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Abstract

Cutting-plane methods have enabled remarkable successes in integer program-
ming over the last few decades. State-of-the-art solvers integrate a myriad of
cutting-plane techniques to speed up the underlying tree-search algorithm used to
find optimal solutions. In this paper we provide sample complexity bounds for
cut-selection in branch-and-cut (B&C). Given a training set of integer programs
sampled from an application-specific input distribution and a family of cut selection
policies, these guarantees bound the number of samples sufficient to ensure that
using any policy in the family, the size of the tree B&C builds on average over the
training set is close to the expected size of the tree B&C builds. We first bound
the sample complexity of learning cutting planes from the canonical family of
Chvátal-Gomory cuts. Our bounds handle any number of waves of any number
of cuts and are fine tuned to the magnitudes of the constraint coefficients. Next,
we prove sample complexity bounds for more sophisticated cut selection policies
that use a combination of scoring rules to choose from a family of cuts. Finally,
beyond the realm of cutting planes for integer programming, we develop a general
abstraction of tree search that captures key components such as node selection
and variable selection. For this abstraction, we bound the sample complexity of
learning a good policy for building the search tree.

1 Introduction

Integer programming is one of the most broadly-applicable tools in computer science, used to
formulate problems from operations research (such as routing, scheduling, and pricing), machine
learning (such as adversarially-robust learning, MAP estimation, and clustering), and beyond. Branch-
and-cut (B&C) is the most widely-used algorithm for solving integer programs (IPs). B&C is highly
configurable, and with a deft configuration, it can be used to solve computationally challenging
problems. Finding a good configuration, however, is a notoriously difficult problem.

We study machine learning approaches to configuring policies for selecting cutting planes, which have
an enormous impact on B&C’s performance. At a high level, B&C works by recursively partitioning
the IP’s feasible region, searching for the locally optimal solution within each set of the partition,
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until it can verify that it has found the globally optimal solution. An IP’s feasible region is defined
by a set of linear inequalities Ax ≤ b and integer constraints x ∈ Zn, where n is the number of
variables. By dropping the integrality constraints, we obtain the linear programming (LP) relaxation
of the IP, which can be solved efficiently. A cutting plane is a carefully-chosen linear inequality
αTx ≤ β which refines the LP relaxation’s feasible region without separating any integral point.
Intuitively, a well-chosen cutting plane will remove a large portion of the LP relaxation’s feasible
region, speeding up the time it takes B&C to find the optimal solution to the original IP. Cutting plane
selection is a crucial task, yet it is challenging because many cutting planes and cut-selection policies
have tunable parameters, and the best configuration depends intimately on the application domain.

We provide the first provable guarantees for learning high-performing cutting planes and cut-selection
policies, tailored to the application at hand. We model the application domain via an unknown,
application-specific distribution over IPs, as is standard in the literature on using machine learning
for integer programming [e.g., 21, 23, 31, 36, 43]. For example, this could be a distribution over the
routing IPs that a shipping company must solve day after day. The learning algorithm’s input is a
training set sampled from this distribution. The goal is to use this training set to learn cutting planes
and cut-selection policies with strong future performance on problems from the same application but
which are not already in the training set—or more formally, strong expected performance.

1.1 Summary of main contributions and overview of techniques

As our first main contribution, we provide sample complexity bounds of the following form: fixing a
family of cutting planes, we bound the number of samples sufficient to ensure that for any sequence
of cutting planes from the family, the average size of the B&C tree is close to the expected size of
the B&C tree. We measure performance in terms of the size of the search tree B&C builds. Our
guarantees apply to the parameterized family of Chvátal-Gomory (CG) cuts [10, 17], one of the most
widely-used families of cutting planes.

The overriding challenge is that to provide guarantees, we must analyze how the tree size changes as
a function of the cut parameters. This is a sensitive function—slightly shifting the parameters can
cause the tree size to shift from constant to exponential in the number of variables. Our key technical
insight is that as the parameters vary, the entries of the cut (i.e., the vector α and offset β of the
cut αTx ≤ β) are multivariate polynomials of bounded degree. The number of terms defining the
polynomials is exponential in the number of parameters, but we show that the polynomials can be
embedded in a space with dimension sublinear in the number of parameters. This insight allows us to
better understand tree size as a function of the parameters. We then leverage results by Balcan et al.
[8] that show how to use structure exhibited by dual functions (measuring an algorithm’s performance,
such as its tree size, as a function of its parameters) to derive sample complexity bounds.

Our second main contribution is a sample complexity bound for learning cut-selection policies, which
allow B&C to adaptively select cuts as it solves the input IP. These cut-selection policies assign a
number of real-valued scores to a set of cutting planes and then apply the cut that has the maximum
weighted sum of scores. Tree size is a volatile function of these weights, though we prove that it is
piecewise constant, as illustrated in Figure 1, which allows us to prove our sample complexity bound.

