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ABSTRACT

‘Reincarnation’ in reinforcement learning has been proposed as a formalisation
of reusing prior computation from past experiments when training an agent in
an environment. In this paper, we present a brief foray into the paradigm of
reincarnation in the multi-agent (MA) context. We consider the case where only
some agents are reincarnated, whereas the others are trained from scratch – selective
reincarnation. In the fully-cooperative MA setting with heterogeneous agents, we
demonstrate that selective reincarnation can lead to higher returns than training
fully from scratch, and faster convergence than training with full reincarnation.
However, the choice of which agents to reincarnate in a heterogeneous system is
vitally important to the outcome of the training – in fact, a poor choice can lead to
considerably worse results than the alternatives. We argue that a rich field of work
exists here, and we hope that our effort catalyses further energy in bringing the
topic of reincarnation to the multi-agent realm.

1 INTRODUCTION

Reinforcement Learning (RL) is a field that has existed for many years, but has recently seen
an explosion of interest and research efforts. Since the incorporation of deep neural networks
into the paradigm (Mnih et al., 2013), the community has witnessed success in a wide array of
tasks, many of which previously seemed intractable (Silver et al., 2016). A commonly-cited feat is
achieving superhuman performance in various games, both classical (Schrittwieser et al., 2020) and
modern (Berner et al., 2019; Wurman et al., 2022). Such games can represent situations which are
high-dimensional, combinatorially complex, and non-linear, and thus demonstrate the sophistication
of the RL approach to sequential decision making. Even with the successes of single-agent RL,
many real-world settings are inherently multi-agent, where multiple diverse agents act together in
a shared environment. The success of Multi-Agent Reinforcement Learning (MARL) has been
similarly captivating in this context, with demonstrations of emergence of high-level concepts such
as coordination and teamwork (Samvelyan et al., 2019), and even trade (Johanson et al., 2022).

Despite these victories, the discipline of RL still faces a series of fierce challenges when applied to
real-world situations, not least the intense computation often required for training (Agarwal et al.,
2022). The multi-agent case, though highly applicable to the real world, is plagued further by
problems of non-stationarity (Papoudakis et al., 2019), partial observability (Papoudakis et al., 2021),
and the ‘curse of dimensionality’ (Du & Ding, 2021). We postulate that RL, and MARL specifically,
is a powerful tool to help us model, understand, and solve complex processes and phenomena. First,
though, it is clear that these challenges must be mitigated.

Progress is being made in this regard, across a host of research strategies such as transfer learning (Zhu
et al., 2020), ad hoc teamwork (Stone et al., 2010), and zero-shot coordination (Hu et al., 2020).
Another crucial effort is to leverage prior computation, to avoid the unnecessary duplication of work.
In a typical RL research project, an algorithm is trained tabula rasa – that is, without prior experience
or encoded knowledge. Sometimes, such an approach is desirable: for example, it was the express
intention of Silver et al. (2017) to train their AlphaZero agent tabula rasa, for the sake of learning
to play Go without learning from human data. However, in many practical settings, training from
scratch every time is slow, expensive, and also unnecessary. For example, we may want to iterate on
a problem or test out a new strategy, and do so quickly, without starting over in each case.
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In this vein, Agarwal et al. (2022) have recently proposed a formalisation of a research paradigm
entitled ‘Reincarnating RL,’ where previous computation is reused in future work. These authors
argue that large, real-world RL systems already take this approach, out of necessity, but in a way that
is often ad hoc and informal. Through the creation of a reincarnation framework, not only does a
researcher gain benefits in their own experiments, it further allows the field itself to be democratised –
enabling the sharing of checkpoints, model weights, offline datasets, etc., to accelerate development.
This dimension is particularly salient for low-resourced researchers, who can piggyback off the
computing power available to large research labs. Reincarnation is certainly not a panacea for the real-
world challenges of RL, but it does provide a springboard both for novel ideas and for new researchers
to enter the field. We resonate with this call, and wish to motivate similarly for reincarnation in the
MARL context.

