
Latent Geodesics of Model Dynamics for
Offline Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Model-based offline reinforcement learning approaches generally rely on bounds1

of model error. While contemporary methods achieve such bounds through an2

ensemble of models, we propose to estimate them using a data-driven latent metric.3

Particularly, we build upon recent advances in Riemannian geometry of generative4

models to construct a latent metric of an encoder-decoder based forward model.5

Our proposed metric measures both the quality of out of distribution samples as6

well as the discrepancy of examples in the data. We show that our metric can be7

viewed as a combination of two metrics, one relating to proximity and the other to8

epistemic uncertainty. Finally, we leverage our metric in a pessimistic model-based9

framework, showing a significant improvement upon contemporary model-based10

offline reinforcement learning benchmarks.11

1 Introduction12

This work focuses on leveraging Riemannian geometry of generative models in offline reinforcement13

learning.14

Offline reinforcement learning (offline RL) (Levine et al., 2020), a.k.a. batch-mode reinforcement15

learning (Ernst et al., 2005; Riedmiller, 2005; Fonteneau et al., 2013), involves learning a policy16

from potentially suboptimal data. In contrast to imitation learning (Schaal, 1999), offline RL does17

not rely on expert demonstrations, but rather seeks to surpass the average performance of the agents18

that generated the data. Methodologies such as the gathering of new experience fall short in offline19

settings, requiring reassessment of fundamental learning paradigms (Buckman et al., 2020; Wang20

et al., 2020; Zanette, 2020).21

The geometry of latent generative models has recently gained interest in unsupervised domains22

(Chen et al., 2018; Arvanitidis et al., 2018; Chen et al., 2020a; Arvanitidis et al., 2020). There,23

variational autoencoders (VAEs) have been shown to capture significant metrics in their latent24

representations. The resulting manifold has been shown to capture a smooth metric of the ambient25

output space, as well as properly capture uncertainty estimates in out of distribution (OOD) regions26

(Arvanitidis et al., 2018).27

In this work, we introduce the aforementioned Riemannian theory of generative models to reinforce-28

ment learning. Specifically, we generalize previous results in VAEs to learn a Riemannian manifold29

w.r.t. the environment’s dynamics. We achieve this by training a variational forward model of the30

next state. Our latent model induces a manifold and metric which capture the natural characteristics31

of the environment’s dynamics. Moreover, we show that this metric can be analytically decoupled32

into metrics relating to proximity and uncertainty. Our proposed metric can be utilized in a vast range33

of model-based approaches in reinforcement learning (e.g., offline RL, planning). Here, we show34

how our learned metric can be leveraged in a model-based offline reinforcement learning framework.35

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Our contributions are as follows.36

Technical Contributions: (1) We introduce a natural metric for forward model dynamics. The37

induced metric, for which we derive analytical expression for in Section 4, can be represented as38

a union of two metrics; namely, a metric of proximity and a metric of uncertainty. We depict the39

geodesics of the induced metric on a grid-like environment, suggesting our latent model captures40

valuable structural dependencies. (2) We integrate our metric in a model-based offline RL framework,41

where an agent is penalized with accordance to its distance to the data. As such, we demonstrate42

improved performance to contemporary offline RL approaches on several benchmarks (Section 6).43

Broader Impact: Our proposed metric can be leveraged in a vast range of domains. While our work44

is focused on its application to offline RL, its unique characteristics can be utilized in online control,45

planning, and predictive analysis, as well as improve explainability of the agent and the environment.46

Still, using approximate models to make decisions in the real world can bring to negative social47

impact. Wrongful, unethical, or dangerous decisions may harm individuals affected by such actions.48

2 Preliminaries49

2.1 Offline Reinforcement Learning50

We consider the standard Markov Decision Process (MDP) framework (Sutton et al., 1998) defined51

by the tuple (S,A, r, P, α), where S is the state space, A the action space, r : S ×A 7→ [0, 1] the52

reward function, P : S ×A× S 7→ [0, 1] the transition kernel, and α ∈ (0, 1) is the discount factor.53

In the online setting of reinforcement learning (RL), the environment initiates at some state s0 ∼ ρ0.54

At any time step the environment is in a state s ∈ S, an agent takes an action a ∈ A and receives a55

reward r(s, a) from the environment as a result of this action. The environment transitions to state s′56

according to the transition function P (·|s, a). The goal of online RL is to find a policy π(a|s) that57

maximizes the expected discounted return vπ = Eπ
[∑∞

t=0 α
tr(st, at)|s0 ∼ ρ0

]
.58

Unlike the online setting, the offline setup considers a dataset Dn = {si, ai, ri, s′i}
n
i=1 of transitions59

generated by some unknown agents. The objective of offline RL is to find the best policy in the test60

environment (i.e., real MDP) given only access to the data generated by the unknown agents.61

2.2 Riemannian Manifolds62

We define the Riemannian pullback metric, a fundamental component of our proposed method. We63

refer the reader to Carmo (1992) for further details on Riemannian geometry.64

We are interested in studying a smooth surface M with a Riemannian metric g. A Riemannian metric65

is a smooth function that assigns a symmetric positive definite matrix to any point in M . At each66

point z ∈M a tangent space TzM specifies the pointing direction of vectors “along” the surface.67

Definition 1. Let M be a smooth manifold. A Riemannian metric g on M changes smoothly and68

defines a real scalar product on the tangent space TzM for any z ∈M as69

gz(x, y) = 〈x, y〉z = 〈x,G(z)y〉, x, y ∈ TzM,

where G(z) ∈ Rdz×dz is the corresponding metric tensor. (M, g) is called a Riemannian manifold.70

The Riemannian metric enables us to easily define geodesic curves. Consider some differentiable71

mapping γ : [0, 1] 7→M ⊆ Rdz , such that γ(0) = z0, γ(1) = z1. The length of the curve γ measured72

on M is given by73

L(γ) =

∫ 1

0

√〈
∂γ(t)

∂t
,G(γ(t))

∂γ(t)

∂t

〉
dt. (1)

The geodesic distance d(z1, z2) between any two points z1, z2 ∈M is then the infimum length over74

all curves γ for which γ(0) = z0, γ(1) = z1. That is,75

d(z1, z2) = inf
γ
L(γ) s.t. γ(0) = z0, γ(1) = z1.

The geodesic distance can be found by solving a system of nonlinear ordinary differential equations76

(ODEs) defined in the intrinsic coordinates (Carmo, 1992).77

2

Offline Data

Simulated
Environment Agent

MOPO
(Yu et al., 2020)

GELATO
(ours)

Model Ensemble

Riemannian Metric
(Equation 5)

Figure 1: A reward-penalized (pessimistic) MDP is constructed from the offline data. In MOPO, the penalty is
constructed using an ensemble of learned transition models. Instead, we propose to estimate the error in model
dynamics through a Riemannian metric induced by a variational forward model.

Pullback Metric. Assume an ambient (observation) space X and its respective Riemannian manifold78

(MX , gX). Learning gX can be hard (e.g., learning the distance metric between images). Still, it79

may be captured through a low dimensional submanifold. As such, it is many times convenient to80

parameterize the surface MX by a latent space Z = RdZ and a smooth function f : Z 7→ X , where81

Z is a low dimensional latent embedding space. As learning the manifold MX can be hard, we turn82

to learning the immersed low dimensional submanifold MZ (for which the chart maps are trivial,83

since Z = RdZ). Given a curve γ : [0, 1] 7→MZ we have that84 〈
∂f(γ(t))

∂t
,GX (f(γ(t)))

∂f(γ(t))

∂t

〉
=

〈
∂γ(t)

∂t
, JTf (γ(t))GX (f(γ(t)))Jf (γ(t))

∂γ(t)

∂t

〉
,

where the Jacobian matrix Jf (z) = ∂f
∂z ∈ RdX×dZ maps tangent vectors in TMZ to tangent vectors85

in TMX . The induced metric is thus given by86

Gf (z) = Jf (z)TGX (f(z))Jf (z). (2)
The metric Gf is known as the pullback metric, as it “pulls back" the metric GX on X back to Gf87

via f : Z 7→ X . The pullback metric captures the intrinsic geometry of the immersed submanifold88

while taking into account the ambient space X . The geodesic distance in ambient space is captured89

by geodesics in the latent space Z , reducing the problem to learning the latent embedding space Z90

and the observation function f . Indeed, learning the latent space and observation function f can be91

achieved through a encoder-decoder framework, such as a VAE (Arvanitidis et al., 2018).92

