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Abstract

Recent years have seen the proliferation of001
disinformation and fake news online. Tra-002
ditional proposals to mitigate these problems003
are manual and automatic fact-checking. Re-004
cently, another approach has emerged: check-005
ing whether the input claim has previously006
been fact-checked, which can be done automat-007
ically, and thus fast, while also offering credi-008
bility and explainability, thanks to the human009
fact-checking and explanations in the associ-010
ated fact-checking article. Here we focus on011
claims made in a political debate, where con-012
text really matters. We study the impact of013
modeling the context of the claim: both on014
the source side, i.e., in the debate, as well as015
on the target side, i.e., in the fact-checking ex-016
planation document. We do this by modeling017
the local context, the global context, as well as018
by means of co-reference resolution, and multi-019
hop reasoning over the sentences of the docu-020
ment describing the fact-checked claim. The021
experimental results show that each of these022
represents a valuable information source, but023
that modeling the source-side context is more024
important, and can yield 10+ points of absolute025
improvement over a state-of-the-art model.026

1 Introduction027

The fight against the spread of dis/mis-information028

in social media has become an urgent social and029

political issue. Social media have been widely used030

not only for social good but also to mislead en-031

tire communities. Many fact-checking organiza-032

tions, such as FactCheck.org, Snopes, PolitiFact,033

and FullFact, along with many others, and also034

along with some broader international initiatives035

such as the Credibility Coalition and Eufactcheck,036

have emerged in the past few years to address the037

issue (Stencel, 2019).038

At the same time, there have been efforts to de-039

velop automatic systems to detect and to flag such040

content (Vo and Lee, 2018; Shu et al., 2017; Thorne041

and Vlachos, 2018; Li et al., 2016; Lazer et al., 042

2018; Vosoughi et al., 2018). Such efforts include 043

the development of datasets (Hassan et al., 2015; 044

Augenstein et al., 2019), systems, and evaluation 045

campaigns (Barrón-Cedeño et al., 2020). 046

An important issuewith automatic systems is that 047

journalists and fact-checkers often question their 048

credibility for reasons such as (perceived) insuffi- 049

cient accuracy given the state of present technology, 050

but also due to the lack of explanation about how 051

the system has made its decision. At the same time, 052

manual fact-checking is time-consuming as it re- 053

quires to go through several manual steps Vlachos 054

and Riedel (2014) . 055

As both manual and automatic systems have 056

their limitations, there have been also proposals 057

of human-in-the-loop settings, aiming to bring the 058

best of both worlds. In order to enable such an 059

approach, one question that arises is how to facil- 060

itate fact-checkers and journalists with automated 061

systems. An immediate interesting problem is to 062

know whether a given input claim has been pre- 063

viously fact-checked by a reputable fact-checking 064

organization. This would give them a credible ref- 065

erence and could save them significant amount of 066

time and resources, as manually fact-checking a 067

single non-trivial claim may take from 1-2 days to 068

1-2 weeks. Looking from a different perspective, 069

at the time of COVID-19, we see the same false 070

claims and conspiracy theories coming over and 071

over again (e.g., about garlic water as a cure, about 072

holding your breath for 10 seconds as a way to test 073

for COVID-19, etc.). That is why fact-checking 074

makes sense: to debunk such frequent claims. The 075

problem is that next time they come in a slightly 076

different form (although having the same meaning), 077

it is important to be able to recognize them quickly 078

and possibly to post a reply in social media with 079

a link to a fact-checking article. If we consider a 080

scenario in which a politician is being interviewed 081

or is taking part in a debate, a quick response would 082
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Figure 1: A pipeline of retrieving and ranking previ-
ously fact-checked claims. Si is the claim (source), T t
is the title of the target, Tj is a sentence from the target.