To catalyse the excitement for this paradigm, we focus in this paper on a particular aspect of
reincarnation that may be useful in MARL: selective reincarnation. To illustrate where such a
situation is applicable, consider an example of controlling a large, complex industrial plant, consisting
of an assortment of heterogeneous agents. Notice that this scenario is in the realm of real-world
problems. Suppose we are training our system using a MARL algorithm with a decentralised
controller, but this training is computationally expensive, on the order of days-long. Conceivably,
we may notice that some agents in our system learn competently – perhaps their task is simpler, or
the algorithmic design suits their intended behaviour; call these the X agents. Other agents might
not fare as well and we would like to train them from scratch; call these the Y agents. We wish
to find new strategies for the Y agents: maybe we ought to test a new exploration routine, a novel
neural architecture, or a different framing of the problem. Instead of retraining the entire system from
scratch after each change in our Y agent strategy, we wonder if we can selectively reincarnate the
already-performant X agents and thereby enable faster training times or higher performance for the Y
agents.

In this paper, we make three contributions. Firstly, we hope to usher in this nascent paradigm
of reincarnation to MARL, where it is vitally needed. The underlying philosophy of leveraging
prior computation already exists in the MARL setting (e.g. Kono et al. (2014)), but we aim to
begin formalising the field, as done by Agarwal et al. (2022) for the single-agent case. Specifically,
we formalise the concept of selective reincarnation. Secondly, we demonstrate a few interesting
phenomena that arise during a preliminary selectively-reincarnated MARL experiment. We find that,
with certain agent subsets, selective reincarnation can yield higher returns than training from scratch,
and faster convergence than training with full reincarnation. Interestingly, though, other subsets result
in the opposite: markedly worse returns. We present these results as a doorway to a rich landscape of
ideas and open questions. Thirdly, we offer a codebase* as a framework for selective reincarnation in
MARL, from which other researchers can build.

2 PRELIMINARIES

2.1 MULTI-AGENT REINFORCEMENT LEARNING

There are many different formulations for MARL tasks including competitive, cooperative and
mixed settings. The focus of this work is on the cooperative setting. Fully cooperative MARL with
shared rewards can be formulated as a decentralised partially observable Markov decision process
(Dec-POMDP) (Bernstein et al., 2002). A Dec-POMDP consists of a tuple M = (N ,S, {Ai}, {Oi},
P , E, ρ0, r, γ), where N ≡ {1, . . . , n} is the set of n agents in the system and s ∈ S describes the
true state of the system. The initial state distribution is given by ρ0. However, each agent i ∈ N
receives only partial information from the environment in the form of observations given according
to an emission function E(ot|st, i). At each timestep t, each agent receives a local observation oit
and chooses an action ait ∈ Ai to form a joint action at ∈ A ≡

∏N
i Ai. Typically under partial

observability, each agent maintains an observation history oi0:t = (o0, . . . , ot), or implicit memory,
on which it conditions its policy µi(ait|oi0:t), to perform action selection. The environment then
transitions to a new state in response to the joint action and current state, according to the state
transition function P (st+1|st,at) and provides a shared numerical reward to each agent according to
a reward function r(s, a) : S × A → R. We define an agent’s return as its discounted cumulative

*To be made available online after double-blind review process.
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rewards over the T episode timesteps, Gi =
∑T

t=0 γ
trit, where γ ∈ (0, 1] is a scalar discount factor

controlling how myopic agents are with respect to rewards received in the future. The goal of MARL
in a Dec-POMDP is to find a joint policy (πi, . . . , πn) ≡ π such that the return of each agent i,
following πi, is maximised with respect to the other agents’ policies, π−i ≡ (π\πi). That is, we aim
to find π such that:

∀i : πi ∈ argmaxπ̂iE
[
Gi | π̂i, π−i

]
2.2 INDEPENDENT Q-LEARNING

The Q-value function Qπ(s, a) for a policy π(· | s) is the expected sum of discounted rewards
obtained by choosing action a at state s and following π(· | s) thereafter. DQN (Mnih et al., 2013) is
an extension of Q-Learning (Watkins, 1989) which learns the Q-function, approximated by a neural
network Qθ with parameters θ, and follows an ϵ-greedy policy with respect to the learnt Q-function.
One limitation of DQN is that it can only by applied to discrete action environments. DDPG (Lillicrap
et al., 2016), on the other hand, is an extension of DQN which can be applied to continuous-action
environments by learning a deterministic policy µ(s) : S → A which is trained to output the action
which maximises the Q-function at a given state.