Finally, as our third main contribution, we provide guarantees for tuning weighted combinations
of scoring rules for other aspects of tree search beyond cut selection, including node and variable
selection. We prove that there is a set of hyperplanes splitting the parameter space into regions
such that if tree search uses any configuration from a single region, it will take the same sequence
of actions. This structure allows us to prove our sample complexity bound. This is the first paper
to provide guarantees for tree search configuration that apply simultaneously to multiple different
aspects of the algorithm—prior research was specific to variable selection [5].

Sample complexity bounds are important because if the parameterized class of cuts or cut-selection
policies that we optimize over is highly complex and the training set is too small, the learned cut
or cut-selection policy might have great average empirical performance over the training set but
terrible future performance. In other words, the parameter configuration procedure may overfit to
the training set. The sample complexity bounds we provide are uniform-convergence: we prove that
given enough samples, uniformly across all parameter settings, the difference between average and
empirical performance is small. In other words, these bounds hold for any procedure one might
use to optimize over the training set: manual or automated, optimal or suboptimal. No matter what
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Figure 1: Two examples of tree size as a function of a SCIP cut-selection parameter µ (the directed
cutoff distance weight, defined in Section 2) on IPs generated from the Combinatorial Auctions
Test Suite [30] (the “regions” generator with 600 bids and 600 goods). SCIP [16] is the leading
open-source IP solver.

parameter setting the configuration procedure comes up with, the user can be guaranteed that so long
as that parameter setting has good average empirical performance over the training set, it will also
have strong future performance.

1.2 Related work

Applied research on tree search configuration. Over the past decade, a substantial literature has
developed on the use of machine learning for integer programming and tree search [e.g., 2, 7, 9, 13,
19, 23–25, 29, 31–33, 35, 36, 41–43]. This has included research that improves specific aspects of
B&C such as variable selection [2, 13, 24, 29, 32, 41], node selection [19, 35, 44], and heuristic
scheduling [25]. These papers are applied, whereas we focus on providing theoretical guarantees.

With respect to cutting plane selection, the focus of this paper, Sandholm [36] uses machine learning
techniques to customize B&C for combinatorial auction winner determination, including cutting
plane selection. Tang et al. [37] and Huang et al. [20] study machine learning approaches to cutting
plane selection. The former work formulates this problem as a reinforcement learning problem and
shows that their approach can outperform human-designed heuristics for a variety of tasks. The
latter work studies cutting plane selection in the multiple-instance-learning framework and proposes
a neural-network architecture for scoring and ranking cutting planes. Meanwhile, the focus of our
paper is to provide the first provable guarantees for cutting plane selection via machine learning.

Ferber et al. [15] study a problem where the IP objective vector c is unknown, but an estimate ĉ can
be obtained from data. Their goal is to optimize the quality of the solutions obtained by solving the
IP defined by ĉ, with respect to the true vector c. They do so by formulating the IP as a differentiable
layer in a neural network. The nonconvex nature of the IP does not allow for straightforward gradient
computation for the backward pass, so they obtain a continuous surrogate using cutting planes.

Provable guarantees for algorithm configuration. Gupta and Roughgarden [18] initiated the
study of sample complexity bounds for algorithm configuration. In research most related to ours,
Balcan et al. [5] provide sample complexity bounds for learning tree search variable selection policies
(VSPs). They prove their bounds by showing that for any IP, hyperplanes partition the VSP parameter
space into regions where the B&C tree size is a constant function of the parameters. The analysis in
this paper requires new techniques because although we prove that the B&C tree size is a piecewise-
constant function of the CG cutting plane parameters, the boundaries between pieces are far more
complex than hyperplanes: they are hypersurfaces defined by multivariate polynomials.

Kleinberg et al. [26, 27] and Weisz et al. [38, 39] design configuration procedures for runtime
minimization that come with theoretical guarantees. Their algorithms are designed for the case
where there are a finitely-many parameter settings to choose from (although they are still able to
provide guarantees for infinite parameter spaces by running their procedure on a finite sample of
configurations; Balcan et al. [5, 6] analyze when discretization approaches can and cannot be gainfully
employed). In contrast, our guarantees are designed for infinite parameter spaces.
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2 Problem formulation

In this section we give a more detailed technical overview of branch-and-cut, as well as an overview
of the tools from learning theory we use to prove sample complexity guarantees.