make it possible to put him/her on the spot.083

However, the problem in such a real-time sce-084

nario is that, unlike written text, interviews, debates085

and speeches are more spontaneous, and claims are086

often not clearly formulated in a single sentence.087

This is illustrated in Figure 1, where we can see a088

fragment from a Democratic debate for the 2016 US089

Presidential election, where Hillary Clinton said:090

“I waited until it had actually been negotiated be-091

cause I did want to give the benefit of the doubt092

to the administration.” Understanding this claim093

requires pronominal co-reference resolution (e.g.,094

what does it refer to, is it CAFTA or is it TPP, as095

both are mentioned in the previous sentences), more096

general co-reference (e.g., that the administration097

being discusses is the Obama administration), as 098

well as a general understanding of the conversa- 099

tion so far, and possibly general world knowledge 100

about US politics at the time of the debate (e.g., 101

that Hillary Clinton was Secretary of State when 102

TPP was being discussed). 103

Moreover, previous work has shown that it is 104

beneficial to try to match the input claim not 105

only against the canonical verified claim that fact- 106

checkers worked with, but against the entire arti- 107

cle that they wrote explaining why the claim was 108

judged to be true/false (Shaar et al., 2020; Vo and 109

Lee, 2020). This is because, in the fact-checking 110

article, the claim is likely to be mentioned in differ- 111

ent forms, and also a lot of background information 112

and related terms would be mentioned, which can 113

facilitate matching, and thus recall. This means 114

that we need to exploit global contextual informa- 115

tion contained within whole fact-checking articles 116

or at least previous and following context of the 117

claim (i.e., local context). Similarly, for the FEVER 118

fact-checking task against Wikipedia, it has been 119

shown that multi-hop reasoning (Transformer-XH) 120

over the sentences of the target article can help 121

(Zhao et al., 2019), an observation that was further 122

confirmed in the context of fact-checking politi- 123

cal claims (Ostrowski et al., 2020). Transformer- 124

XH uses a novel attention mechanism that natu- 125

rally “hops” across the connected text sequences 126

in addition to attending over tokens within each 127

sequence. As claims and their reasonings are mani- 128

fested across documents, this hop-based attention 129

mechanism constructs global contextualized rep- 130

resentation to provide better joint multi-evidence 131

reasoning. We rely on Transformer-XH to extract 132

and use global contextual information. 133

Based on the above considerations, we propose 134

a framework that focuses on modeling the co- 135

reference, local context (features from neighboring 136

sentences, see Section 4.2.2) and global context 137

(features using Transformer-XH, see Section 4.2.3), 138

both on the source and on the target side, while also 139

using multi-hop reasoning over the target side. 140

Our contributions can be summarized as follows: 141

• We perform careful manual analysis to under- 142

stand what makes detecting previously fact- 143

checked claims a hard problem, and we catego- 144

rize the claims by type. We release these annota- 145

tions to enable further research. 146

• Unlike previous work, we focus on modeling the 147

context both on the source side and on the target 148
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side, both local and global, using co-reference149