Tampuu et al. (2015) showed that in a multi-agent setting such as Pong, independent DQN agents can
successfully be trained to cooperate. Similarly, independent DDPG agents have successfully been
trained in multi-agent environments (Lowe et al., 2017).

To train independent DDPG agents in a Dec-POMDP we instantiate a Q-function Qi
θ(o

i
0:t, a

i
t) for

each agent i ∈ N , which conditions on each agents own observation history oi and action at. In
addition, we also instantiate a policy network for each agent µi

ϕ(o
i
t) which takes agent observations

oit and maps them to actions ait. Each agent’s Q-function is independently trained to minimise
the temporal difference (TD) loss, LQ(Di), on transition tuples, (oit, a

i
t, r, o

i
t+1), sampled from its

experience replay buffer Di collected during training, with respect to parameters θi:

LQ(Di, θi) = Eoit,a
i
t,rt,o

i
t+1∼D

[
(Qi

θi(oi, ai)− rt − γQ̂i
θi(oit+1, µ̂

i
ϕ(ot+1)))

2
]

where Q̂θ and µ̂ϕ are delayed copies of the Q-network and policy network respectively, commonly
referred to as the target networks. The policy network is trained to predict, given an observation oi,
the action ai that maximises the Q-function, which can be achieved by minimising the following
policy loss with respect to parameters ϕi:

Lµ(Di, ϕi) = Eoit∼Di

[
−Qi

θi(oit, µ
i
ϕi(oit))

]
To improve the performance of independent learners in a Dec-POMDP, agents usually benefit from
having memory (Hausknecht & Stone, 2015). Accordingly, we can condition the Q-networks and
policies on observation histories oi0:t instead of just individual observations oit. In practice we use a
recurrent layer in the neural networks. In addition, to further stabilize learning, we use eligibility
traces (Sutton & Barto, 2018) in the form of Q(λ), from Peng & Williams (1994).

3 RELATED WORK

The concept of reusing computation for learning in some capacity is neither new, nor constrained to
the domain of RL. We feel that topics such as transfer learning to new tasks (Bozinovski & Fulgosi,
1976), fine-tuning (e.g. Sharif Razavian et al. (2014)), and post-deployment model updates* fit into
this broad philosophy. In RL specifically, the concept has also existed for some time (e.g. Fernández
& Veloso (2006)), and other RL researchers are currently pursuing similar aims with different
nomenclature (e.g. using offline RL as a ‘launchpad’ for online RL†). Indeed, Agarwal et al. (2022)
accurately highlight that their conception of the field of reincarnation is a formalisation of that which
already exists.

*See Updatable Machine Learning (UpML) workshop: https://upml2022.github.io/
†See Offline RL workshop: https://offline-rl-neurips.github.io/2022/
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In MARL, too, there are extant works with the flavour of reincarnation. For example, both Kono et al.
(2014) and Gao et al. (2021) explored the concept of ‘knowledge reuse’ in MARL. In a large-scale
instance, Vinyals et al. (2019) naturally reused computation for the training of their AlphaStar system.
Specifically, it is also interesting to note their concept of using agents to help train other agents with a
‘league’ algorithm. In a sense, this approach is somewhat similar to one of the anticipated benefits of
selective reincarnation, where good agents can assist with teaching bad agents.

Nonetheless, we believe there has not yet been a formalisation of the field of multi-agent reincarnation,
akin to the efforts done by Agarwal et al. (2022). Moreover, it seems that being selective in the agent
reincarnation choice is also a novel specification.

4 DEFINITIONS

Definition 1 (Multi-Agent Reincarnation) In a MARL system (see Section 2.1) with the set N of
n agents, an agent i ∈ N is said to be reincarnated (Agarwal et al., 2022) if it has access to some
artefact from previous computation to help speed up training from scratch. Typically such an agent is
called a student and the artefact from previous computation is called a teacher. The set of teacher
artefacts in the system is denoted T . There are several types of artefacts which can be used as teachers,
including (but not limited to): teacher policies πT or µT , offline teacher datasets DT , and teacher
model weights ϕT or θT .

Definition 2 (Selective Reincarnation) A selectively reincarnated MARL system with n agents is
one where y ∈ [1, n) agents are trained from scratch (i.e. tabula rasa) and x = n − y agents are
reincarnated (Agarwal et al., 2022). The sets of reincarnated and tabula rasa agents are denoted X
and Y respectively. A MARL system with y = n is said to be fully tabula rasa, whereas a system
with x = n is said to be fully reincarnated.

