MCGILL COMP 551 2019F MINIPROJECT 4 GROUP 98

Reproducibility Challenge:
Making Al Forget You: Data Deletion in Machine Learning

Xiaohui Wang, Zijin Nie, and Zijun Yu

Abstract - This report examines the reproducibility of the paper Making Al Forget You: Data Deletion In Machine Learning[1].
The original paper initiated a framework studying what to do when specific data is no longer accessible for deploying models.
The paper also proposed two efficient deletion algorithms for k-means clustering model called Q-k-means and DC-k-means. We
studied the replicability of the two algorithms, examining if they could achieve similar performance as they stated in the report.
By re-implementing Q-k-means and DC-k-means, we reproduced the experiments using MNIST, Gaussian and Covtype datasets.
We also performed the experiments of the effect of parameter width and labda to the efficiency of algorithms. The experiments we

conducted yields similar results as shown in the original paper.

I. INTRODUCTION

ECENTLY, intense discussions have focused on

individual’s right to remove their personal data from
internet search or other directories. Many efforts have been
put towards this direction including the EU’s Right To Be
Forgotten. The Right allows people to remove personal
information from the Internet or other directories by request.
If these policies come into effective, it could bring a challenge
to data science field and any related fields since research
and outcome based on the affected data would be redone or
re-evaluated. As a recent mentioned topic, there are not many
research done about efficient data deletion problems. Thus, a
framework studying how to efficiently remove specific data
applied in machine learning models needs to be formalized.

In the original paper, Ginart et al. developed a notion of
deletion efficiency for large-scale learning systems. They gave
formal definition of data deletion, approached data deletion as
an online problem and rose the notion of deletion efficiency.
In specific, they proposed two deletion efficient unsupervised
clustering algorithms, Q-k-means, a quantized variant of
Lloyd’s algorithm and DC-k-means (Divide-and-Conquer
k-means), which works by partitioning the dataset into
sub-problems and recursively merging the result of each
subproblem. Also, the authors provided detailed mathematical
proof of the runtime of algorithms.

In this report, we reproduced what we think is the most
important content. We implemented the Q-k-means and DC-
k-means using three of the datasets which Ginart et al. used,
MNIST, Gaussian and Covtype. Following the algorithms
and experiments setup in the original paper, we took out
experiments testing the data deletion efficiency and clustering
performance. The results we got accord with what the original
paper produced, which proved its reproducibility.

II. RELATED WORK

Aside from Q-k-means and DC-k-means, there are multiple
efficient deletion operations as introduced by the authors
of the original paper, which are known for some canonical
learning algorithms. The non-parametric Nadaraya-Watson
kernel regressions[2] and nearest-neighbors methods[3] are

examples of lazy learning techniques for such efficient deletion
operations.

The authors addressed the issue of data privacy with regards
to data deletion. Cryptography and differential privacy[4]], for
example, aim to make data non-identifiable and secure while
the major concern is not how to delete data efficiently.

1II. DATASETS

The datasets that we applied in our experiments are the
covtype, MNIST and Gaussian datasets. The exclusion of
celltype, posture and botnet datasets is due to inaccessibility
of datasets or limited computational resource. The original
paper states that the specified celltype data was retrieved from
the Mouse Cell Atlas[5)], where the described dataset is not
currently available. The botnet dataset is available online[6],
however, we decided not to conduct the experiments with it
because the training duration is lengthy for botnet dataset using
limited computational power accessible.

A. Proposed Datasets for Experiments

In the original paper, 6 datasets were used for evaluating

the algorithms.

1) Celltype consists of single cell RNA sequences for 4 cell
types: microglial cells, endothelial cells, fibroblasts, and
mesenchymal stem cells.

2) Covtype consists of cartographic features at various times
of day for 7 forest cover types. The original paper states
that it has applied 15,120 samples for the implementation.

3) MNIST consists of images of handwritten digits and the
task is to classify each image into one of the ten classes.
The MNIST dataset is available in Keras library.

4) Posture consists of signals of 5 different hand postures
with unlabeled markers attached to a glove.

5) Botnet consists of malicious and non-malicious traffic
data between different IP addresses. The task is to classify
benign and 11 classes of malicious traffic data.

6) Gaussian dataset synthesized by ourselves.