resolution and reasoning with Transformer-XH,150

which yields sizable improvements over state-of-151

the-art models of over 10 MAP points absolute.152

• We propose a realistic and challenging, time-153

sensitive and document-aware, data split com-154

pared to previous work, which we also release.155

2 Related Work156

Check-Worthiness Estimation Notable work in157

this direction includes context-aware approaches158

to detect check-worthy claims in political de-159

bates (Gencheva et al., 2017), using various patterns160

to find factual claims (Ennals et al., 2010), multi-161

task learning (Vasileva et al., 2019b), and a variety162

of other approaches used by the participants of the163

CLEF CheckThat! labs’ shared tasks on checkwor-164

thiness (Nakov et al., 2018; Elsayed et al., 2019b,a;165

Vasileva et al., 2019a).166

Previously Fact-CheckedClaims While there is167

a surge in research to develop systems for automatic168

fact-checking, such systems suffer from credibility169

issues, e.g., in the eyes of journalists, and man-170

ual efforts are still the norm. Thus, it is important171

to reduce such manual effort by detecting when a172

claim has already been fact-checked. Work in this173

direction includes (Shaar et al., 2020) and (Vo and174

Lee, 2020): the former developed a dataset for the175

task and proposed a ranking model, while the latter176

proposed a neural ranking model using textual and177

visual modalities.178

A recent work by Sheng et al. (2021) highlights179

the importance of lexical, semantic, and pattern-180

based information and proposes a re-ranker based181

on memory-enhanced transformers for matching182

(MTM) to detect and rank previously fact-checked183

claims.184

Semantic Matching and Ranking Here we fo-185

cus on the textual problem formulation of the task,186

as defined in the work of Shaar et al. (2020): given187

an input claim, we want to detect potentially match-188

ing previously fact-checked claims and to rank them189

accordingly. A related research area is semantic190

matching and ranking, as matching some Input-191

Claim–VerClaim pairs might require BERT-based192

sentence embeddings, natural language inference,193

and coreference resolution. An example of such194

a difficult pair is shown in Table 1, line 607. Re-195

cent relevant work in this direction uses neural ap-196

proaches. Nie et al. (2019) proposed a semantic197

matching method that combines document retrieval, 198

sentence selection, and claim verification neural 199

models to extract facts and to verify them. Thorne 200

et al. (2018) proposed a very simple model, where 201

pieces of evidence are concatenated together and 202

then fed into a Natural Language Inference (NLI) 203

model. Yoneda et al. (2018) used a four-stage ap- 204

proach that combines document and sentence re- 205

trieval with NLI. Hanselowski et al. (2018) intro- 206

duced Enhanced Sequential Inference Model (BiL- 207

STM based) (Chen et al., 2016) methods to rank 208

candidate facts and to classify a claim based on the 209

selected facts. Several studies used model combina- 210

tion (i.e., document retrieval, sentence retrieval, and 211

NLI for classifying the retrieved sentences) with 212

joint learning (Yoneda et al., 2018; Hidey and Diab, 213

2018; Luken et al., 2018). 214

ContextModeling for Factuality Fact-checking 215

is a complex problem. It requires retrieving pieces 216

of evidence, which are often scattered in the docu- 217

ment in different contexts. Once they are retrieved, 218

they can be used to verify the claim. The evidence 219

with contextual information can play a great role for 220

fact verification and retrieval. Previous work has 221

shown that the relation between the target statement 222

and a context in the document (e.g., debate), the 223

interaction between speakers, and the reaction of 224

the moderator and the public can significantly help 225

to find check-worthy claims (Gencheva et al., 2017). 226

Liu et al. (2020) proposed a graph-based approach, 227

a Kernel Graph Attention Network, to use evidence 228

as context for fact verification. Similarly, Zhou et al. 229

(2019) used a fully connected evidence graph with 230

multi-evidence information for fact verification. 231

Since Transformer-based models have shown 232

great success in many downstream NLP tasks, 233

Zhong et al. (2020) used different pre-trained Trans- 234

former models and a graph-based approach (i.e., 235

graph convolutional network and graph attention 236

network) for fact verification. Zhao et al. (2019) 237

introduced extra hop attention to incorporate con- 238

textual information, while maintaining the Trans- 239

former capabilities. The extra hop attention enables 240

it to learn a global representation of the different 241

pieces of evidence and to jointly reason over the 242

evidence graph. It is a promising approach that 243

uses contextual information as a graph representa- 244

tion and Transformer capabilities in the samemodel. 245

One of the limitations is the need for human-labeled 246

evidence in relation to the input claims in existing 247

fact-verification datasets. The study by Ostrowski 248
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et al. (2020) addressed this limitation by developing249