3 Background: Model Error in Offline RL93

A key element of model-based RL methods involves estimating a model P̂ (s′|s, a). In model-based94

offline RL, a pessimistic MDP1 is constructed through an upper bound on the error of the estimated95

model. This work builds upon MOPO, a recently proposed model-based offline RL framework (Yu96

et al., 2020)). Particularly, we assume access to an approximate MDP (S,A, r̂, P̂ , α) (e.g., trained97

by maximizing the likelihood of the data), and define a penalized MDP (S,A, r̃, P̂ , α), such that98

r̃(s, a) = r̂(s, a)− λd(P (·|s, a), P̂ (·|s, a)),∀s ∈ S, a ∈ A,
where d is a given metric (e.g., the total variation distance) and λ > 0. The offline RL problem is99

then solved by executing an online algorithm in the reward-penalized (simulated) MDP.100

Unfortunately, as P (·|s, a) is unknown, d(P (·|s, a), P̂ (·|s, a)) cannot be calculated. Nevertheless,101

one can attempt to upper bound the distance, i.e., for some U : S ×A 7→ R,102

d(P (·|s, a), P̂ (·|s, a)) ≤ U(s, a),∀s ∈ S, a ∈ A.
Figure 1 depicts the general framework. A question arises: how should U(s, a) be chosen? In103

practice, MOPO learns an ensemble of models P̂1, . . . , P̂k to measure the upper bound U(s, a). In104

this work, we propose to use a naturally induced metric of a variational forward model, which we105

show can introduce a more effective upper bound for offline RL. In Section 4 we define this metric,106

and finally, we leverage it to upper bound the model error in Section 5.107

1Pessimism is a key element of offline RL algorithms (Jin et al., 2020), limiting overestimation of a trained
policy due to the distribution shift between the data and the trained policy.

3

4 Metrics of Model Dynamics108

We propose to measure the error in the model dynamics d(P (·|s, a), P̂ (·|s, a)) by embedding the109

offline data in a smooth Riemmanian manifold, equipped with a natural metric, enabling us to measure110

the error of out of distribution samples. Our metric is a generalization of the metric proposed by111

Arvanitidis et al. (2018) for generative models.112

4.1 A Pullback Metric of Model Dynamics113

We begin by defining the immersed Riemannian submanifold and our proposed metric. The metric114

is defined by a latent space Z and an observation function f , which will be defined later by our115

variational forward model.116

Definition 2. We define a Riemannian submanifold (MZ , gZ) by a differential function f : Z 7→ S117

and latent space Z such that118

dZ(z1, z2) = inf
γ

∫ 1

0

∥∥∥∥∂f(γ(t))

∂t

∥∥∥∥ dt s.t. γ(0) = z1, γ(1) = z2.

A similar metric has been used in previous work on generative latent models (Chen et al., 2018;119

Arvanitidis et al., 2018). It states that latent codes are close w.r.t. dZ according to the curve which120

induces minimal energy in ambient observation space. It is closely related to the pullback metric (see121

Section 2.2), as shown by the following proposition (see Appendix for proof).122

Proposition 1. Let (MZ , gZ) as defined above. Then Gf (z) = JTf (z)Jf (z), for any z ∈ Z .123

Indeed, Proposition 1 shows us that Gf is a pullback metric. Particularly Z and Jf define the124

structure of the ambient observation space S. In what follows we characterize the submanifold MZ125

when z = E(s, a) and f(z) ∼ P (·|s, a) = P (·|z). We show that the expected pullback metric126

EP (f)

[
GZ(z)

]
captures notions of proximity and uncertainty and discuss how it can be utilized to127

measure distance to the data manifold.128

4.2 Metric of Proximity and Uncertainty of a Latent Forward Model129

We consider modeling P̂ (s′|s, a) using a generative latent model. Specifically, we consider a latent130

model which consists of an encoder E : S × A 7→ B(Z) and a decoder D : Z 7→ B(S), where131

B(X) is set of probability measures on the Borel sets of X . While the encoder E learns a latent132

representation of s, a, the decoder D estimates the next state s′ according to P (·|s, a). This model133

corresponds to the decomposition P (·|s, a) = D(·|E(s, a)), where here D plays the role of the134

observation function f , and E maps states and actions to the latent space Z . Such a model can be135

trained by maximizing the evidence lower bound (ELBO) over the data. That is, given a prior P (z),136

we model Eφ, Dθ as parametric functions and maximize the ELBO137

max
θ,φ

EEφ(z|s,a)

[
logDθ(s

′|z)
]
−DKL(Eφ(z|s, a)||P (z))

We refer the reader to the appendix for an exhaustive overview of training VAEs by maximum138

likelihood and the ELBO.139

Having trained the latent model over the data Dn, we may consider the Riemannian submanifold140

induced by its latent space Z and observation function D. Since D is stochastic, the metric GZ also141

becomes stochastic, complicating analysis. Instead, Arvanitidis et al. (2018) proposed to use the142

expected pullback metric E [GZ], showing it is a good approximation of the underlying stochastic143

metric. Using Proposition 1, we have the following result (see Appendix for proof).144

Theorem 1. [Arvanitidis et al. (2018)] Assume D(·|z) ∼ N (µ(z), σ(z)I). Then145

ED(·|z)

[
GD(z)

]
= ED(·|z)

[
JD(z)TJD(z)

]
= Gµ(z)︸ ︷︷ ︸

proximity

+ Gσ(z)︸ ︷︷ ︸
uncertainty

, (3)

where Gµ(z) = JTµ (z)Jµ(z) and Gσ(z) = JTσ (z)Jσ(z).146

4

Pullback Metric (Proximity and Uncertainty)

Figure 2: Plot depicts the variational latent forward model and its respective pullback metrics. Expressions for
the expected pullback metrics are given in Theorems 1 and 2.

Given an embedded latent space Z , the expected metric in Equation (3) gives us a sense of the147

topology of the latent space manifold induced by D. The terms Gµ = JTµ Jµ and Gσ = JTσ Jσ are148

in fact the induced pullback metrics of µ and σ, respectively. As shortest geodesics will tend to149

follow small values of ‖E [GD]‖, Gµ will keep away from areas with no latent codes, whereas Gσ150

will remain small in regions of low uncertainty. We therefore recognize Gµ and Gσ as metrics of151

proximity and uncertainty, respectively.152

A skewed metric. Due to the inherent decoupling between proximity and uncertainty, it may be153

beneficial to control the curvature of the expected metric by only focusing on one of the metrics.154

Denoting αprox ∈ [0, 1] as the proximity coefficient, we define the skewed pullback metric of D as155

GαD = αproxGµ + (1− αprox)Gσ. (4)
The skewed pullback metric will become valueable in Section 6, as we carefully control the tradeoff156

between proximity and uncertainty in the tested domains.157

4.3 Capturing Epistemic and Aleatoric Uncertainty158

The previously proposed encoder-decoder model induces a metric which captures both proximity and159

uncertainty w.r.t. the learned dynamics. However, the decoder variance, σ(z), does not differentiate160

between aleatoric uncertainty (relating to the environment dynamics) and epistemic uncertainty161

(relating to missing data). To bound the validity of out of distribution (OOD) samples, we wish to162

capture epistemic uncertainty.163

The epistemic uncertainty can be captured by methods such as model ensembles or Monte-Carlo164

dropout (Gal & Ghahramani, 2016). Instead, we apply an additional forward model to our previously165

proposed variational model. Specifically, we assume a latent model which consists of an encoder166

E : S × A 7→ B(Z), forward model F : Z 7→ B(X) and decoder D : X 7→ B(S) such that167

P (·|s, a) = D(·|x), and x ∼ F (·|E(s, a)). This structure enables us to capture the aleatoric168

uncertainty under the forward transition model F , and the epistemic uncertainty using the decoder D.169