2.1 Branch-and-cut

We study integer programs (IPs) in canonical form given by

max
{
cTx : Ax ≤ b,x ≥ 0,x ∈ Zn

}
, (1)

where A ∈ Zm×n, b ∈ Zm, and c ∈ Rn. Branch-and-cut (B&C) works by recursively partitioning
the input IP’s feasible region, searching for the locally optimal solution within each set of the partition
until it can verify that it has found the globally optimal solution. It organizes this partition as a
search tree, with the input IP stored at the root. It begins by solving the LP relaxation of the input
IP; we denote the solution as x∗LP ∈ Rn. If x∗LP satisfies the IP’s integrality constraints (x∗LP ∈ Zn),
then the procedure terminates—x∗LP is the globally optimal solution. Otherwise, it uses a variable
selection policy to choose a variable x[i]. In the left child of the root, it stores the original IP with
the additional constraint that x[i] ≤ bx∗LP[i]c, and in the right child, with the additional constraint
that x[i] ≥ dx∗LP[i]e. It then uses a node selection policy to select a leaf of the tree and repeats this
procedure—solving the LP relaxation and branching on a variable. B&C can fathom a node, meaning
that it will stop searching along that branch, if 1) the LP relaxation satisfies the IP’s integrality
constraints, 2) the LP relaxation is infeasible, or 3) the objective value of the LP relaxation’s solution
is no better than the best integral solution found thus far. We assume there is a bound κ on the size of
the tree we allow B&C to build before we terminate, as is common in prior research [5, 21, 26, 27].

Cutting planes are a means of ensuring that at each iteration of B&C, the solution to the LP relaxation
is as close to the optimal integral solution as possible. Formally, let P = {x ∈ Rn : Ax ≤ b,x ≥ 0}
denote the feasible region obtained by taking the LP relaxation of IP (1). Let PI = conv(P ∩ Zn)
denote the integer hull of P . A valid cutting plane is any hyperplane αTx ≤ β such that if x is in the
integer hull (x ∈ PI), then x satisfies the inequality αTx ≤ β. In other words, a valid cut does not
remove any integral point from the LP relaxation’s feasible region. A valid cutting plane separates
x ∈ P \ PI if it does not satisfy the inequality, or in other words, αTx > β. At any node of the
search tree, B&C can add valid cutting planes that separate the optimal solution to the node’s LP
relaxation, thus improving the solution estimates used to prune the search tree. However, adding too
many cuts will increase the time it takes to solve the LP relaxation at each node. Therefore, solvers
such as SCIP [16], the leading open-source solver, bound the number of cuts that will be applied.

A famous class of cutting planes is the family of Chvátal-Gomory (CG) cuts1 [10, 17], which are
parameterized by vectors u ∈ Rm. The CG cut defined by u ∈ Rm is the hyperplane buTAcx ≤
buT bc, which is guaranteed to be valid. Throughout this paper we primarily restrict our attention
to u ∈ [0, 1)m. This is without loss of generality, since the facets of P ∩ {x ∈ Rn : buTAcx ≤
buT bc ∀u ∈ Rm} can be described by the finitely many u ∈ [0, 1)m such that uTA ∈ Zn (Lemma
5.13 of Conforti et al. [11]).

Some IP solvers such as SCIP use scoring rules to select among cutting planes, which are meant
to measure the quality of a cut. Some commonly-used scoring rules include efficacy [4] (score1),
objective parallelism [1] (score2), directed cutoff distance [16] (score3), and integral support [40]
(score4) (defined in Appendix A). Efficacy measures the distance between the cut αTx ≤ β and
x∗LP: score1(αTx ≤ β) = (αTx∗LP − β)/ ‖α‖2 , as illustrated in Figure 2a. Objective parallelism
measures the angle between the objective c and the cut’s normal vector α: score2(αTx ≤ β) =∣∣cTα∣∣ /(‖α‖2 ‖c‖2), as illustrated in Figures 2b and 2c. Directed cutoff distance measures the
distance between the LP optimal solution and the cut in a more relevant direction than the efficacy
scoring rule. Specifically, let x be the incumbent solution, which is the best-known feasible solution
to the input IP. The directed cutoff distance is the distance between the hyperplane (α, β) and the
current LP solution x∗LP along the direction of the incumbent x, as illustrated in Figures 2d and 2e:
score3(αTx ≤ β) = ‖x− x∗LP‖2 · (α

Tx∗LP − β)/
∣∣αT (x− x∗LP)

∣∣ . SCIP uses the scoring rule
3
5score1 + 1

10score2 + 1
2score3 + 1

10score4 [16].

1The set of CG cuts is equivalent to the set of Gomory (fractional) cuts [12], another commonly studied
family of cutting planes with a slightly different parameterization.
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(a) Efficacy (b) Better objective
parallelism

(c) Worse objective
parallelism

(d) Better directed
cutoff distance

(e) Worse directed
cutoff distance

Figure 2: Illustration of scoring rules. In each figure, the blue region is the feasible region, the black
dotted line is the cut in question, the blue solid line is orthogonal to the objective c, the black dot is
the LP optimal solution, and the white dot is the incumbent IP solution. Figure 2a illustrates efficacy,
which is the length of the black solid line between the cut and the LP optimal solution. The cut in
Figure 2b has better objective parallelism than the cut in Figure 2c. The cut in Figure 2d has a better
directed cutoff distance than the cut in Figure 2e, but both have the same efficacy.