a dataset of annotated pieces of evidence associ-250

ated with input claims and explored multihop atten-251

tion mechanism, proposed in (Zhao et al., 2019), to252

make prtediction on the factuality of a claim.253

Unlike the above work, here we target a different254

task: detecting previously fact-checked claims as255

opposed to performing fact-checking per se. More-256

over, while the above work was limited to the target,257

we also model the source context (which turns out258

to be much more important).259

3 Dataset260

We focus on the task of detecting previously fact-261

checked claims, using the task formulation and also262

the data from (Shaar et al., 2020). They had two263

datasets: one on matching tweets against Snopes264

claims, and another one on matching claims in the265

context of a political debate to PolitiFact claims.266

Here, we focus on the latter,1 and we perform a267

close analysis of the claims and what makes them268

easy/hard to match.269

The dataset was collected from the US political270

fact-checking organization PolitiFact. After a US271

political debate, speech, or interview, fact-checking272

journalists would select few claims made in the273

event and would verify them either from scratch or274

by linking them to a previously fact-checked claim.275

Each previously fact-checked claim has an asso-276

ciated article stating its truthfulness along with a277

justification. The dataset has two parts: (i) veri-278

fied claims {normalized VerClaim, article title, and279

article text}, (ii) transcripts of the political events280

(e.g., debates). They annotated the data by linking281

sentences from the transcript (InputClaim) to one282

or more verified claim (out of 16,636 claims).283

To further analyze the dataset, we looked at the284

InputClaim–VerClaim pairs, and we manually cate-285

gorized them into one of the following categories:286

1. clean : A clean pair is a self-contained Input-287

Claim with a VerClaim that directly verifies it288

(see line 255 in Table 1 for an example).289

2. clean-hard: A clean-hard pair is a self-290

contained InputClaim with a VerClaim that291

indirectly verifies it (see line 688 in Table 1).292

3. part-of : A part-of ’s pair InputClaim is not293

self-contained and requires the addition of294

other sentences from the transcript to fully295

form a single claim.296

1github.com/sshaar/That-is-a-Known-Lie

4. context-dep: A context-dep pair is similar 297

to clean and clean-hard; however, the In- 298

putClaim is not self-contained and needs co- 299

reference. 300

These categories include all types of pairs we 301

have seen. Moreover, since the dataset is con- 302

structed from speeches, debates, and interviews, the 303

structure of the InputClaim–VerClaim pairs differs. 304

For example, in debates, we see more part-of ex- 305

amples, as there are multiple questions–answers 306

claims and back-and-forth arguments splitting the 307

claims into multiple sentences. 308

The annotations were performed by three anno- 309

tators who are experts in fact-checking (and co- 310

authors of this paper), using the above definitions 311

for the categories. We consolidated their annota- 312

tions using majority voting, and they had a consoli- 313

dation discussion for cases with no majority. The 314

Fleiss Kappa inter-annotator agreement was 0.5, 315

which corresponds to moderate agreement, which 316

is reasonable for such a complex annotation task. 317

Note that our agreement is much higher than for 318

related tasks (Roitero et al., 2020): Krippendorff’s 319

� in [0.066; 0.131]. 320

Table 1 shows examples of InputClaim– 321

VerClaim pairs that demonstrate the above four 322

categories. From the table, it is clear that due to 323

the presence of cases like line 607 and 695–699, 324

the task goes beyond simple textual similarity 325

and natural language inference. Recognizing 326

the context-dep pairs requires understanding the 327

InputClaim’s local context, and recognizing the 328

clean-hard pairs requires analysis of the overall 329

global context of the VerClaim. While annotating 330

the data into the four categories described in 331

this section, we found out that a few InputClaim- 332

VerClaim pairs in (Shaar et al., 2020) were false 333

matches (which happened, as they did the matching 334

automatically, without manually double-checking 335

every single example) and we removed them. Thus, 336

the reported number of pairs here is slightly lower, 337

but it is also more accurate than in their work. 338

Table 2 gives statistics about the distribution the 339

four categories of claims in the dataset. We can see 340

that clean and clean-hard are the most frequent 341

categories, while part-of is the least frequent one. 342

We also investigated previous work and observed 343

that they dealt with each InputClaim independently, 344

i.e., at the sentence level. That means two claims 345

from the same debate can end up being in the train- 346

ing set and test set. This is problematic because if 347
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Line No. Type Input Claim Verified Claim

255 clean D. Trump: Hillary Clinton wanted the wall. Says Hillary Clinton “wanted the
wall.”

695 part-of C. Wallas: And since then, as we all know, nine
women have come forward and have
said that you either groped them or
kissed them without their consent.

The stories from women saying he
groped or forced himself on them
“largely have been debunked.”

⋮
699 part-of D. Trump: Well, first of all, those stories have been

largely debunked.
The stories from women saying he
groped or forced himself on them
“largely have been debunked.”

688 clean-hard D. Trump: She gave us ISIS as sure as you are
sitting there.

Hillary Clinton invented ISIS with her
stupid policies. She is responsible for
ISIS.

605 D. Trump: Now she wants to sign TransPacific
Partnership.

⋮
607 context-dep D. Trump: She lied when she said she didn’t call it

the gold standard in one of the debates.
Says Hillary Clinton called the
TransPacific Partnership “the gold
standard. You called it the gold stan-
dard of trade deals. You said its the
finest deal youve ever seen.”

Table 1: Fragment from the 3rd US Presidential debate in 2016 showing the verified claims chosen by PolitiFact and
the fine-grained category of the pair. Most input sentences have no verified claim, e.g., see line 605.