That is, σD(z) is used as a measure of epistemic uncertainty, as σF (z) can capture the stochasticity170

in model dynamics. This forward model is depicted in Figure 2.171

Next, we turn to analyze the pullback metric induced by the proposed forward transition model. As172

both F and D are stochastic (capturing epistemic and aleatoric uncertainty), the result of Theorem 1173

cannot be directly applied to their composition. The following proposition provides an analytical174

expression for the expected pullback metric of D ◦ F (see Appendix for proof).175

Theorem 2. Assume F (·|z) ∼ N (µF (z), σF (z)I), D(·|x) ∼ N (µD(x), σD(x)I). Then, the ex-176

pected pullback metric of the composite function (D ◦ F) is given by177

EP (D◦F)

[
GD◦F (z)

]
= JTµF (z)GD(z)JµF (z) + JTσF (z)diag

(
GD(z)

)
JσF (z),

where here, GD(z) = Ex∼F (·|z)

[
JTµD (x)JµD (x) + JTσD (x)JσD (x)

]
.178

Unlike the metric in Equation (3), the composite metric distorts the decoder metric with Jacobian179

matrices of the forward model statistics. The composite metric takes into account both proximity and180

uncertainty w.r.t. the ambient space as well as the latent forward model. As before, a skewed version181

of the metric can be designed, replacing GD with its skewed version.182

5

Algorithm 1 GELATO: Geometrically Enriched LATent model for Offline reinforcement learning

1: Input: Offline dataset Dn, RL algorithm
2: Train variational latent forward model on dataset Dn by maximizing ELBO.
3: Construct approximate MDP (S,A, r̂, P̂ , α)

4: Define r̃d(s, a) = r̂(s, a)− λ
(

1
K

∑K
k=1 dZ(E(s, a),NN(k)

E(s,a))
)

, with distance dZ induced by
pullback metric GD◦F (Theorem 2).

5: Train RL algorithm over penalized MDP (S,A, r̃d, P̂ , α)

5 GELATO: Incorporating the Metric in Offline RL183

Having defined our metric, we are now ready to leverage it in a model based offline RL framework184

(see Figure 1). Specifically, provided a dataset Dn = {(si, ai, ri, s′i)}
n
i=1 we train the variational185

latent forward model depicted in Figure 2. The model consists of an encoder E, which maps states186

and actions to a latent space Z , a forward function F which maps the latent point E(s, a) to a latent187

point x ∼ F (·|E(s, a), and finally a decoder which maps x to the next state s′ ∼ D(·|x). The model188

is trained by maximizing the likelihood of state transitions in the data (a full derivation is given in the189

appendix). Our latent forward model induces a latent space Z and a pullback metric GD◦F (z) which190

define the distance metric dZ (Definition 2).191

Algorithm 1 presents GELATO, our proposed approach. In GELATO, we estimate an upper bound,192

U(s, a), on the model error by measuring the distance of a new sample to the data manifold. That is,193

d(P (·|s, a), P̂ (·|s, a) ≤ U(s, a)
∆
=

(
1

K

K∑
k=1

dZ(E(s, a),NN(k)
E(s,a))

)
, (5)

where here, NN(k)
E(s,a) is the kth nearest neighbor of E(s, a) in Dn w.r.t. the metric dZ . Note the sum194

over K nearest neighbors, allowing for more robust quantification of the distance.195

We construct the reward-penalized MDP defined in Section 3 for which the upper bound U(s, a)196

acts as a pessimistic regularizer. Finally, we train an RL algorithm over the pessimistic MDP with197

transition P̂ (·|s, a) and reward r(s, a)− λU(s, a).198

6 Experiments199

6.1 Metric Visualization200

To better understand the inherent structure of our metric, we constructed a grid-world environment201

for visualizing our proposed latent representation and metric. The 15× 15 environment, as depicted202

in Figure 3, consists of four rooms, with impassable obstacles in their centers. The agent, residing203

at some position (x, y) ∈ [−1, 1]2 in the environment can take one of four actions: up, down, left,204

or right – moving the agent 1, 2 or 3 steps (uniformly distributed) in that direction. We collected a205

dataset of 10000 samples, taking random actions at random initializations of the environment. The206

ambient state space was represented by the position of the agent – a vector of dimension 2, normalized207

to values in [−1, 1]. Finally, we trained a variational latent model with latent dimension dZ = 2.208

We used a standard encoder z ∼ N (µθ(s), σθ(s)) and decoder s′ ∼ N (µφ(z), σφ(z)) represented209

by neural networks trained end-to-end using the evidence lower bound. We refer the reader to the210

appendix for an exhaustive description of the training procedure.211

The latent space output of our model is depicted by yellow markers in Figure 3a. Indeed, the latent212

embedding consists of four distinctive clusters, structured in a similar manner as our grid-world213

environment. Interestingly, the distortion of the latent space accurately depicts an intuitive notion of214

distance between states. As such, rooms are distinctively separated, with fair distance between each215

cluster. States of pathways between rooms clearly separate the room clusters, forming a topology216

with four discernible bottlenecks.217

6

(a)
√

det(GD) (b) Latent Geodesic Distance (c) Latent Euclidean Distance

Figure 3: (a) The latent space (yellow markers) of the grid world environment and the geometric volume
measure of the decoder-induced metric (background). (b, c) The geodesic distance of the decoder-induced
submanifold and the Euclidean distance of latent states, as viewed in ambient space. All distances are calculated
w.r.t. the yellow marked state. Note: colors in (a), which measure magnitude, are unrelated to colors in (b,c),
which measure distance to the yellow marked state.

In addition to the latent embedding, Figure 3a depicts the geometric volume measure2
√

det(GD) of218

the trained pullback metric induced by D. This quantity demonstrates the effective geodesic distances219

between states in the decoder-induced submanifold. Indeed geodesics between data points to points220

outside of the data manifold (i.e., outside of the red region), would attain high values as integrals over221

areas of high magnitude. In contrast, geodesics near the data manifold would attain low values.222

Comparison to Euclidean distance. We visualize the decoder-induced geodesic distance and223

compare it to the latent Euclidean distance in Figures 3b and 3c, respectively. The plots depict the224

normalized distances of all states to the state marked by a yellow square. Evidently, the geodesic225

distance captures a better notion of distance in the said environment, correctly exposing the “land226

distance" in ambient space. As expected, states residing in the bottom-right room are farthest from227

the source state, as reaching them comprises of passing through at least two bottleneck states. In228

contrast, the latent Euclidean distance does not properly capture these geodesics, exhibiting a similar229

distribution of distances in other rooms. Nevertheless, both geodesic and Euclidean distances reveal230

the intrinsic topological structure of the environment, that of which is not captured by the extrinsic231

coordinates (x, y) ∈ [−1, 1]2. Particularly, the state coordinates (x, y) would wrongly assign short232

distances to states across impassible walls or obstacles, i.e., measuring the “air distance".233

6.2 Continuous Control234

We performed experiments to analyze GELATO on various continuous control datasets.235

Datasets. We used D4RL (Fu et al., 2020) (CC BY 4.0 license) as a benchmark for all of our236

experiments. We tested GELATO on three Mujoco (Todorov et al., 2012) environments (Hopper,237

Walker2d, Halfcheetah) on datasets generated by a single policy and a mixture of two policies.238

Specifically, we used datasets generated by a random agent (1M samples), a partially trained agent,239

i.e, medium agent (1M samples), and a mixture of partially trained and expert agents (2M samples).240

Implementation Details. We trained our variational model with latent dimension241

dim(Z) = 32 + dim(A). The latent model was trained for 100k steps by stochastic gradient descent242

with batch size of 256. We split training into two phases. First, the model was fully trained using a243

calibrated Gaussian decoder (Rybkin et al., 2020). Specifically, a maximum-likelihood estimate of244

the variance was used σ∗ = MSE(µ, µ̂) ∈ arg maxσN (µ̂|µ, σ2I). Then, in the second stage we fit245

the variance decoder network.246

In order to practically estimate the geodesic distance in Algorithm 1, we defined a parametric curve247

in latent space and used gradient descent to minimize the curve’s energy. The resulting curve and248

pullback metric were then used to calculate the geodesic distance by a numerical estimate of the249

curve length (Equation (4)) (See Appendix for an exhaustive overview of the estimation method).250

We used FAISS (Johnson et al., 2019) (MIT-license) for efficient GPU-based k-nearest neighbors251

calculation. We set K = 20 neighbors for the penalized reward (Equation (5)). Finally, we used a252

2The geometric volume measure captures the volume of an infinitesimal area in the latent space.