B. Synthesis and Pre-processing of Datasets

1) Gaussian
The Gaussian dataset we created consists of 5 clusters
that were generated from 25-variate Gaussian distributions

MCGILL COMP 551 2019F MINIPROJECT 4 GROUP 98

centered at randomly chosen locations. For each cluster,
20,000 samples are taken and there are in total 100,000
samples in the Gaussian dataset.

'

(a) using dimension 2 and 10 (b) using dimension 16 and 21

- o

6
5
5
3
2
1
0
1
2

-4 -2 [2 4

(c) using dimension

Fig. 1: The Gaussian dataset using K-means, plot using two
dimensions out of 25 by random

2) Covtype

Preprocessing of Covtype dataset was conducted for
simulating the experiments described in the original paper.
The Covtype dataset we used in the experiments is available
in the Sklearn library[7]] with originally 581,012 data samples.
For each forest cover type in the original dataset, we randomly
selected 2160 samples so that the resulting dataset contains
15,120 total number of samples for experiment.

3) MNIST

MNIST data set can be reached using Keras[§]|] dataset.
The dataset received is of dimension (60000,28,28). To fit the
dataset to our model, we flattened the 2% and 3" dimension
and converted it to size (60000,784).

4) Posture

The dataset for MoCap Hand Posture can be found in UCI
Machine Learning Repository[9]. The dataset provided has
78,095 instances and 38 attributes for each posture. The raw
data contains several question marks for each data, we replaced
the question marks using number out of the range -100 to 100
so that our algorithms can measure the Euclidean distance
between each data points.

IV. METHODS

To evaluate the replicability of the original paper, we
attempted to reproduce the deletion -efficiency(amortized
runtime) and clustering performance experiments of Q-k-
means and DC-k-means algorithm introduced in the paper.
To compose the experiments, similar setups from original
papers were used. We referenced github code for the two

algorithmsﬂ and implement the test benchmark ourselves
using datasets found from sites, since they are not provided
along. We also tested the effect of quantization granularity
and tree width on deletion efficiency.

We simulated a stream of 1,000 deletion requests for
each algorithm and each dataset. For each individual group,
we took the average of 3 identical tests. Deletion of data
points were carried out at uniformly random and without
replacement. To satisfy each deletion request, we produced an
intermediate model at each request. The next deletion would
happen on the previous intermediate model. Deletion requests
for the k-means++ baseline model requires re-training from
scratch.

To measure deletion efficiency, we used wall clock time for
completing the deletion stream above. For evaluating cluster-
ing performances, we adopted the error metric of optimization
loss used in the original paper. Optimization loss demonstrates
the sum of squared Euclidean distances from each data point
to its nearest centroid.

A. Baseline

As a baseline, we used the canonical Lloyd’s algorithm
initialized by k-means++ seeding.

The Lloyd’s algorithm aims to find evenly spaced sets
of points. It repeatedly finds the centroid for each set in
the partition and re-partition based on Euclidean spaces. K-
means++ is an algorithm for choosing the initial values for
the k-means clustering algorithm. It chooses the first cluster
center at random and chooses the subsequent cluster centers
with probability proportional to its squared distance from the
point’s closest existing cluster center.

B. Quantized k-means

Q-k-means is proposed as a quantized variant of Lloyd’s
algorithm. By quantizing the centroids, it is shown that dele-
tion of data points causes centroids remain constant with high
probability. Thus, an efficient deletion algorithm is proposed
without re-computing centroids from scratch at each iteration.
In scenario when the quantized centers change, which happens
relatively infrequent, centroids are re-computed from scratch.
With Q-k-means, we expect the amortized runtime to behave
stronger than the baseline.

C. Divide-and-Conquer k-Means

Divide-and-Conquer k-means (DC-k-means) algorithm par-
titions the dataset into sub-problems and merges the results
solved by sub-problems. DC-k-means requires initialization
of a tree structure with width w and height h, where the
original dataset is partitioned into each leaf in the tree. Smaller
k-means problems are solved at each leaf and results are
recursively merged till root. On deletion of a data point, only

Uhttps://github.com/tginart/deletion-efficient-kmeans

MCGILL COMP 551 2019F MINIPROJECT 4 GROUP 98

the path from one leaf up to the root needs to be re-computed.
With DC-k-means, we expect a faster deletion operation with
decreased computation need.