2.2 Learning theory background and notation

The goal of this paper is to learn cut-selection policies using samples in order to guarantee, with high
probability, that B&C builds a small tree in expectation on unseen IPs. To this end, we rely on the
notion of pseudo-dimension [34], a well-known measure of a function class’s intrinsic complexity.
The pseudo-dimension of a function class F ⊆ RY , denoted Pdim(F), is the largest integer N for
which there exist N inputs y1, . . . , yN ∈ Y and N thresholds r1, . . . , rN ∈ R such that for every
(σ1, . . . , σN ) ∈ {0, 1}N , there exists f ∈ F such that f(yi) ≥ ri if and only if σi = 1. Function
classes with bounded pseudo-dimension satisfy the following uniform convergence guarantee [3, 34].
Let [−κ, κ] be the range of the functions in F , let NF (ε, δ) = O(κ

2

ε2 (Pdim(F) + ln( 1
δ ))), and let

N ≥ NF (ε, δ). For all distributionsD on Y , with probability 1−δ over the draw of y1, . . . , yN ∼ D,
for every function f ∈ F , the average value of f over the samples is within ε of its expected value:
| 1N
∑N
i=1 f(yi)− Ey∼D[f(y)]| ≤ ε. The quantity NF (ε, δ) is the sample complexity of F .

We use the notation ‖A‖1,1 to denote the sum of the absolute values of all the entries in A.

3 Learning Chvátal-Gomory cuts

In this section we bound the sample complexity of learning CG cuts at the root node of the B&C
search tree. In many IP settings, similar IPs are being solved and there can be good cuts that carry
across instances—for example, in applications where the constraints stay the same or roughly the
same across instances,2 and only the objective changes. One high-stakes example of this is the
feasibility checking problem in the billion-dollar incentive auction for radio spectrum, where prices
change but the radiowave interference constraints do not change.

We warm up by analyzing the case where a single CG cut is added at the root (Section 3.1), and then
build on this analysis to handle w sequential waves of k simultaneous CG cuts (Section 3.3). This
means that all k cuts in the first wave are added simultaneously, the new (larger) LP relaxation is
solved, all k cuts in the second wave are added to the new problem simultaneously, and so on. B&C
adds cuts in waves because otherwise, the angles between cuts would become obtuse, leading to
numerical instability. Moreover, many commercial IP solvers only add cuts at the root because those
cuts can be leveraged throughout the tree. However, in Section 5, we also provide guarantees for
applying cuts throughout the tree. In this section, we assume that all aspects of B&C (such as node
selection and variable selection) are fixed except for the cuts applied at the root of the search tree.

3.1 Learning a single cut

To provide sample complexity bounds, as per Section 2.2, we bound the pseudo-dimension of the
set of functions fu for u ∈ [0, 1]m, where fu(c, A, b) is the size of the tree B&C builds when it
applies the CG cut defined by u at the root. To do so, we take advantage of structure exhibited by
the class of dual functions, each of which is defined by a fixed IP (c, A, b) and measures tree size as

2We assume that constraints are generated in the same order across instances; see Appendix B for a discussion.
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a function of the parameters u. In other words, each dual function f∗c,A,b : [0, 1]m → R is defined
as f∗c,A,b(u) = fu(c, A, b). Our main result in this section is a proof that the dual functions are
well-structured (Lemma 3.2), which then allows us to apply a result by Balcan et al. [8] to bound
Pdim({fu : u ∈ [0, 1]m}) (Theorem 3.3). Proving that the dual functions are well-structured is
challenging because they are volatile: slightly perturbing u can cause the tree size to shift from
constant to exponential in n, as we prove in the following theorem. The full proof is in Appendix C.

Theorem 3.1. For any integer n, there exists an integer program (c, A, b) with two constraints and
n variables such that if 1

2 ≤ u[1]− u[2] < n+1
2n , then applying the CG cut defined by u at the root

causes B&C to terminate immediately. Meanwhile, if n+1
2n ≤ u[1]− u[2] < 1, then applying the CG

cut defined by u at the root causes B&C to build a tree of size at least 2(n−1)/2.

Proof sketch. Without loss of generality, assume that n is odd. Consider an IP with constraints
2(x[1] + · · · + x[n]) ≤ n, −2(x[1] + · · · + x[n]) ≤ −n, x ∈ {0, 1}n, and any objective. This
IP is infeasible because n is odd. Jeroslow [22] proved that without the use of cutting planes
or heuristics, B&C will build a tree of size 2(n−1)/2 before it terminates. We prove that when
1
2 ≤ u[1]− u[2] < n+1

2n , the CG cut halfspace defined by u = (u[1], u[2]) has an empty intersection
with the feasible region of the IP, causing B&C to terminate immediately. On the other hand, we show
that if n+1

2n ≤ u[1]− u[2] < 1, then the CG cut halfspace defined by u contains the feasible region of
the IP, and thus leaves the feasible region unchanged. In this case, due to Jeroslow [22], applying this
CG cut at the root will cause B&C to build a tree of size at least 2(n−1)/2 before it terminates.