7

Hopper Walker2d Halfcheetah
Method Rand Med Med-Expert Rand Med Med-Expert Rand Med Med-Expert
Data Score 299 1021 1849 1 498 1062 -303 3945 8059
GELATO 685 1676 574 412 1269 1515 116 5168 6449

GELATO-unc 481 1158 879 290 487 1473 23 3034 7130
GELATO-prox 240 480 920 158 571 1596 -28 3300 7412

MOPO 677 1202 1063 396 518 1296 4114 4974 7594
MBPO 444 457 2105 251 370 222 3527 3228 907
SAC 664 325 1850 120 27 -2 3502 -839 -78

Imitation 615 1234 3907 47 193 329 -41 4201 4164

Table 1: Performance of GELATO and its variants in comparison to contemporary model-based methods on
D4RL datasets. Scores correspond to the return, averaged over 5 seeds (standard deviation removed due to space
constraints and is given in the appendix). Results for MOPO, MBPO, SAC, and imitation are taken from Yu et al.
(2020). Mean score of dataset added for reference. Bold scores show an improved score w.r.t other methods.

variant of Soft Learning, as proposed by Yu et al. (2020) as our RL algorithm, trained for 1M steps.253

Each experiment was run on a single GPU, RTX 2080 (see Appendix for more details).254

Proximity vs. Uncertainty. To test GELATO we constructed two variants, trading off proximity255

and uncertainty through our latent-induced metric. Particularly, we denote by GELATO-UNC and256

GELATO-PROX variants which implement the skewed metric (see Equation (4)), with αprox = 0.1257

and αprox = 0.9, respectively. We compared GELATO and its variants to contemporary model-based258

offline RL approaches; namely, MOPO (Yu et al., 2020) and MBPO (Janner et al., 2019), as well as259

the standard baselines of SAC (Haarnoja et al., 2018) and imitation (behavioral cloning).260

Results for all of the tested domains are shown in Table 1. For the non-skewed version of GELATO261

(i.e., αprox = 0.5) we found performance increase on most domains, and most significantly in the262

medium domain, i.e., partially trained agent. We believe this to be due to the inherent nature of our263

metric to take into account both proximity and uncertainty, allowing the agent to leverage proximity264

to the data in areas of high uncertainty. Since the medium dataset contained average behavior, mixing265

proximity benefited the agent’s overall performance.266

In most of the tested datasets we found an increase in performance for at least one of the GELATO267

variants. The med-expert datasets showed better performance for the proximity-oriented metric.268

These suggest flexibility of our metric to increase performance when the quality of the dataset is269

known, a reasonable assumption in many domains. Moreoever, the non-skewed version of GELATO,270

showed consistency over all datasets, favorably leveraging the strengths of proximity and uncertainty.271

6.3 RBF Networks.272

A question arises as to how to represent σD(z). In general, neural networks may result in a poor273

measure of uncertainty, due to uncontrolled extrapolations of the neural network to arbitrary regions274

of the latent space, i.e., areas of little data. However, Arvanitidis et al. (2017) showed that the inverse275

variance β(z) = (σ2(z))−1 with a positive Radial Basis Function (RBF) network achieves a reliable276

uncertainty estimate, with well-behaved extrapolations in latent space. Formally the RBF network is277

defined by σ(z) =
√

(β(z))−1 where β(z) = WTφ(z), φi(z) = exp
(
− 1

2λi ‖z − ci‖
2
2

)
, W are the278

positive learned weights of the network, λi the bandwith, and ci the centers trained using k-means279

over the learned latent representations of the offline data.280

We tested GELATO on D4RL Mujoco benchmarks with an RBF decoder network. Specifically, we281

followed a similar training procedure with two training phases. In the first training phase we trained282

our variational model with a calibrated decoder as before. In the second training phase we used283

k-means to cluster our dataset to 128 clusters, after which an RBF network was trained for a second284

phase of 50000 iterations.285

Hopper

Method Random Medium Med-Expert
GELATO 685 ± 15 1676 ± 223 574 ± 16

GELATO-RBF 613 ± 24 1700 ± 319 498 ± 55

Table 2: Performance of GELATO using an RBF decoder compared to standard decoder.

8

Results for GELATO with RBF decoder networks for the Hopper environment are presented in286

Table 2. We did not find significant improvement in using RBF networks over decoder variance. We287

believe this is due to the smoothness in ambient space, allowing for well behaved extrapolations of288

uncertainty. We conjecture RBF networks may show improved performance on higher dimensional289

problems (e.g., images), yet we leave this for future work, as these may involve utilizing more290

involved variational models (Vahdat & Kautz, 2020).291

7 Related Work292

Offline Reinforcement Learning. The field of offline RL has recently received much attention as293

several algorithmic approaches were able to surpass standard off-policy algorithms. Value-based294

online algorithms do not perform well under highly off-policy batch data (Fujimoto et al., 2019;295

Kumar et al., 2019; Fu et al., 2019; Fedus et al., 2020; Agarwal et al., 2020), much due to issues with296

bootstrapping from out-of-distribution (OOD) samples. These issues become more prominent in the297

offline setting, as new samples cannot be acquired.298

Several works on offline RL have shown improved performance on standard continuous control299

benchmarks (Laroche et al., 2019; Kumar et al., 2019; Fujimoto et al., 2019; Chen et al., 2020b;300

Swazinna et al., 2020; Kidambi et al., 2020; Yu et al., 2020; Kumar et al., 2020). In this work we were301

specifically interested in model-based approaches (Yu et al., 2020; Kidambi et al., 2020), in which302

the agent is incentivized to remain close to areas of low uncertainty. Our work focused on controlling303

uncertainty estimation in high dimensional environments. Our methodology utilized recent success304

on the geometry of deep generative models (Arvanitidis et al., 2018, 2020), proposing an alternative305

approach to uncertainty estimation.306

Representation Learning. Representation learning seeks to find an appropriate representation of307

data for performing a machine-learning task (Goodfellow et al., 2016). Variational Auto Encoders308

(Kingma & Welling, 2013; Rezende et al., 2014) have been a popular representation learning309

technique, particularly in unsupervised learning regimes (Kingma et al., 2014; Sønderby et al.,310

2016; Chen et al., 2016; Van Den Oord et al., 2017; Hsu et al., 2017; Serban et al., 2017; Engel311

et al., 2017; Bojanowski et al., 2018; Ding et al., 2020), though also in supervised learning and312

reinforcement learning (Hausman et al., 2018; Li et al., 2019; Petangoda et al., 2019; Hafner et al.,313

2019, 2020). Particularly, variational models have been shown able to derive successful behaviors in314

high dimensional benchmarks (Hafner et al., 2020).315

Various representation techniques in reinforcement learning have also proposed to disentangle316

representation of both states (Engel & Mannor, 2001; Littman & Sutton, 2002; Stooke et al., 2020;317

Zhu et al., 2020), and actions (Tennenholtz & Mannor, 2019; Chandak et al., 2019). These allow318

for the abstraction of states and actions to significantly decrease computation requirements, by e.g.,319

decreasing the effective dimensionality of the action space (Tennenholtz & Mannor, 2019). Unlike320

previous work, GELATO is focused on measuring proximity and uncertainty for the purpose of321

mitigating the OOD problem and enhancing offline reinforcement learning performance.322

8 Discussion and Future Work323

This work presented a metric for model dynamics and its application to offline reinforcement learning.324

While our metric showed supportive evidence of improvement in model-based offline RL we note325

that it was significantly slower – comparably, 5 times slower than using the decoder’s variance for326

uncertainty estimation. The apparent slowdown in performance was mostly due to computation of the327

geodesic distance. Improvement in this area may utilize techniques for efficient geodesic estimation328

(Chen et al., 2018, 2019).329

We conclude by noting possible future applications of our work. In Section 6.1 we demonstrated the330

inherent geometry our model had captured, its corresponding metric, and geodesics. Still, in this331

work we focused specifically on metrics related to the decoded state. In fact, a similar derivation332

to Theorem 2 could be applied to other modeled statistics, e.g., Q-values, rewards, future actions,333

and more. Each distinct statistic would induce its own unique metric w.r.t. its respective probability334

measure. Particularly, this concept may benefit a vast array of applications in continuous or large335

state and action spaces.336

9

References337

Agarwal, R., Schuurmans, D., and Norouzi, M. An optimistic perspective on offline reinforcement338

learning. In International Conference on Machine Learning, pp. 104–114. PMLR, 2020.339