5 CASE STUDY: SELECTIVELY-REINCARNATED POLICY-TO-VALUE MARL

Agarwal et al. (2022) presented a case study in policy-to-value RL (PVRL), where the goal is to
accelerate training of a student agent given access to a sub-optimal teacher policy and some data
from it. Similarly, we now present a case study in multi-agent PVRL, focusing on one of the methods
invoked by Agarwal et al. (2022), called ‘Rehearsal’ (Gülçehre et al., 2020).

We set up our experiments as follows. We use an independent DDPG (Lillicrap et al., 2016) configu-
ration, with some minor modifications to enable it to leverage offline teacher data for reincarnation.
Specifically, we make two changes. Firstly, we compose each mini-batch of training data from 50%
offline teacher data and 50% student replay data, similar to Gülçehre et al. (2020). This technique
should give the student the benefit of seeing potentially high-reward transitions from the teacher,
while also getting to see the consequences of its own actions from its replay data. Secondly, we add
layer-norm to the critic network, to mitigate extrapolation error due to out-of-distribution actions, as
per Ball et al. (2023).

For the sake of the current question of selective reincarnation, we use the HALFCHEETAH envi-
ronment, first presented by Wawrzynski (2007), and later brought into the MuJuCo physics en-
gine (Todorov et al., 2012). Specifically, we focus on the variant introduced by Peng et al. (2021)
with their Multi-Agent MuJoCo (MAMuJoCo) framework, where each of the six degrees-of-freedom
is controlled by a separate agent. We denote these six agents as the following: the back ankle (BA),
the back knee (BK), the back hip (BH), the front ankle (FA), the front knee (FK), and the front hip
(FH). This ordering corresponds to the array indices in the MAMuJoCo environment, from 0 to 5
respectively. We illustrate the HALFCHEETAH setup in the appendix, in Figure A.1.

For the set of proficient teacher policies, we initially train on the 6-agent HALFCHEETAH using
tabula-rasa independent DDPG over 1 million training steps, and store the experiences using the
OG-MARL framework (Formanek et al., 2023) so that they can be used as the teacher datasets. We
then enumerate all combinations of agents for reincarnation, a total of 26 = 64 subsets. With each
subset, we retrain the system on HALFCHEETAH, where that particular group of agents gains access
to their teachers offline data (i.e. they are reincarnated). For each combination, we train the system
for 200k timesteps, remove the teacher data, and then train for a further 50k timesteps on student
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data alone. Each experiment is repeated over five seeds. For the ‘maximum return’ metric, we find
the timestep at which the return, averaged over the five seeds, is highest. For the ‘average return’
metric, we average the return over all seeds and all timesteps. We use these metrics as proxies for
performance and speed to convergence respectively.

5.1 IMPACT OF TEACHER DATASET QUALITY

To begin with, we fully reincarnate the MARL system, giving all of the DDPG agents access to their
teachers’ datasets. Since the quality of the samples in the teacher’s dataset likely has a marked impact
on the learning process, we create two datasets for comparison: ‘Good’ and ‘Good-Medium’, where
these names indicate the typical returns received across samples*. Figure A.2, in the appendix, shows
the distribution of the returns in these two datasets.

We run the fully reincarnated configuration with each of these datasets, along with a tabula rasa
baseline. Figure 1 presents these results.
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6 R-Agents / Good-Medium Teacher
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(a) Training curves

Configuration Maximum Returns Average Returns

• x = 6 / ‘Good’ Teacher 3575.8± 198.5 1642.4± 45.9

• x = 6 / ‘Good-Medium’ Teacher 3876.0± 152.2 2148.8± 43.1

• Tabula Rasa 1949.2± 247.3 984.4± 26.9

(b) Tabulated results

Figure 1: Performance using the two different teacher datasets. In the plot, a solid line indicates the
mean value over the runs, and the shaded region indicates one standard error above and below the
mean. In the table, values are given with one standard error.

Notice in Figure 1a that providing access solely to ‘Good’ teacher data initially does not help speed
up training and even seems to hamper it. It is only after around 125k timesteps that we observe
a dramatic peak in performance, thereafter significantly outperforming the tabula rasa system. In
contrast, having additional ‘Medium’ samples enables higher returns from the beginning of training –
converging faster than the solely ‘Good’ dataset.