This theorem shows that the dual tree-size functions can be extremely sensitive to perturbations in the
CG cut parameters. However, we are able to prove that the dual functions are piecewise-constant.

Lemma 3.2. For any IP (c, A, b), there areO(‖A‖1,1 +‖b‖1 +n) hyperplanes that partition [0, 1]m

into regions where in any one region R, the dual function f∗c,A,b(u) is constant for all u ∈ R.

Proof. Let a1, . . . ,an ∈ Rm be the columns of A. Let Ai = ‖ai‖1 and B = ‖b‖1, so for any
u ∈ [0, 1]m,

⌊
uTai

⌋
∈ [−Ai, Ai] and

⌊
uT b

⌋
∈ [−B,B]. For each integer ki ∈ [−Ai, Ai], we

have
⌊
uTai

⌋
= ki ⇐⇒ ki ≤ uTai < ki + 1. There are

∑n
i=1 2Ai + 1 = O(‖A‖1,1 + n) such

halfspaces, plus an additional 2B + 1 halfspaces of the form kn+1 ≤ uT b < kn+1 + 1 for each
kn+1 ∈ {−B, . . . , B}. In any region R defined by the intersection of these halfspaces, the vector
(buTa1c, . . . , buTanc, buT bc) is constant for all u ∈ R, and thus so is the resulting cut.

Combined with the main result of Balcan et al. [8], this lemma implies the following bound.

Theorem 3.3. Let Fα,β denote the set of all functions fu for u ∈ [0, 1]m defined on the domain of
IPs (c, A, b) with ‖A‖1,1 ≤ α and ‖b‖1 ≤ β. Then, Pdim(Fα,β) = O(m log(m(α+ β + n))).

This theorem implies that Õ(κ2m/ε2) samples are sufficient to ensure that with high probability, for
every CG cut, the average size of the tree B&C builds upon applying the cutting plane is within ε of
the expected size of the tree it builds (the Õ notation suppresses logarithmic terms).

3.2 Learning a sequence of cuts

We now determine the sample complexity of making w sequential CG cuts at the root. The first cut
is defined by m parameters u1 ∈ [0, 1]m for each of the m constraints. Its application leads to the
addition of the row buT1 Acx ≤ buT1 bc to the constraint matrix. The next cut is then be defined by
m+ 1 parameters u2 ∈ [0, 1]m+1 since there are now m+ 1 constraints. Continuing in this fashion,
the wth cut is be defined by m+w− 1 parameters uw ∈ [0, 1]m+w−1. Let fu1,...,uw(c, A, b) be the
size of the tree B&C builds when it applies the CG cut defined by u1, then applies the CG cut defined
by u2 to the new IP, and so on, all at the root of the search tree.

As in Section 3.1, we bound the pseudo-dimension of the functions fu1,...,uw
by analyzing the

structure of the dual functions f∗c,A,b, which measure tree size as a function of the parameters
u1, . . . ,uw. Specifically, f∗c,A,b : [0, 1]m × · · · × [0, 1]m+w−1 → R, where f∗c,A,b(u1, . . . ,uw) =

fu1,...,uw
(c, A, b). The analysis in this section is more complex because the sth cut (with s ∈
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{2, . . . ,W}) depends not only on the parameters us but also on u1, . . . ,us−1. We prove that the
dual functions are again piecewise-constant, but in this case, the boundaries between pieces are
defined by multivariate polynomials rather than hyperplanes. The full proof is in Appendix C.
Lemma 3.4. For any IP (c, A, b), there are O(w2w ‖A‖1,1 + 2w ‖b‖1 + nw) multivariate polyno-
mials in ≤ w2 +mw variables of degree ≤ w that partition [0, 1]m× · · · × [0, 1]m+w−1 into regions
where in any one region R, f∗c,A,b(u1, . . . ,uw) is constant for all (u1, . . . ,uw) ∈ R.

Proof sketch. Let a1, . . . ,an ∈ Rm be the columns of A. For u1 ∈ [0, 1]m, . . . ,uw ∈ [0, 1]m+w−1,
define ã1

i ∈ [0, 1]m, . . . , ãwi ∈ [0, 1]m+w−1 for each i ∈ [n] such that ãsi is the ith column of the
constraint matrix after applying cuts u1, . . . ,us−1. Similarly, define b̃s to be the constraint vector
after applying the first s− 1 cuts. More precisely, we have the recurrence relation

ã1
i = ai b̃1 = b

ãsi =

[
ãs−1i

uTs−1ã
s−1
i

]
b̃s =

[
b̃s−1

uTs−1b̃
s−1

]
for s = 2, . . . ,W . We prove that

⌊
uTs ã

s
i

⌋
∈ [−2s−1 ‖ai‖1 , 2s−1 ‖ai‖1]. For each integer ki in this

interval,
⌊
uTs ã

s
i

⌋
= ki ⇐⇒ ki ≤ uTs ãsi < ki + 1. The boundaries of these surfaces are defined by

polynomials over us in ≤ ms+ s2 variables with degree ≤ s. Counting the total number of such
hypersurfaces yields the lemma statement.