Arvanitidis, G., Hansen, L. K., and Hauberg, S. Maximum likelihood estimation of riemannian340

metrics from euclidean data. In International Conference on Geometric Science of Information, pp.341

38–46. Springer, 2017.342

Arvanitidis, G., Hansen, L. K., and Hauberg, S. Latent space oddity: On the curvature of deep343

generative models. In 6th International Conference on Learning Representations, ICLR 2018,344

2018.345

Arvanitidis, G., Hauberg, S., and Schölkopf, B. Geometrically enriched latent spaces. arXiv preprint346

arXiv:2008.00565, 2020.347

Bojanowski, P., Joulin, A., Lopez-Pas, D., and Szlam, A. Optimizing the latent space of generative348

networks. In International Conference on Machine Learning, pp. 600–609, 2018.349

Buckman, J., Gelada, C., and Bellemare, M. G. The importance of pessimism in fixed-dataset policy350

optimization. arXiv preprint arXiv:2009.06799, 2020.351

Carmo, M. P. d. Riemannian geometry. Birkhäuser, 1992.352

Chandak, Y., Theocharous, G., Kostas, J., Jordan, S., and Thomas, P. Learning action representations353

for reinforcement learning. In International Conference on Machine Learning, pp. 941–950, 2019.354

Chen, N., Klushyn, A., Kurle, R., Jiang, X., Bayer, J., and Smagt, P. Metrics for deep generative355

models. In International Conference on Artificial Intelligence and Statistics, pp. 1540–1550.356

PMLR, 2018.357

Chen, N., Ferroni, F., Klushyn, A., Paraschos, A., Bayer, J., and van der Smagt, P. Fast approximate358

geodesics for deep generative models. In International Conference on Artificial Neural Networks,359

pp. 554–566. Springer, 2019.360

Chen, N., Klushyn, A., Ferroni, F., Bayer, J., and van der Smagt, P. Learning flat latent manifolds361

with vaes. 2020a.362

Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal, P., Schulman, J., Sutskever, I., and Abbeel,363

P. Variational lossy autoencoder. arXiv preprint arXiv:1611.02731, 2016.364

Chen, X., Zhou, Z., Wang, Z., Wang, C., Wu, Y., and Ross, K. Bail: Best-action imitation learning365

for batch deep reinforcement learning. Advances in Neural Information Processing Systems, 33,366

2020b.367

Ding, Z., Xu, Y., Xu, W., Parmar, G., Yang, Y., Welling, M., and Tu, Z. Guided variational autoencoder368

for disentanglement learning. In Proceedings of the IEEE/CVF Conference on Computer Vision369

and Pattern Recognition, pp. 7920–7929, 2020.370

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear independent components estimation. arXiv371

preprint arXiv:1410.8516, 2014.372

Engel, J., Hoffman, M., and Roberts, A. Latent constraints: Learning to generate conditionally from373

unconditional generative models. arXiv preprint arXiv:1711.05772, 2017.374

Engel, Y. and Mannor, S. Learning embedded maps of markov processes. In Proceedings of the375

Eighteenth International Conference on Machine Learning, pp. 138–145, 2001.376

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch mode reinforcement learning. Journal of377

Machine Learning Research, 6(Apr):503–556, 2005.378

Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y., Larochelle, H., Rowland, M., and Dabney, W.379

Revisiting fundamentals of experience replay. In International Conference on Machine Learning,380

pp. 3061–3071. PMLR, 2020.381

10

Fonteneau, R., Murphy, S. A., Wehenkel, L., and Ernst, D. Batch mode reinforcement learning based382

on the synthesis of artificial trajectories. Annals of operations research, 208(1):383–416, 2013.383

Fu, J., Kumar, A., Soh, M., and Levine, S. Diagnosing bottlenecks in deep q-learning algorithms. In384

International Conference on Machine Learning, pp. 2021–2030, 2019.385

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. D4rl: Datasets for deep data-driven386

reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.387

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep reinforcement learning without exploration.388

In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.389

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty390

in deep learning. In international conference on machine learning, pp. 1050–1059, 2016.391

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. Deep learning, volume 1. MIT press392

Cambridge, 2016.393

Guss, W. H., Houghton, B., Topin, N., Wang, P., Codel, C., Veloso, M., and Salakhutdinov, R.394

MineRL: A large-scale dataset of Minecraft demonstrations. Twenty-Eighth International Joint395

Conference on Artificial Intelligence, 2019. URL http://minerl.io.396

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: Off-policy maximum entropy397

deep reinforcement learning with a stochastic actor. In International Conference on Machine398

Learning, pp. 1861–1870. PMLR, 2018.399

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to control: Learning behaviors by latent400

imagination. In International Conference on Learning Representations, 2019.401

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mastering atari with discrete world models. arXiv402

preprint arXiv:2010.02193, 2020.403

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N., and Riedmiller, M. Learning an embedding404

space for transferable robot skills. In International Conference on Learning Representations, 2018.405

Hsu, W.-N., Zhang, Y., and Glass, J. Unsupervised learning of disentangled and interpretable406

representations from sequential data. In Advances in neural information processing systems, pp.407

1878–1889, 2017.408

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust your model: Model-based policy409

optimization. arXiv preprint arXiv:1906.08253, 2019.410

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably efficient for offline rl? arXiv preprint411

arXiv:2012.15085, 2020.412

Johnson, J., Douze, M., and Jégou, H. Billion-scale similarity search with gpus. IEEE Transactions413

on Big Data, 2019.414

Kalatzis, D., Eklund, D., Arvanitidis, G., and Hauberg, S. Variational autoencoders with riemannian415

brownian motion priors. In Proceedings of the 37th International Conference on Machine Learning416

(ICML). PMLR, 2020.417

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. Morel: Model-based offline reinforce-418

ment learning. arXiv preprint arXiv:2005.05951, 2020.419

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint420

arXiv:1412.6980, 2014.421

Kingma, D. P. and Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,422

2013.423

Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and Welling, M. Semi-supervised learning with424

deep generative models. Advances in neural information processing systems, 27:3581–3589, 2014.425

11

http://minerl.io

Klushyn, A., Chen, N., Kurle, R., Cseke, B., and van der Smagt, P. Learning hierarchical priors in426

vaes. In Advances in Neural Information Processing Systems, pp. 2870–2879, 2019.427

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. Stabilizing off-policy q-learning via bootstrap-428

ping error reduction. In Advances in Neural Information Processing Systems, pp. 11784–11794,429

2019.430

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conservative q-learning for offline reinforcement431

learning. arXiv preprint arXiv:2006.04779, 2020.432

Laroche, R., Trichelair, P., and Des Combes, R. T. Safe policy improvement with baseline bootstrap-433

ping. In International Conference on Machine Learning, pp. 3652–3661. PMLR, 2019.434

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline reinforcement learning: Tutorial, review, and435

perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.436

Li, M., Wu, L., Jun, W., and Ammar, H. B. Multi-view reinforcement learning. In Advances in neural437

information processing systems, pp. 1420–1431, 2019.438

Littman, M. L. and Sutton, R. S. Predictive representations of state. In Advances in neural information439

processing systems, pp. 1555–1561, 2002.440

Petangoda, J. C., Pascual-Diaz, S., Adam, V., Vrancx, P., and Grau-Moya, J. Disentangled skill441

embeddings for reinforcement learning. arXiv preprint arXiv:1906.09223, 2019.442

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic backpropagation and approximate inference443

in deep generative models. arXiv preprint arXiv:1401.4082, 2014.444

Riedmiller, M. Neural fitted q iteration–first experiences with a data efficient neural reinforcement445

learning method. In European Conference on Machine Learning, pp. 317–328. Springer, 2005.446

Rybkin, O., Daniilidis, K., and Levine, S. Simple and effective vae training with calibrated decoders.447

arXiv preprint arXiv:2006.13202, 2020.448

Schaal, S. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3(6):449

233–242, 1999.450

Senge, R., Bösner, S., Dembczyński, K., Haasenritter, J., Hirsch, O., Donner-Banzhoff, N., and451