PolitiFact

InputClaim–VerClaim pairs 695
– clean 291 42%
– clean-hard 210 30%
– part-of 68 10%
– context-dep 126 18%
Total # of verified claims (to match against) 16,636

Table 2: Statistics about the dataset: shown are the to-
tal number of InputClaim–VerClaim pairs and the total
number of VerClaims to match an InputClaim against
in the entire dataset.

Split MAP

Debate-Level – Chrono 0.429

Debate-Level – Semi-chrono 0.539
Debate-Level – Random 0.590
Sentence-Level – Random (Shaar et al., 2020) 0.602

Table 3: MAP scores of the rerankermodels when using
four different splits representing different scenarios. We
use Debate-Level – Chrono for our experiments.

we have pairs that are categorized as part-of, we348

could end up splitting them and putting them in349

different sets, i.e., train and test.350

Moreover, splitting the dataset in this manner351

has another implication: the discussed topics in the352

input claim can fall into both training and test sets.353

To avoid such issues, we can split the data in354

different settings that reflects various scenarios:355

• Debate-Level Chrono: We split the data chrono-356

logically. We use the first 50 debates for training 357

and the last 20 for testing. Specifically, we have 358

554 pairs for training, and 141 pairs for testing. 359

This is a more realistic scenario, where we would 360

only have access to earlier debates, and we can 361

use them to make decisions about claims made in 362

future debates. The complexity of this setting is 363

also reflected in the MAP score as shown in Ta- 364

ble 3. We see that this score is lower than the best 365

model in the previous work (last row). This is 366

because this setting is complex as we use a model 367

trained on debates and speeches from 2012-2018, 368

and we test on debates from 2019. Across those 369

different time frames, different politicians dis- 370

cuss different topics. 371

• Debate-Level Semi-Chrono: We split the data 372

per year, e.g., for year 2018, we divide the tran- 373

scripts into train and test with 80/20 splits, and 374

then we train and evaluate using the same rerank- 375

ing model. In Table 3, we can see an improve- 376

ment with this setting compared to the Debate 377

Level Chrono setting. This might be because 378

the same politicians discuss same/similar issues 379

throughout the same year. 380

• Debate-Level Random: We randomly choose 381

80% of the debates for training and the remain- 382

ing ones for testing. This is a comparatively eas- 383

ier setting as the data is randomly distributed in 384

training and testing. This is also reflected in the 385

results in Table 3. The reason could be that politi- 386
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cians repeat themselves a lot, especially in two387