We now use this structure to provide a pseudo-dimension bound. The full proof is in Appendix C.
Theorem 3.5. Let Fα,β denote the set of all functions fu1,...,uw

for u1 ∈ [0, 1]m, . . . ,uw ∈
[0, 1]m+w−1 defined on the domain of integer programs (c, A, b) with ‖A‖1,1 ≤ α and ‖b‖1 ≤ β.
Then, Pdim(Fα,β) = O(mw2 log(mw(α+ β + n))).

Proof sketch. The space of 0/1 classifiers induced by the set of degree ≤ w multivariate polynomials
in w2 + mw variables has VC dimension O((w2 + mw) logw) [3]. However, we more carefully
examine the structure of the polynomials considered in Lemma 3.4 to give an improved VC dimension
bound of 1 +mw. For each j = 1, . . . ,m define ũ1[j], . . . , ũw[j] recursively as

ũ1[j] = u1[j]

ũs[j] = us[j] +

s−1∑
`=1

us[m+ `]ũ`[j] for s = 2, . . . , w

The space of polynomials induced by the sth cut is contained in span{1, ũs[1], . . . , ũs[m]}. The
intuition for this is as follows: consider the additional term added by the sth cut to the constraint
matrix, that is, uTs ã

s
i . The first m coordinates (us[1], . . . ,us[m]) interact only with ai—so us[j]

collects a coefficient of ai[j]. Each subsequent coordinate us[m+ `] interacts with all coordinates of
ãsi arising from the first ` cuts. The term that collects a coefficient of ai[j] is precisely us[m+ `]
times the sum of all terms from the first ` cuts with a coefficient of ai[j]. Using standard facts about
the VC dimension of vector spaces and their duals in conjunction with Lemma 3.4 and the framework
of Balcan et al. [8] yields the theorem statement.

The sample complexity (defined in Section 2.2) of learning W sequential cuts is thus Õ(κ2mw2/ε2).

3.3 Learning waves of simultaneous cuts

We now determine the sample complexity of making w sequential waves of cuts at the root, each
wave consisting of k simultaneous CG cuts. Given vectors u1

1, . . . ,u
k
1 ∈ [0, 1]m,u1

2, . . . ,u
k
2 ∈

[0, 1]m+k, . . . ,u1
w, . . . ,u

k
w ∈ [0, 1]m+k(w−1), let fu1

1,...,u
k
1 ,...,u

1
w,...,u

k
w

(c, A, b) be the size of the
tree B&C builds when it applies the CG cuts defined by u1

1, . . . ,u
k
1 , then applies the CG cuts defined

by u1
2, . . . ,u

k
2 to the new IP, and so on, all at the root of the search tree. The full proof of the following

theorem is in Appendix C, and follows from the observation that w waves of k simultaneous cuts
can be viewed as making kw sequential cuts with the restriction that cuts within each wave assign
nonzero weight only to constraints from previous waves.
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Theorem 3.6. Let Fα,β be the set of all functions fu1
1,...,u

k
1 ,...,u

1
w,...,u

k
w

for u1
1, . . . ,u

k
1 ∈

[0, 1]m, . . . ,u1
w, . . . ,u

k
w ∈ [0, 1]m+k(w−1) defined on the domain of integer programs (c, A, b)

with ‖A‖1,1 ≤ α and ‖b‖1 ≤ β. Then, Pdim(Fα,β) = O(mk2w2 log(mkw(α+ β + n))).

This result implies that the sample complexity of learning W waves of k cuts is Õ(κ2mk2w2/ε2).

3.4 Data-dependent guarantees

So far, our guarantees have depended on the maximum possible norms of the constraint matrix and
vector in the domain of IPs under consideration. The uniform convergence result in Section 2.2 for
Fα,β only holds for distributions over A and b with norms bounded by α and β, respectively. In
Appendix C.1, we show how to convert these into more broadly applicable data-dependent guarantees
that leverage properties of the distribution over IPs. These guarantees hold without assumptions on the
distribution’s support, and depend on E[maxi ‖Ai‖1,1] and E[maxi ‖bi‖1] (where the expectation is
over N samples), thus giving a sharper sample complexity guarantee that is tuned to the distribution.

4 Learning cut selection policies

In Section 3, we studied the sample complexity of learning waves of specific cut parameters. In
this section, we bound the sample complexity of learning cut-selection policies at the root, that is,
functions that take as input an IP and output a candidate cut. Using scoring rules is a more nuanced
way of choosing cuts since it allows for the cut parameters to depend on the input IP.

Formally, let Im be the set of IPs withm constraints (the number of variables is always fixed at n) and
letHm be the set of all hyperplanes in Rm. A scoring rule is a function score : ∪m(Hm × Im)→
R≥0. The real value score(αTx ≤ β, (c, A, b)) is a measure of the quality of the cutting plane
αTx ≤ β for the IP (c, A, b). Examples include the scoring rules discussed in Section 2.1.