Hüllermeier, E. Reliable classification: Learning classifiers that distinguish aleatoric and epistemic452

uncertainty. Information Sciences, 255:16–29, 2014.453

Serban, I., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., and Bengio, Y. A hierarchical454

latent variable encoder-decoder model for generating dialogues. In Proceedings of the AAAI455

Conference on Artificial Intelligence, volume 31, 2017.456

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., and Winther, O. Ladder variational457

autoencoders. In Advances in neural information processing systems, pp. 3738–3746, 2016.458

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. Decoupling representation learning from reinforce-459

ment learning. arXiv preprint arXiv:2009.08319, 2020.460

Sutton, R. S., Barto, A. G., et al. Introduction to reinforcement learning, volume 135. MIT press461

Cambridge, 1998.462

Swazinna, P., Udluft, S., and Runkler, T. Overcoming model bias for robust offline deep reinforcement463

learning. arXiv preprint arXiv:2008.05533, 2020.464

Tennenholtz, G. and Mannor, S. The natural language of actions. In International Conference on465

Machine Learning, pp. 6196–6205, 2019.466

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for model-based control. In 2012467

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE,468

2012.469

12

Vahdat, A. and Kautz, J. Nvae: A deep hierarchical variational autoencoder. arXiv preprint470

arXiv:2007.03898, 2020.471

Van Den Oord, A., Vinyals, O., et al. Neural discrete representation learning. In Advances in Neural472

Information Processing Systems, pp. 6306–6315, 2017.473

Wang, R., Foster, D. P., and Kakade, S. M. What are the statistical limits of offline rl with linear474

function approximation? arXiv preprint arXiv:2010.11895, 2020.475

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S., Finn, C., and Ma, T. Mopo: Model-based476

offline policy optimization. arXiv preprint arXiv:2005.13239, 2020.477

Zanette, A. Exponential lower bounds for batch reinforcement learning: Batch rl can be exponentially478

harder than online rl. arXiv preprint arXiv:2012.08005, 2020.479

Zhu, J., Xia, Y., Wu, L., Deng, J., Zhou, W., Qin, T., and Li, H. Masked contrastive representation480

learning for reinforcement learning. arXiv preprint arXiv:2010.07470, 2020.481

13

Checklist482

1. For all authors...483

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s484

contributions and scope? [Yes]485

(b) Did you describe the limitations of your work? [Yes] computational limitation (discus-486

sion section).487

(c) Did you discuss any potential negative societal impacts of your work? [Yes] broader488

impact in introduction section489

(d) Have you read the ethics review guidelines and ensured that your paper conforms to490

them? [Yes]491

2. If you are including theoretical results...492

(a) Did you state the full set of assumptions of all theoretical results? [Yes]493

(b) Did you include complete proofs of all theoretical results? [Yes]494

3. If you ran experiments...495

(a) Did you include the code, data, and instructions needed to reproduce the main experi-496

mental results (either in the supplemental material or as a URL)? [Yes]497

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they498

were chosen)? [Yes]499

(c) Did you report error bars (e.g., with respect to the random seed after running experi-500

ments multiple times)? [Yes] standard deviation in Table 1501

(d) Did you include the total amount of compute and the type of resources used (e.g., type502

of GPUs, internal cluster, or cloud provider)? [Yes]503

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...504

(a) If your work uses existing assets, did you cite the creators? [Yes]505

(b) Did you mention the license of the assets? [Yes]506

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]507

(d) Did you discuss whether and how consent was obtained from people whose data you’re508

using/curating? [No] FAISS is under MIT license. Our usage of D4RL dataset does509

not require consent according to CC BY 4.0 license.510

(e) Did you discuss whether the data you are using/curating contains personally identifiable511

information or offensive content? [No] Data is of standard Mujoco benchmarks512

5. If you used crowdsourcing or conducted research with human subjects...513

(a) Did you include the full text of instructions given to participants and screenshots, if514

applicable? [N/A]515

(b) Did you describe any potential participant risks, with links to Institutional Review516

Board (IRB) approvals, if applicable? [N/A]517

(c) Did you include the estimated hourly wage paid to participants and the total amount518

spent on participant compensation? [N/A]519

14

Hopper Walker2d Halfcheetah
Method Random Medium Med-Expert Random Medium Med-Expert Random Medium Med-Expert
Data Score 299± 200 1021± 314 1849± 1560 1± 6 498± 807 1062± 1576 -303± 79 3945± 494 8059± 4204
GELATO 685± 15 1676± 223 574± 16 412± 85 1269± 549 1515± 379 116± 43 5168± 849 6449± 2790

GELATO-unc 481± 29 1158± 423 879± 153 290± 79 487± 289 1473± 389 23± 35 3034± 585 7130± 3780
GELATO-prox 240± 22 480± 15 920± 249 158± 35 571± 326 1596± 416 -28± 31 3300± 613 7412± 3166

MOPO 677± 13 1202± 400 1063± 193 396± 76 518± 560 1296± 374 4114± 312 4974± 200 7594± 4741
MBPO 444± 193 457± 106 2105± 1113 251± 235 370± 221 222± 99 3527± 487 3228± 2832 907± 1185
SAC 664 325 1850 120 27 -2 3502 -839 -78

Imitation 615 1234 3907 47 193 329 -41 4201 4164

Table 3: Results of GELATO as presented in Table 1 with added std for each run, averaged over 5 seeds.

Figure 4: A graphical representation of our latent variable model. (a) The state s is embedded via the state
embedding function (i.e., approximate posterior) z ∼ q(·|s). (b) The action and embedded state pass through an
invertible embedding function E to produce the state-action embedding Ez,a. (c,d) The state-action embedding
is passed through a reward predictor and latent forward model, r̂ ∼ P (·|Ez,a) and z′ ∼ P (·|z, a), respectively.
(e) The next latent state z′ is decoded back to observation space to generate ŝ′ ∼ P (·|z′). (f) Finally, during
training, the target state s′ is embedded and compared to z′ (by the KL-divergence term in Equation (7)),
preserving the consistency of the latent space Z .

Appendix520

9 Variational Latent Model521

We begin by describing our variational forward model. The model, based on an encoder, latent forward522

function, and decoder framework assumes the underlying dynamics and reward are governed by a523

state-embedded latent spaceZ ⊆ RdZ . The probability of a trajectory τ = (s0, a0, r0, . . . , sh, ah, rh)524

is given by525

P (τ) =

∫
z0,...,zh

P (z0)

h∏
i=0

P (si|zi)π(ai|si)P (ri|Ezi,ai)
h∏
j=1

P (zj |Ezj−1,aj−1)dz0 . . . dzh, (6)

where E : Z ×A 7→ E ⊆ RdE is a deterministic, invertible embedding function which maps pairs526

(z, a) to a state-action-embedded latent space E . Ez,a is thus a sufficient statistic of (z, a). The527

proposed graphical model is depicted in Figure 4. We note that an extension to the partially observable528

setting replaces st with ht = (s0, a0, . . . , st), a sufficient statistic of the unknown state.529

Maximizing the log-likelihood logP (τ) is hard due to intractability of the integral in Equation (6).530

We therefore introduce the approximate posterior q(z|s) and maximize the evidence lower bound.531

To clear notations we define Ez−1,a−1
= 0, so that we can rewrite the above expression as532

P (s0, a0, r0, . . . , sh, ah, rh) =

∫
z0,...,zh

h∏
i=0

P (si|zi)π(ai|si)P (ri|Ezi,ai)P (zj |Ez−1,a−1
)

15

Introducing q(zi|si) we can write533

log

∫
z0,...,zh

h∏
i=0

q(zi|si)
q(zi|si)

h∏
i=0

P (si|zi)π(ai|si)P (ri|Ezi,ai)P (zj |Ez−1,a−1
)

≥
∫
z0,...,zh

h∏
i=0

q(zi|si)

(
h∑
i=0

log

(
P (si|zi)π(ai|si)P (ri|Ezi,ai)P (zj |Ez−1,a−1

)

q(zi|si)

))

=

H∑
i=0

Eq(zi|si)
[
log(P (si | zi)π(ai | si)P (ri|Ezi,ai))

]
−
H−1∑
i=0

Eq(zi|si)
[
DKL(q(zi+1 | si+1) || P (zi+1|Ezi,ai))

]
−DKL(q(z0 | s0) || P (z0)).