consecutive political events, and the random split388

can lead to having two similar debates/speeches389

in two splits.390

• Sentence Level Random: This is the setting used391

in (Shaar et al., 2020), where sentences from the392

debates are randomly divided into train and test393

set with 80% and 20% proportion, respectively.394

This is the most unrealistic split.395

In the rest of the experiments, we choose to396

use the more realistic setup Debate Level Chrono,397

which means that our baseline MAP score (which398

is in fact the state-of-the-art from previous work)399

goes down from 0.602 to 0.429.400

4 Experimental Setup401

4.1 Baseline402

From our analysis of the dataset (described in Sec-403

tion 3), we conclude that (i) we need to resolve the404

references in the InputClaim, (ii) to capture the local405

context of the InputClaim, and (iii) to encapsulate406

the global context of the VerClaim.407

For the baseline, we use the same setup as in the408

state-of-the-art model of Shaar et al. (2020). We use409

the claim as a query against the full text of the doc-410

uments using BM25 (a hard-to-beat model from411

information retrieval). We then train a reranker412

on the top-100 results returned by BM25 using413

rankSVM (Herbrich et al., 1999) with an RBF ker-414

nel. The reranker uses nine similarity measures that415

compare the InputClaim to the VerClaim, as well416

as the respective reciprocal ranks. In particular,417

we compute the BM25 score for InputClaim vs.418

VerClaim, title, text, VerClaim+title+text. We419

also compute the cosine using sentence-BERT420

embeddings for InputClaim vs. VerClaim, title,421

and the top-4 sentences from text. Using these422

scores, we create a vector representation of the423

InputClaim–VerClaim pair with dimensionality424

ℝ18. We then scale the vectors of all InputClaim–425

VerClaim pairs in [−1; 1] and we train a rankSVM426

with the default parameters (KernelDegree = 3,427


 = 1∕num_features, � = 0.001).428

4.2 Proposed Models429

As shown in Figure 1, our model uses co-reference430

resolution on the source and on the target side, the431

local context (i.e., neighboring sentences as con-432

text), and the global context (Transformer-XH) as433

discussed below. It is still a pairwise reranker, but434

with a richer context representation.435

4.2.1 Co-reference Resolution 436

We manually inspected the training transcripts and 437

the associated verified claims, and we realized that 438

there were many co-reference dependencies. Thus, 439

resolving them can help to obtain more represen- 440

tative textual and contextual similarity scores. As 441

for the verified claims, we noticed that not all Ver- 442

Claim were self-contained, and that some under- 443

standing of the context was needed2 from the arti- 444

cle’s text that explains the verdict provided by the 445

PolitiFact journalists. Therefore, our hypothesis is 446

that resolving such co-references should improve 447

the downstream matching scores. For the same 448

reason, we also performed co-reference resolution 449

on the PolitiFact articles when they were used to 450

compute the BM25 scores. 451

We explored different co-reference models such 452

as NeuralCoref, 3 e2e-coref 4 and SpanBERT 5. 453

We found that NeuralCoref model performed best 454

on the transcripts, while e2e-coref was best on the 455

VerClaims. Hence, in the rest of the experiments, 456

we show results using NeuralCoref for the source 457

side, and e2e-coref for the target side. 458

We resolved the co-reference in the Input- 459

Claim by performing co-reference resolution on the 460

entire input transcript (as was suggested in the liter- 461

ature); we will refer to this approach as src-coref. 462

As for the verified claims, we aimed to resolve the 463

co-references in both the VerClaim and the text of 464

the PolitiFact articles. We also aimed to ensure 465

that the dependencies from the text can be used for 466

the VerClaim. Therefore, we concatenated both the 467

text and VerClaim (in the same order), and we ap- 468

plied the co-reference model on the concatenated 469

text. We choose this order of concatenation be- 470

cause the published text reserves the last paragraph 471

to rephrase the VerClaim and to provide a summary 472

of the justification; hence, there is a higher proba- 473

bility to resolve the co-references correctly. 474

4.2.2 Local Context 475

Resolving co-references allows us to obtain the cor- 476

rect objects and names the InputClaim is referring 477

to. However, by analyzing the dataset, we noticed 478

that different VerClaims, although having similar 479

structure, could be talking about different things, 480

depending on the article text and the surrounding 481

context. Therefore, it is important to understand 482

2For example, who is speaking or what is being discussed.
3github.com/huggingface/neuralcoref
4github.com/kentonl/e2e-coref
5github.com/facebookresearch/SpanBERT
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the context of an InputClaim. We achieve this by483