One may be surprised by these results – that it takes the system some time to realise benefits from
high-return teacher data. However, we postulate that when using the ‘Good’ dataset, the teacher data is
narrowly focused around high-return strategies, yet the corresponding state and action distributions are
likely very different to the students’ own state and action distributions early in training. Consequently,
the students struggle to leverage the teacher datasets until later in training, when the state-action
distribution mismatch is minimised. This belief is evidenced by the results in Figure 1, and further
supports the notion that the quality of the teachers’ datasets has an impact on the outcomes of
reincarnation. We feel this research direction is itself a promising one for future works, which we
discuss in more detail in our roadmap, in Section 6. For the purposes of this investigation though,
focusing on selective reincarnation and not dataset quality, we simply report the balance of our results
using the ‘Good-Medium’ dataset. Nevertheless, for completeness, we run our experiments with both
datasets, and provide these results publicly†.

5.2 ARBITRARILY SELECTIVE REINCARNATION

We now focus on the core aspect of our investigation: selective reincarnation. Firstly, we approach the
problem at a high-level by reincarnating x of the n agents and aggregating across all combinations for
that x. That is, we do not study which agents are selectively reincarnated for a given x. For example,
for x = 2, we reincarnate all pairs of agents in separate runs: {(BA,BK), (BA,BH), . . .}, and then

*‘Good’ is created with roughly the last 20% of the various teachers’ experiences from training, and
‘Good-Medium’ with the last 40%.

†To be made available online after double-blind review process.
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average those results. As an important point, notice that the count of combinations depends on x,
calculated as

(
x
n

)
= x!

n!(x−n)! – e.g. there is just one way to reincarnate all six of the agents, but there
are twenty ways to reincarnate three of the six agents. Accordingly, we average over a different count
of runs depending on x, which affects the magnitude of the standard-error metrics. We highlight
this detail to warn against comparing the confidence values across these runs. The essence of these
results, instead, is to show the mean performance curve.

The returns from these runs, computed over five seeds times
(
x
6

)
combinations, is given in Figure 2,

with both the graphical plot and the tabular values reported.
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(a) Plot over training period

Num. Reincarnated Agents, x Maximum Returns Average Returns

• Fully Reincarnated 3876.0± 152.2 2148.8± 43.1

• 5 agents 3160.4± 135.8 1896.7± 15.8

• 4 agents 2611.0± 63.5 1541.1± 8.8

• 3 agents 2322.8± 50.7 1322.1± 6.8

• 2 agents 2089.4± 54.1 1137.8± 6.9

• 1 agent 1831.8± 72.3 985.4± 9.9

• Tabula Rasa 1949.2± 247.3 984.4± 26.9

(b) Tabulated results

Figure 2: Selective reincarnation performance, aggregated over the number of agents reincarnated.
In the plot, a solid line indicates the mean value over the runs, and the shaded region indicates one
standard error above and below the mean. In the table, values are given with one standard error.
A reminder: take caution when comparing the standard error metrics across values of x, since the
number of runs depends on

(
x
6

)
.

In Figure 2a, we notice firstly that reincarnation enables higher returns. We already saw in Figure 1
that full reincarnation yields higher returns than tabula rasa, but we now see that a selectively-
reincarnated setup also yields benefits – e.g. reincarnating with just half of the agents provides
an improvement over tabula rasa. We do see that reincarnating with just one agent is somewhat
detrimental in this case, with a slightly lower maximum return over the training period, but not
significantly.

5.3 TARGETED SELECTIVE REINCARNATION MATTERS

Though the results from Figure 2 are interesting, we now present a vital consideration: in a multi-agent
system, even in the simpler homogeneous case, agents can sometimes assume dissimilar roles (e.g.
Wang et al. (2020) show the emergence of roles in various tasks). In the HALFCHEETAH environment
particularly, consider the unique requirements for the ankle, knee, and hip joints, and how these differ
across the front and back legs, in order for the cheetah to walk.

It is thus important that we compare, for a given x, the results across various combinations. That
is, e.g., compare reincarnating (BA,BK) with (BA,BH), etc. Though we run experiments over all
possible combinations, plotting these can quickly become unwieldly and difficult to study. Instead,
we show here only the best and worst combinations for each x, as ranked by the average return
achieved. These plots can be seen in Figure 3, with values tabulated in the appendix, in Table A.1.
We release results for all combinations online*.