Hence,534

h∑
i=0

Ezi∼q(zi|si)
[
log(P (si | zi)π(ai | si)P (ri|Ezi,ai))

]
−
h−1∑
i=0

Ezi∼q(zi|si)
[
DKL(q(zi+1 | si+1) || P (zi+1|Ezi,ai))

]
−DKL(q(z0 | s0) || P (z0)). (7)

The distribution parameters of the approximate posterior q(z|s), the likelihoods535

P (s|z), π(a|s), P (r|Ez,a), and the latent forward model P (z′|Ez,a) are represented by neu-536

ral networks. The invertible embedding function E is represented by an invertible neural network,537

e.g., affine coupling, commonly used for normalizing flows (Dinh et al., 2014). Though various latent538

distributions have been proposed (Klushyn et al., 2019; Kalatzis et al., 2020), we found Gaussian539

parametric distributions to suffice for all of our model’s functions. Particularly, we used two outputs540

for every distribution, representing the expectation µ and variance σ. All networks were trained541

end-to-end to maximize the evidence lower bound in Equation (7).542

Our latent variable model is designed to capture both the epistemic and aleatoric uncertainty (Senge543

et al., 2014). The variance output of the decoder captures epistemic uncertainty , while stochasticity544

of the latent forward model P (z′|Ez,a) captures aleatoric uncertainty. For the purpose of offline RL,545

we will focus on the epistemic uncertainty of our model.546

We tested the quality of our variational model on datasets of two tasks in Minecraft (Guss et al.,547

2019); namely, a navigation task (150k examples) and a tree chopping task (250k examples), both548

generated by human players. The variational model was trained only on the navigation task. We549

Figure 5: TSNE projection of latent space Z for navigation dataset (blue) and tree chopping dataset (red) in
Minecraft (Guss et al., 2019). Darker colors correspond to higher decoder variance.

16

Encoder
MLP

AC Forward
MLP

Decoder
MLP

Figure 6: Latent model architecture (does not depict reward MLP).

embedded the data from both datasets using our trained model, and measured the decoder variance for550

all samples. Figure 5 depicts a TSNE projection of the latent space Z , coloring in blue the navigation551

task and in red the tree chopping task. Light colors correspond to low variance (i.e., sharp images),552

whereas dark colors correspond to large variance (i.e. OOD samples). We found that our variational553

model was able to properly distinguish between the two tasks, with some overlap due to similarity554

in state space features. Additionally, we noticed a clear transition in decoding variance as samples555

farther away from the trained latent data attained larger variance, suggesting our variational model556

was properly able to distinguish OOD samples.557

We refer the reader to the appendix for further analysis and approaches of uncertainty quantification558

in variational models. In our experiments, we found that the standard decoder variance sufficed for559

all of the tested domains.560

10 Specific Implementation Details561

As a preprocessing step rewards were normalized to values between [−1, 1]. We trained our variational562

model with latent dimensions dim(Z) = 32 and dim(E) = dim(Z) + dim(A). All domains were563

trained with the same hyperparameters. Specifically, we used a 2-layer Multi Layer Perceptron (MLP)564

to encode Z , after which a 2-layer Affine Coupling (AC) (Dinh et al., 2014) was used to encode E .565

We also used a 2-layer MLP for the forward, reward, and decoder models. All layers contained 256566

hidden layers.567

The latent model was trained in two separate phases for 100k and 50k steps each by stochastic gradient568

descent and the ADAM optimizer (Kingma & Ba, 2014). First, the model was fully trained using a569

calibrated Gaussian decoder (Rybkin et al., 2020). Specifically, a maximum-likelihood estimate of570

the variance was used σ∗ = MSE(µ, µ̂) ∈ arg maxσN (µ̂|µ, σ2I). Finally, in the second stage we571

fit the variance decoder network. We found this process of to greatly improve convergence speed572

and accuracy, and mitigate posterior collapse. We used a minimum variance of 0.01 for all of our573

stochastic models.574

To further stabilize training we used a momentum encoder. Specifically we updated a target encoder575

as a slowly moving average of the weights from the learned encoder as576

θ̄ ← (1− τ)θ̄ + τθ

Hyperparameters for our variational model are summarized in Table 4. The latent architecture is577

visualized in Figure 6.578

17

Parameter Value Parameter Value
dim(Z) 32 LEARNING RATE 10−3

dim(E) 32 + dim(A) BATCH SIZE 128
ENCODER MLP HIDDEN 256, 256 TARGET UPDATE τ 0.01
FORWARD MLP HIDDEN 256, 256 TARGET UPDATE INTERVAL 1
DECODER MLP HIDDEN 256, 256 PHASE 1 UPDATES 100000
REWARD MLP HIDDEN 256, 256 PHASE 2 UPDATES 50000

Table 4: Hyper parameters for variational model

Figure 7: Illustration of geodesic curve optimization in Algorithm 2.

10.1 Geodesic Distance Estimation579

In order to practically estimate the geodesic distance between two points e1, e2 ∈ E we defined a580

parametric curve in latent space and used gradient descent to minimize the curve’s energy 3. The581

resulting curve and pullback metric were then used to calculate the geodesic distance by a numerical582

estimate of the curve length (Equation (4)).583

Pseudo code for Geodesic Distance Estimation is shown in Algorithm 2. Our curve was modeled584

as a cubic spline with 8 coefficients. We used SGD (momentum 0.99) to optimize the curve energy585

over 20 gradient iterations with a grid of 10 points and a learning rate of 10−3. An illustration of the586

convergence of such a curve is illustrated in Figure 7587

10.2 RL algorithm588

Our learning algorithm is based on the Soft Learning framework proposed in Algorithm 2 of Yu et al.589

(2020). Pseudo code is shown in Algorithm 3. Specifically we used two replay buffersRmodel,Rdata,590

where |Rmodel| = 50000 and Rdata contained the full offline dataset. In every epoch an initial state591

s0 was sampled from the offline dataset and embedded using our latent model to generate z0 ∈ Z .592

During rollouts of π, embeddings Ez,a ∈ E were then generated from z and used to (1) sample593

next latent state z′, (2) sample estimated rewards r, and (3) compute distances to K = 20 nearest594

neighbors in embedded the dataset.595

We used Algorithm 2 to compute the geodesic distances, and FAISS (Johnson et al., 2019) for596

efficient nearest neighbor computation on GPUs. To stabilize learning, we normalized the penalty597
1
K

∑K
k=1 dk according to the maximum penalty, ensuring penalty lies in [0, 1] (recall that the latent598

reward predictor was trained over normalized rewards in [−1, 1]). For the non-skewed version of599

3Other methods for computing the geodesic distance include solving a system of ODEs (Arvanitidis et al.,
2018), using graph based geodesics (Chen et al., 2019), or using neural networks (Chen et al., 2018).

18

Algorithm 2 Geodesic Distance Estimation

Input: forward latent F , decoder D, learning rate λ, number of iterations T , grid size n, eval
points e0, e1

Initialize: parametric curve γθ : γθ(0) = e0, γθ(1) = e1

for t = 1 to T do
Lµ(θ)←

∑n
i=1 µD(µF (γθ(

i
n)))− µD(µF (γθ(

i−1
n)))

Lσ(θ)←
∑n
i=1 σD(µF (γθ(

i
n)))− σD(µF (γθ(

i−1
n)))

L(θ)← Lµ(θ) + Lσ(θ)
θ ← θ − λ∇θL(θ)

end for
GD◦F = JTµFGDJµF + JTσF diag

(
GD
)
JσF

∀i,∆i ← γθ(
i
n)− γθ(i−1

n)

d(e0, e1)←
∑n
i=1

(
∂γθ
∂t

∣∣
i
n

)T
GD◦F (γθ(

i
n))
(
∂γθ
∂t

∣∣
i
n

)
∆i

Return: d(e0, e1)

Algorithm 3 GELATO with Soft Learning

Input: Reward penalty coefficient λ, rollout horizon h, rollout batch size b, training epochs T ,
number of neighbors K.
Train variational latent forward model on dataset D by maximizing ELBO (Equation (7))
Construct embedded dataset Dembd = {Ei}ni=1 using latent model to initialize KNN.
Initialize policy π and empty replay bufferRmodel ← ∅.
for epoch = 1 to T do

for i = 1 to b (in parallel) do
Sample state s1 from D for the initialization of the rollout and embed using latent model to
produce z1.
for j = 1 to h do

Sample an action aj ∼ π(·|zj).
Embed (zj , aj)→ Ezj ,aj using latent model
Sample zj+1 from latent forward model F (Ezj ,aj).
Sample rj from latent reward model R(Ezj ,aj).

