

Flick30K

FID
GLIP score

GLIP rate
AP AP50 AP75

LACA 28.96 58.5 68.1 59.4 83.3
LACA+LASA 26.42 59.4 68.4 60.0 83.3

COCO2017

FID
GLIP score

GLIP rate
AP AP50 AP75

LACA 23.28 58.8 67.3 50.1 78.1
LACA+LASA 22.13 58.4 68.9 49.7 78.2

Table 9: Generative performance of LASA adapter

953

C.4 Visualizations954

We provide additional visualizations of the generated images in Fig. 7 and Fig. 8. Specifically, we955

showcase 6 caption examples and their generated images. For each caption, we use an LLM to generate956

two layouts. Then we generate two images from the layout. As we can observe, our proposed method957

can generate reasonable layouts most of the time. Note that the generated objects do not necessarily lie958

within the given bounding boxes. We hypothesize this is because the layout information is only injected959

via LACA at the early stage of the denoising process. When LACA is no longer employed, the Stable960

Diffusion model takes its liberty to compose the objects. We believe this is beneficial since the generative961

error from the layout can be alleviated by the Stable Diffusion model, thereby achieving higher image962

quality.963

D Limitations and Societal Impact964

Limitations While our proposed method empowers LLMs with the ability to generate object layouts965

via in-context learning, further finetuning may be a more effective strategy for generating high-quality966

layouts. Moreover, it is observed when injecting layout information, the FID score of images generated967

from Stable Diffusion variants is often worse than the FID of images generated only conditioned on text.968
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A red book and a yellow vase.

(a)

A dog is standing to the left of a parking meter.

(b)

A man in blue shirt is sitting on a bench.

(c)

Figure 7: Additional visualization 1.

Societal Impact Generative models unlock a range of creative uses, thus broadening access and 969

encouraging wider exploration. However, this ease of access also raises concerns about the potential for 970

generating and spreading altered data, misinformation, and spam. Moreover, there’s the risk that these 971

models might inadvertently expose the data they were trained on. This is particularly worrisome when that 972

data includes sensitive or personal information gathered without clear consent. Finally, since our proposed 973

method generated objects following the given layout, the generated objects will be disproportionated. 974

While deep generative models are now becoming more prominent and are frequently used for intellectual 975

creation, how to maintain the authenticity of the generated image conditioned on the layout remains a 976

significant area for future research. 977
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A blue car is in front on a elephant.

(d)

A dog is jumping in the air looking at a frisbee.
(e)

A dog stands and four balloons are in the air.
(f)

Figure 8: Additional visualization 2.
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