We see in these graphs that the choice of which agents to reincarnate plays a significant role in the
experiment’s outcome. For example, consider the choice of reincarnating three agents, shown in
Figure 3d: selecting (BH,FK,FH) instead of (BA,BK,FK) increases the maximum return by 33%,
and almost doubles the average return. Similar improvements exist for other values of x.

We also notice an interesting pattern in the best subsets for reincarnation (denote the best subset for x
as X∗

x): as x increases, agents are strictly added to the subset. That is, X∗
1 = {BH}, X∗

2 = X∗
1 ∪{FK},

and so on. Moreover, for the best subset choices, the maximum returns monotonically increase with x,

*To be made available online after double-blind review process.
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(b) One reincarnated agent
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(c) Two reincarnated agents
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(d) Three reincarnated agents
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(e) Four reincarnated agents
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(f) Five reincarnated agents

Figure 3: Training curves for the best and worst combinations of reincarnated agents, decided by the
average episode return achieved. A solid line indicates the mean value over five seeds, and the shaded
region indicates one standard error above and below the mean. In Figures 3b to 3f, the green and red
lines indicate the maximum return achieved by the tabula rasa and fully-reincarnated approaches
respectively.

up to full reincarnation. Interestingly, though, the average return (i.e. the time to convergence) is
slightly higher for x = 5 than for full reincarnation, x = n = 6 (see Table A.1).

To affirm these points, we use the MARL-eval tool from Gorsane et al. (2022), built upon work
by Agarwal et al. (2021), to plot the associated performance profiles and probability of improvement
graphs in Figure 4, and the aggregate scores in Figure A.3.
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(a) Performance Profiles
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Algorithm Y

(b) Probability of Improvement

Figure 4: MARL-eval (Gorsane et al., 2022; Agarwal et al., 2021) plots comparing the best
performing combination of x reincarnated agents for each x ∈ [0, n] .

We use these results as clear evidence of the following: selective reincarnation can yield benefits,
with higher returns and faster convergence over tabula rasa and possibly even full reincarnation; but
one must be very careful of which agents are selected, for a bad choice can lead to a sub-optimal
outcome.

Naturally, this diagnosis opens up many further questions. How can we know, ideally a priori,
whether a given combination is a poor or excellent one? In this example of the HALFCHEETAH
environment, we might try to reason about various combinations: e.g, from Figure 3f, we see that
reincarnating the back leg, front hip, and front knee is a significantly better choice than the the back
leg, the front hip, and the front ankle – does this result perhaps reveal something about the nature
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of how HALFCHEETAH learns? We show some other interesting groupings in the appendix, in
Figure A.4.

6 ROADMAP FOR MULTI-AGENT REINCARNATION

We now present a brief roadmap of some avenues to explore in this domain.

Selective Reincarnation in MARL. There are many other conceivable methods for doing selective
reincarnation in MARL which we did not explore. In this work we focused on a method similar
to ‘rehearsal’ (Gülçehre et al., 2020), but future works could experiment with methods such as
‘jump-starting’ (Uchendu et al., 2022), ‘kick-starting’ (Schmitt et al., 2018) and offline pre-training.
We find offline pre-training a particularly promising direction for selectively reincarnating systems
of independent DDPG agents – e.g. one could apply a behaviour cloning regularisation term to the
policy loss in DDPG, as per Fujimoto & Gu (2021), and then to wean it off during training, as per
Beeson & Montana (2022). Another direction could be to develop bespoke selective reincarnation
methods; for example, a method to enable agents to ‘trust’ those agents with a teacher more than they
would otherwise. Additionally, there is a trove of work to be done in how to understand which agents
have the highest impact when reincarnated, and perhaps to reason about this delineation a priori.
Finally, we also encourage larger-scale selective-reincarnation experiments on a wider variety of
environments, and perhaps even tests with real-world systems.