Suppose score1, . . . , scored are d different scoring rules. We now bound the sample complexity
of learning a combination of these scoring rules that guarantee a low expected tree size. Our high-
level proof technique is the same as in the previous section: we establish that the dual tree-size
functions are piecewise structured, and then apply the general framework of Balcan et al. [8] to obtain
pseudo-dimension bounds.
Theorem 4.1. Let C be a set of cutting-plane parameters such that for every IP (c, A, b), there is
a decomposition of C into ≤ r regions such that the cuts generated by any two vectors in the same
region are the same. Let score1, . . . , scored be d scoring rules. For µ ∈ Rd, let fµ(c, A, b) be
the size of the tree B&C builds when it chooses a cut from C to maximize µ[1]score1(·, (c, A, b)) +
· · ·+ µ[d]scored(·, (c, A, b)). Then, Pdim({fµ : µ ∈ Rd}) = O(d log(rd)).

Proof. Fix an integer program (c, A, b). Let u1, . . . ,ur ∈ C be representative cut parameters for
each of the r regions. Consider the hyperplanes

∑d
i=1 µ[i]scorei(us) =

∑d
i=1 µ[i]scorei(ut) for

each s 6= t ∈ {1, . . . , r} (suppressing the dependence on c, A, b). These O(r2) hyperplanes partition
Rd into regions such that as µ varies in a given region, the cut chosen from C is invariant. The desired
pseudo-dimension bound follows from the main result of Balcan et al. [8].

Theorem 4.1 can be directly instantiated with the class of CG cuts. Combining Lemma 3.2 with
the basic combinatorial fact that k hyperplanes partition Rm into at most km regions, we get that
the pseudo-dimension of {fµ : µ ∈ Rd} defined on IPs with ‖A‖1,1 ≤ α and ‖b‖1 ≤ β is
O(dm log(d(α + β + n))). Instantiating Theorem 4.1 with the set of all sequences of w CG cuts
requires the following extension of scoring rules to sequences of cutting planes. A sequential scoring
rule is a function that takes as input an IP (c, A, b) and a sequence of cutting planes h1, . . . , hw, where
each cut lives in one higher dimension than the previous. It measures the quality of this sequence of
cutting planes when applied one after the other to the original IP. Every scoring rule score can be
naturally extended to a sequential scoring rule score defined by score(h1, . . . , hw, (c

0, A0, b0)) =∑w−1
i=0 score(hi+1, (c

i, Ai, bi)), where (ci, Ai, bi) is the IP after applying cuts h1, . . . , hi−1.

Corollary 4.2. Let C = [0, 1]m × · · · × [0, 1]m+w−1 denote the set of possible sequences of w
Chvátal-Gomory cut parameters. Let score1, . . . , scored : C × Im × · · · × Im+w−1 → R
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be d sequential scoring rules and let fµ(c, A, b) be as in Theorem 4.1 for the class C. Then,
Pdim({fwµ : µ ∈ Rd}) = O(dmw2 log(dw(α+ β + n))).

Proof. In Lemma 3.4 and Theorem 3.5 we showed that there are O(w2wα+ 2wβ+nw) multivariate
polynomials that belong to a family of polynomials G with VCdim(G∗) ≤ 1 +mw (G∗ denotes the
dual of G) that partition C into regions such that resulting sequence of cuts is invariant in each region.
By Claim 3.5 by Balcan et al. [8], the number of regions is O(w2wα + 2wβ + nw)VCdim(G∗) ≤
O(w2wα+ 2wβ + nw)1+mw. The corollary then follows from Theorem 4.1.

These results bound the sample complexity of learning cut-selection policies based on scoring rules,
which allow the cuts B&C that selects to depend on the input IP.

5 Sample complexity of generic tree search

In this section, we study the sample complexity of selecting high-performing parameters for generic
tree-based algorithms, which are a generalization of B&C. This abstraction allows us to provide
guarantees for simultaneously optimizing key aspects of tree search beyond cut selection, including
node selection and branching variable selection. We also generalize the previous sections by allowing
actions (such as cut selection) to be taken at any stage of the tree search—not just at the root.

Tree search algorithms take place over a series of κ rounds (analogous to the B&B tree-size cap
κ in the previous sections). There is a sequence of t steps that the algorithm takes on each round.
For example, in B&C, these steps include node selection, cut selection, and variable selection. The
specific action the algorithm takes during each step (for example, which node to select, which cut to
include, or which variable to branch on) typically depends on a scoring rule. This scoring rule weights
each possible action and the algorithm performs the action with the highest weight. These actions
(deterministically) transition the algorithm from one state to another. This high-level description of
tree search is summarized by Algorithm 1. For each step j ∈ [t], the number of possible actions is
Tj ∈ N. There is a scoring rule scorej , where scorej(k, s) ∈ R is the weight associated with the
action k ∈ [Tj ] when the algorithm is in the state s.