doing a feature-level concatenation of the neighbor-484

ing sentences in the transcript, i.e., we take the 18485

features (ℝ18, as discussed in Section 4.1) for the486

neighboring sentences, and we concatenate them487

to the similarity score for the InputClaim. We then488

use that as a feature vector for the reranker. For489

example, if we take three sentences before the In-490

putClaim and one sentence after, then, we denote491

this as FC(3, 1).492

Let Si be our InputClaim, which is the i’th sen-493

tence in the transcript. We compute the similarity494

measures and the reciprocal rank (as described in495

Section 4.1) to obtain the vector representation Si,v496

for Si. With k = 3 previous and l = 1 following497

neighbouring sentences our final feature vector is498

FC(k = 3, l = 1) = Si−3,v⧺Si−2,v⧺Si−1,v⧺Si,v⧺Si+1,v (1)499

where ⧺ represents concatenation. After the con-500

catenation, the resulting dimension of the feature501

vector is 18 × (3 + 1 + 1) = 90 for FC(3, 1).502

4.2.3 Global Context503

The similarity scores leveraging the local context504

are obtained from the textual content of the Input-505

Claim and the VerClaim (i) using BM25, (ii) co-506

sine similarity between the Sentence-BERT em-507

beddings of InputClaim vs. the top-4 sentences of508

the VerClaim. This might miss relevant informa-509

tion further away from the InputClaim in the input510

document and further away from VerClaim in the511

document accompanying the VerClaim. We re-512

fer to such scattered information as global context.513

To capture it, we adapt a graph-based Transformer,514

Transformer-XH (Zhao et al., 2019). In particular,515

we use a Transformer-XH model pretrained on the516

FEVER (Fact Extraction and VERification) dataset,517

which is trained to predict whether a given input518

claim is supported/refuted by a set of target sen-519

tences (from Wikipedia), represented as a graph, or520

there is no enough information. We used the model521

that is publiclymade available by (Zhao et al., 2019).522

For a given InputClaim, we generate a graph for523

each of the top-100 VerClaims retrieved from the524

BM25 algorithm using the normalized claim, the525

title and the top-3 sentences from the text as nodes.526

Using the Transformer-XH model on the graph,527

we obtain three additional scores that correspond528

to the posterior probability that VerClaim supports529

or refutes the InputClaim, or there is no enough530

information.531
532

4.3 Hyper-Parameter Values 533

For the baseline, we use the best values of the hyper- 534

parameters as found in (Shaar et al., 2020). For our 535

context-aware models, we select the values of the 536

hyper-parameters by splitting the training dataset 537

into train-train (debates from 2012-2017) and train- 538

dev (debates from 2018), then training on train- 539

train, and testing on train-dev. 540

4.4 Evaluation Measures 541

As we have a ranking task, we use mean average 542

precision (MAP). It is a suitable score as some In- 543

putClaims have more than one VerClaim paired to 544

them. This is why we opted for not using mean 545

reciprocal rank (MRR), which would only pay at- 546

tention to the rank of the highest-ranked match. 547

5 Results 548

5.1 Source-Side Experiments 549

For the source side experiments, we used co- 550

reference resolution on transcripts and variations 551

of the local context by varying k and l in Eq. 1. 552

When we inspected the transcripts, we found that 553

co-references tend to be resolved by a few sentences 554

before the InputClaim; therefore, we tried FC(1, 1), 555

FC(3, 1), FC(3, 3), and FC(5, 1). We obtained the 556

best results (on cross-validation) using FC(3, 1), 557

which we use in this study. As shown in Table 4, lo- 558

cal context (Line 2) has improved over the baseline 559

(Line 1) by 8 MAP points absolute. 560

We then experiment using co-reference resolu- 561

tion with the NeuralCoref model. Compared to 562

the baseline, we have a sizable improvement us- 563

ing co-reference resolution as shown in line 3, in 564

Table 4. Specifically, in part-of and context-dep, 565

because those pairs have many co-references that 566

confuses the InputClaim. After combining both 567

methods, i.e., src-coref and FC(3,1) (Line 4), we 568

achieved the highest MAP score of 0.532. 569

As expected, we always see an increase in the 570

performance for the clean category as the resolved 571

InputClaim can match the article text better. 572

5.2 Target-Side Experiments 573

For the target side experiments, we investigate the 574

co-references in the VerClaim and their documents 575

and modeling the global context with (Transformer- 576

XH). Compared to the baseline, we see a sizable 577

improvement (from 0.365 to 0.441) in clean-hard as 578

shown in line 5 in Table 4. 579
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Line No. Model Overall clean clean-hard part-of context-dep

1 Baseline 0.429 0.661 0.365 0.161 0.375
Source-Side Experiments: Co-reference Resolution, Local Context

2 FC(3, 1) 0.513 0.690 0.485 0.305 0.448
3 src-coref 0.479 0.667 0.408 0.286 0.429
4 src-coref + FC(3, 1) 0.532 0.695 0.452 0.385 0.485

Target-Side Experiments: Co-reference Resolution, Global Context

5 Transformer-XH 0.468 0.680 0.441 0.226 0.384
6 tgt-coref 0.443 0.673 0.422 0.182 0.339
7 tgt-coref + Transformer-XH 0.458 0.702 0.444 0.161 0.357

Source+Target-Side Experiments: Co-reference Resolution, Local Context, Global Context

8 src-coref + tgt-coref 0.487 0.672 0.440 0.291 0.411
9 All 0.517 0.749 0.389 0.321 0.464

Table 4: MAP Scores of the reranker models on the test set using the Debate Level – Chrono.