Use Algorithm 2 to compute K nearest neighbors
{

NN(k)
zj ,aj

}K
k=1

and their distances

{dk}Nk=1 to Ezj ,aj .

Compute r̃j = rj − λ
(

1
K

∑K
k=1 dk

)
Add sample (zj , aj , r̃j , zj+1) toRmodel.

end for
end for
Drawing samples fromRdata ∪Rmodel, use SAC to update π.

end for

GELATO, we used λ = 1 as our reward penalty coefficient and λ = 2 for the skewed versions. We600

used rollout horizon of h = 5, and did not notice significant performance improvement for different601

values of h.602

19

11 Missing Proofs603

11.1 Proof of Proposition 1604

For any curve γ, we have that605 ∫ 1

0

∥∥∥∥∂f(γ(t))

∂t

∥∥∥∥ dt =

∫ 1

0

∥∥∥∥∥∂f(γ(t))

∂γ(t)

T
∂γ(t)

∂t

∥∥∥∥∥ dt
=

∫ 1

0

∥∥∥∥Jf (γ(t))T
∂γ(t)

∂t

∥∥∥∥ dt
=

∫ 1

0

√〈
∂γ(t)

∂t
, JTf (γ(t))Jf (γ(t))

∂γ(t)

∂t

〉
dt

=

∫ 1

0

√〈
∂γ(t)

∂t
,Gf (γ(t))

∂γ(t)

∂t

〉
dt.

This completes the proof.606

11.2 Proof of Theorems 1 and 2607

We begin by restating the theorems.608

Theorem 1. [Arvanitidis et al. (2018)] Assume D(·|z) ∼ N (µ(z), σ(z)I). Then609

ED(·|z)

[
GD(z)

]
= ED(·|z)

[
JD(z)TJD(z)

]
= Gµ(z)︸ ︷︷ ︸

proximity

+ Gσ(z)︸ ︷︷ ︸
uncertainty

, (3)

where Gµ(z) = JTµ (z)Jµ(z) and Gσ(z) = JTσ (z)Jσ(z).610

Theorem 2. Assume F (·|z) ∼ N (µF (z), σF (z)I), D(·|x) ∼ N (µD(x), σD(x)I). Then, the ex-611

pected pullback metric of the composite function (D ◦ F) is given by612

EP (D◦F)

[
GD◦F (z)

]
= JTµF (z)GD(z)JµF (z) + JTσF (z)diag

(
GD(z)

)
JσF (z),

where here, GD(z) = Ex∼F (·|z)

[
JTµD (x)JµD (x) + JTσD (x)JσD (x)

]
.613

Notice that Theorem 1 is a special case of Theorem 2 with F being the trivial identity function.614

Additionally, a complete proof of Theorem 1 can be found in Arvanitidis et al. (2018). We turn to615

prove Theorem 2.616

We begin by proving the following auxilary lemma.617

Lemma 1. Let ε ∼ N (0, IK), f : Rd 7→ RK , A ∈ RK×K . Denote Si = diag
(
∂f1

∂zi
, ∂f

2

∂zi
, . . . , ∂f

K

∂zi

)
618

for 1 ≤ i ≤ d and619

B = [S1ε, S2ε, . . . , Sdε]K×d .

Then E
[
BTAB

]
= JTf diag(A)Jf .620

Proof. We have that621

E
[
BTAB

]
= E



εTST1
εTST2

...
εTSTd

A [S1ε, S2ε, . . . , Sdε]



=


E
[
εTST1 AS1ε

]
,E
[
εTST1 AS2ε

]
, . . . ,E

[
εTST1 ASdε

]
,

E
[
εTST2 AS1ε

]
,E
[
εTST2 AS2ε

]
, . . . ,E

[
εTST2 ASdε

]
,

. . .
E
[
εTSTd AS1ε

]
,E
[
εTSTd AS2ε

]
. . . ,E

[
εTSTd ASdε

]
 .

20

Finally notice that for any matrix M622

E
[
εTMε

]
=

d∑
i=1

d∑
j=1

MijE [εiεj] =

d∑
i=1

Mii = trace(M).

Then,623

E
[
BTAB

]
=


trace

(
ST1 AS1

)
, trace

(
ST1 AS2

)
, . . . , trace

(
ST1 ASd

)
trace

(
ST2 AS1

)
, trace

(
ST2 AS2

)
, . . . , trace

(
ST2 ASd

)
. . .

trace
(
STd AS1

)
, trace

(
STd AS2

)
, . . . , trace

(
STd ASd

)
 .

624

Next, note that625

trace(SiASj) =

K∑
k=1

∂fk

∂zi

∂fk

∂zj
Akk.

Therefore,626

E
[
BTAB

]
= JTf diag(A)Jf .

We are now ready to prove Theorem 2.627

Proof of Theorem 2. We can write z′ = µF (z)+σF (z)� εF and s′ = µD(z′)+σD(z′)� εD where628

εF ∼ N (0, Id), εD ∼ N (0, IK), µF : Rd 7→ R`,µD : R` 7→ RK and σF : Rd 7→ R`, σD : R` 7→629

RK .630

Applying the chain rule we get631

JD◦F =
∂(D ◦ F)

∂z
= JµDJµF + JµDBεF +BεDJµF +BεDBεF

where632

BεF = (SF,1εF , SF,2εF , . . . , SF,dεF)d×d ,

SF,i = diag
(
∂σ1

F

∂zi
,
∂σ2

F

∂zi
, . . . ,

∂σdF
∂zi

)
d×d

, and

BεD = (SD,1εD, SD,2εD, . . . , SD,dεD)K×d ,

SD,i = diag
(
∂σ1

D

∂z′i
,
∂σ2

D

∂z′i
, . . . ,

∂σdD
∂z′i

)
K×K

.

This yields633

E
[
JTF◦DJF◦D

]
= E

[
(JµDJµF + JµDBεF +BεDJµF +BεDBεF)

T
(JµDJµF + JµDBεF +BεDJµF +BεDBεF)

]
= JTµF J

T
µDJµDJµF + E

[
BTεF J

T
µDJµDBεF

]
+ E

[
JTµFB

T
εDBεDJµF

]
+ E

[
BTεFB

T
εDBεDBεF

]
= JTµF

(
JTµDJµD + E

[
BTεDBεD

])
JµF + E

[
BTεF

(
JTµDJµD +BTεDBεD

)
BεF

]
where in the second equality we used the fact that εD, εF are independent and E [Bε] = 0. By634

Lemma 1 we have635

E
[
BTεDBεD

]
= JTσDJσD .

Similarly,636

E
[
BTεFB

T
εDBεDBεF

]
= E

[
E
[
BTεFB

T
εDBεDBεF |εF

]]
= E

[
BTεF J

T
σDJσDBεF

]
= JTσF diag

(
JTσF JσF

)
JσF

Finally,637

E
[
BTεF J

T
µDJµDBεF

]
= JTσF diag

(
JTµDJµD

)
JσF .

This completes the proof.638

21

	Introduction
	Preliminaries
	Offline Reinforcement Learning
	Riemannian Manifolds

	Background: Model Error in Offline RL
	Metrics of Model Dynamics
	A Pullback Metric of Model Dynamics
	Metric of Proximity and Uncertainty of a Latent Forward Model
	Capturing Epistemic and Aleatoric Uncertainty

	GELATO: Incorporating the Metric in Offline RL
	Experiments
	Metric Visualization
	Continuous Control
	RBF Networks.

	Related Work
	Discussion and Future Work
	Variational Latent Model
	Specific Implementation Details
	Geodesic Distance Estimation
	RL algorithm

	Missing Proofs
	Proof of prop: metric
	Proof of Theorems 1 and 2