Beyond Independent Reincarnation. In this paper, we focused on using independent DDPG for
learning in MARL, but we believe many valuable open-problems exist outside of such an approach.
For example, how does one effectively reincarnate MARL algorithms that belong to the paradigm
of Centralised Training Decentralised Execution (CTDE), such as MADDPG (Lowe et al., 2017)
and QMIX (Rashid et al., 2020)? It is not clear how one might selectively reincarnate agents with a
centralised critic. In general, outside of just selective reincarnation, we also showed evidence that the
quality of the teacher policy and data can have a large impact on the outcomes of reincarnation in
RL. Exploring the benefits of, e.g., a curriculum-based, student-aware teacher could be an direction
for future work. One could also explore ideas of curricula in the algorithm design itself – e.g. solely
training the reincarnated agents’ critics but freezing their policies, until the other agents ‘catch up.’
Another question we have for reincarnation in MARL is how teachers can help students learn to
cooperate more quickly. Learning cooperative strategies in MARL can often take a lot of exploration
and experience. Could reincarnating in MARL help reduce the computational burden of learning
cooperative strategies from scratch? Many exciting avenues exist, and this work is only the beginning.

7 CONCLUSION

In this paper, we explored the topic of reincarnation (Agarwal et al., 2022), where prior computation is
reused for future experiments, within the context of multi-agent reinforcement learning. Specifically,
we proposed the idea of selective reincarnation for this domain, where not all the agents in the
system are reincarnated. To motivate this idea, we presented a case study using the HALFCHEETAH
environment, and found that selective reincarnation can result in higher returns than if all agents
learned from scratch, and faster convergence than if all agents were reincarnated. However, we found
that the choice of which agents to reincarnate played a significant role in the benefits observed, and
we presented this point as the core takeaway. We used these results to argue that a fruitful field of
work exists here, and finally listed some avenues that may be worth exploring, as a next step.
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A APPENDIX

ENVIRONMENT: 6-AGENT HALFCHEETAH

[2]
BH

[1]
BK
[0]BA

[5]FH
[4]

FK
[3]FA

Figure A.1: The HALFCHEETAH environment (Wawrzynski, 2007; Todorov et al., 2012) viewed from
the perspective of six separate agents (Peng et al., 2021). The array indices from the MAMuJoCo
environment are given in brackets. Note that this diagram is purely illustrative and is not drawn with
the correct relative scale.

DATASET DISTRIBUTIONS

(a) ‘Good’ Teacher Dataset (b) ‘Good-Medium’ Teacher Dataset

Figure A.2: Histograms of episode returns from the two different datasets.
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TARGETED SELECTIVE REINCARNATION: BEST & WORST RESULTS

Configuration Maximum Returns Average Returns

• Tabula Rasa 1949.2± 247.3 984.4± 26.9

• BH 1950.2± 471.8 1116.3± 47.2

• FA 1886.1± 646.5 900.1± 48.0

• BH, FK 2367.0± 504.0 1455.0± 53.4

• FA, FH 1990.7± 472.8 890.7± 47.8

• BH, FK, FH 2875.6± 483.8 1786.3± 67.2

• BA, BK, FK 2146.5± 626.2 961.2± 50.4

• BH, FK, FH, BK 3215.2± 266.4 2153.1± 66.9

• BA, BK, FA, FH 2610.2± 1155.9 1185.5± 72.4

• BH, FK, FH, BK, BA 3827.6± 699.5 2370.4± 82.7 ∗

• BA, BK, FA, FH, BH 2934.0± 715.9 1594.3± 70.1

• Fully Reincarnated 3876.0± 152.2 ∗ 2148.8± 43.1

Table A.1: Return values for the best and worst runs for a given number of selectively reincarnated
agents. An asterisk (∗) indicates the highest value in each column. Values are given with one standard
error.

RLIABLE AGGREGATE SCORES

0.4 0.6 0.8
TABULA RASA

FULLY REINCARNATED
BA|BK|BH|FK|FH

BK|BH|FK|FH
BH|FK|FH

BH|FK
BH

Median

0.4 0.6 0.8

IQM

0.4 0.6 0.8

Mean

0.2 0.4 0.6

Optimality Gap

Episode return

Figure A.3: MARL-eval (Gorsane et al., 2022; Agarwal et al., 2021) aggregate scores for each of
the best performing combinations of x reincarnated agents for each x ∈ [0, n].
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SELECTIVE REINCARNATION ANECDOTES IN HALFCHEETAH
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Figure A.4: Comparisons of some interesting selective reincarnation patterns in HALFCHEETAH. In
the plots, a solid line indicates the mean value over the runs, and the shaded region indicates one
standard error above and below the mean.
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