Algorithm 1 Tree search

Input: Problem instance, t scoring rules score1, . . . , scoret, number of rounds κ.
1: s1,1 ← Initial state of algorithm
2: for each round i ∈ [κ] do
3: for each step j ∈ [t] do
4: Perform the action k ∈ [Tj ] that maximizes scorej (si,j , k)
5: si,j+1 ← New state of algorithm
6: si+1,1 ← si,t+1 . State at beginning of next round equals state at end of this round

Output: Incumbent solution in state sκ,t+1, if one exists.

There are often several scoring rules one could use, and it is not clear which to use in which
scenarios. As in Section 4, we provide guarantees for learning combinations of these scoring rules
for the particular application at hand. More formally, for each step j ∈ [t], rather than just a
single scoring rule scorej as in Step 4, there are dj scoring rules scorej,1, . . . , scorej,dj . Given
parameters µj = (µj [1], . . . , µj [dj ]) ∈ Rdj , the algorithm takes the action k ∈ [Tj ] that maximizes∑dj
i=1 µj [i]scorej,i(k, s). There is a distribution D over inputs x to Algorithm 1. For example,

when this framework is instantiated for branch-and-cut, x is an integer program (c, A, b). There
is a utility function fµ(x) ∈ [−H,H] that measures the utility of the algorithm parameterized by
µ = (µ1, . . . ,µt) on input x. For example, this utility function might measure the size of the search
tree that the algorithm builds. We assume that this utility function is final-state-constant:
Definition 5.1. Let µ = (µ1, . . . ,µt) and µ′ = (µ′1, . . . ,µ

′
t) be two parameter vectors. Suppose

that we run Algorithm 1 on input x once using the scoring rule scorej =
∑dj
i=1 µj [i]scorej,i and

once using the scoring rule scorej =
∑dj
i=1 µ

′
j [i]scorej,i. Suppose that on each run, we obtain the

same final state sκ,t+1. The utility function is final-state-constant if fµ(x) = fµ′(x).

9



We provide a sample complexity bound for learning the parametersµ. The full proof is in Appendix D.

Theorem 5.2. Let d =
∑t
j=1 dj denote the total number of tunable parameters of tree search. Then,

Pdim
({
fµ : µ ∈ Rd

})
= O

(
dκ

t∑
j=1

log Tj + d log d

)
.

Proof sketch. We prove that there is a set of hyperplanes splitting the parameter space into regions
such that if tree search uses any parameter setting from a single region, it will always take the same
sequence of actions (including node, variable, and cut selection). The main subtlety is an induction
argument to count these hyperplanes that depends on the current step of the tree-search algorithm.

In the context of integer programming, Theorem 5.2 not only recovers the main result of Balcan et al.
[5] for learning variable selection policies, but also yields a more general bound that simultaneously
incorporates cutting plane selection, variable selection, and node selection. In B&C, the first action
of each round is to select a node. Since there are at most 2n+1 − 1 nodes, T1 ≤ 2n+1 − 1. The
second action is to choose a cutting plane. As in Theorem 4.1, let C be a family of cutting planes
such that for every IP (c, A, b), there is a decomposition of the parameter space into ≤ r regions
such that the cuts generated by any two parameters in the same region are the same. So T2 ≤ r.
The last action is to choose a variable to branch on at that node, so T3 = n. Applying Theorem 5.2,
Pdim({fµ : µ ∈ Rd}) = O(dκn + dκ log r + d log d). Ignoring T1 and T2, thereby only learning
the variable selection policy, recovers the O(dκ log n+ d log d) bound of Balcan et al. [5].

6 Conclusions and future research

We provided the first provable guarantees for using machine learning to configure cutting planes and
cut-selection policies. We analyzed the sample complexity of learning cutting planes from the popular
family of Chvátal-Gomory (CG) cuts. We then provided sample complexity guarantees for learning
parameterized cut-selection policies, which allow the branch-and-cut algorithm to adaptively apply
cuts as it builds the search tree. We showed that this analysis can be generalized to simultaneously
capture various key aspects of tree search beyond cut selection, such as node and variable selection.

This paper opens up a variety questions for future research. For example, which other cut families
can we learn over with low sample complexity? Section 3 focused on learning within the family
of CG cuts (Sections 4 and 5 applied more generally). There are many other families, such as
Gomory mixed-integer cuts and lift-and-project cuts, and a sample complexity analysis of these is
an interesting direction for future research (and would call for new techniques). In addition, can we
use machine learning to design improved scoring rules and heuristics for cut selection? The bounds
we provide in Section 4 apply to any choice of scoring rules, no matter how simple or complex. Is
it possible to obtain even better bounds by taking into account the complexity of the scoring rules?
Finally, the bounds in this paper are worst case, but a great direction for future research is to develop
data-dependent bounds that improve based on the structure of the input distribution.
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