This is expected as the pair does not have much580

semantic similarity, and we need to build our own581

understanding of the text of the VerClaim in or-582

der to capture the contextual similarity in the pair.583

We also experiment with co-reference resolution584

on the VerClaim and the text of the VerClaim and585

also see some improvement. Combining tgt-coref586

and (Transformer-XH) (line 7) improved the perfor-587

mance over tgt-coref alone, but it under-performs588

(Transformer-XH) alone. The combination outper-589

forms other target-side experiments on clean type.590

5.3 Source-Side & Target-Side Experiments591

Eventually, we tried to combine modeling the592

source and the target side. Line 8 in Table 4 shows593

a result when we use both source and target co-594

reference resolution. We can see that this yields595

better overall MAP score of 0.487, compared to596

using source-side (MAP of 0.479; line 3) or target-597

side only (MAP of 0.443; line 6). Moreover, co-598

reference resolution on both the source and target599

improves clean-hard and part-of pairs (compared600

to using co-reference on one side only) as they re-601

quire better local and global context, respectively.602

We further tried putting it all together, and the603

result is shown in line 9.6 While this yielded better604

results for clean, it was slightly worse compared to605

the source-side context modeling combination, in606

line 4. This is probably due to source-side context607

models being generally stronger than target-side608

ones (compare lines 2–3 to lines 5–6).609

We can conclude that modeling the context on610

the source side is much more important than on the611

6Note that in this result we did not use target-side co-
reference, as adding it yielded somewhat worse results. It
seems to interact badly with Transformer-XH, which can also
be seen by comparing lines 5 and 7.

target side. This is expected for political debates, 612

which are conversational in nature. In contrast, 613

the target side is a well-written journalistic arti- 614

cle, where sentences are much more self-contained. 615

Thus, features from the source side (i.e., from the 616

debate) are more useful as can be seen in Table 4. 617
618

Comparison to Previous Work As mentioned 619

above, our baseline is a reimplementation of the 620

best system of Shaar et al. (2020), and our context 621

modeling adds additional components on top of 622

it. Note, however, that our results are not directly 623

comparable to their work, as we use a more realistic 624

and also a much harder setup, where the data is 625

split by entire debates and also chronologically, i.e., 626

training on the data from 2012 to 2018 and testing 627

on 2019 (while they split all debates into sentences 628

and randomly distribute them to training/testing). 629

6 Conclusion and Future Work 630

We have presented our work on the problem of 631

detecting previously fact-checked claims in polit- 632

ical debates. In particular, we studied the impact 633

of modeling the context of the claim: both on the 634

source side, i.e., in the debate, as well as on the 635

target side, i.e., in the fact-checking explanation 636

document. We did this by modeling the local con- 637

text, the global context, as well as by means of 638

co-reference resolution, and reasoning over the tar- 639

get text using Transformer-XH. The experimental 640

results have shown that each of these represents a 641

valuable information source, however, modeling 642

the source-side context is more important, and can 643

yield 10+ points of absolute improvement. 644

In future work, we plan to experiment with other 645

language models, and also to apply our approach to 646

other domains and languages, and tasks. 647
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Ethics and Broader Impact648

Biases We note that there might be some biases649

in the data we use, as well as in some judgments for650

claim matching. These biases, in turn, will likely651

be exacerbated by the unsupervised models trained652

on them. This is beyond our control, as the poten-653

tial biases in pre-trained large-scale transformers654

such as BERT and RoBERTa, which we use in our655

experiments.656

Intended Use and Misuse Potential Our mod-657

els can make it possible to put politicians on the658

spot in real time, e.g., during an interview or a po-659

litical debate, by providing journalists with tools to660

do trustable fact-checking in real time. They can661

also save a lot of time to fact-checkers for unneces-662

sary double-checking something that was already663

fact-checked. However, these models could also664

be misused by malicious actors. We, therefore, ask665

researchers to exercise caution.666

Environmental Impact We would also like to667

warn that the use of large-scale Transformers668

requires a lot of computations and the use of669

GPUs/TPUs for training, which contributes to670

global warming (Strubell et al., 2019). This is a bit671

less of an issue in our case, as we do not train such672

models from scratch; rather, we fine-tune them on673

relatively small datasets. Moreover, running on a674

CPU for inference, once the model is fine-tuned, is675

perfectly feasible, and CPUs contribute much less676

to global warming.677
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