V. RESULTS

In this section we present the results yielded through con-
ducting subsets of experiments described in the original paper.
Detailed comparisons and key observations are narrated in the
next section.

A. Statistical Performance Metrics

We summarize the key findings of experiments with Q-k-
means, DC k-means algorithms in the following tables. K-
means was used as baseline for measurement. Table 1 shows
the statistical clustering performance of the proposed methods
and the baseline, with the loss ratio as error metric. In Table 2,
we reported the amortized runtime under deletion of 1000 data
points in for our proposed methods and the baseline. We ob-
served that both proposed algorithms demonstrate competitive
performance comparing to the baseline in statistical clustering.
The table also shows that both proposed algorithms yield levels
of runtime speedup.

TABLE I: Loss Ratio

Dataset k-means | Q-k-means | DC-k-means
Gaussian | 1 0.992 1.001
MNIST 1 1.005 1.095
Covtype 1 1.062 1.029

TABLE II: Amortized Runtime in Online Deletion
Benchmark (Train once + 1,000 Deletions)

Dataset k-mgans Q-k-means DC-k-means
Runtime | Runtime SpeedUp | Runtime SpeedUp
Gaussian | 34.811 0.104 334x 2.156 16.14x
MNIST | 46.014 20.482 2.25x 2.0364 22.59x
Covtype | 4.351 0.314 13.85x 0.307 14.17x

B. Effect of Quantization Granularity on Optimization Loss

In this experiment, we compared the k-means optimization
loss by changing epsilon and tree width, with the loss nor-
malized with respect to the baseline. In Figure 2, we plotted
the results derived from performing Q-k-means method with
different epsilon values. We observed that loss ratio increased
rapidly as epsilon value approaching 1.

C. Effect of Tree Width on Optimization Loss and Amortized
Runtime

We experimented with the effect of varied tree width for
DC-k-means.
We plotted the results in loss ratios derived from performing
DC-k-means method with different tree width values.

We observed that the amortized runtime first decreased and

Gaussian - @ k-means loss ratio vs. epsilon

(a) Gaussian

Loss Rat
~——_

0
0.00001 0.0001 0.001 0.01 01 1

(b) MNIST

Covtype Q-k-means loss ratio
25

2
15 J
1

0
0.00001 0.0001 0.001 0.01 01 1

vs eplison

oss Ratio

epsilon

= Qk-means == K-means

(c) Covtype

Fig. 2: Q-k-means Loss ratio v.s. epsilon

DC k-means amortized runtime vs. width

ed runtime [segcs)

amaortiz

width in power of 2

Fig. 3: DC-k-means Amortized Runtime vs width

then increased as tree width increased, which met the result
of Figure6, Appendix D.3.3 in the original paper.

We found that the DC-k-means algorithm tended to yield better
loss ratio as height increased.

D. Effect of Tree Height on DC-k-means Training Time

The original paper does not discuss the optimization of
the DC tree respect to the tree height. We conducted this
experiment out of our interest. Comparing training time for
DC-k-means method of various tree heights, we found the
training time increased with the tree depth when tree width
value went above 16. However, no significant difference was

MCGILL COMP 551 2019F MINIPROJECT 4 GROUP 98

Gaussian - DC k-means loss ratio vs. width
Height = &

(a) Height =5

Gaussian - DC k-m oss ratio vs. width

I S ——

(b) Height =3

Gaussian - DC k-means loss ratio vs. width

Height = 2
: /
[7 B8 9 10

width in power of 2

1.005
- N
L — .
) 2) s 5

—.—0)Ckemeans

(c) Height =2

Fig. 4: DC-k-means Loss ratio v.s. width

DC k-means training time vs. height

K-means —8—DC k-means (h=5) D kemeans [h=3) BC kemeans {h=2)

Fig. 5: DC-k-means Training Runtime vs height

observed when tree width was sufficiently small.

E. Effect of Variance on Q-k-means Deletion Performance

We experimented with the effect of varied variance for
Q-k-means. We plotted the results derived from performing
Q-k-means method on the Gaussian dataset with different
variances. We observed a smoother transition in the results

derived with smaller variance.

Gaussian - a k-means runtime performance
Variance = 0.5, epsilon = 0.2

(a) Variance = 0.5

Gaussian - Q k-means runtime performance

Variance = 1, epsilon = 0.2

(b) Variance = 1

Fig. 6: Q-k-means Delete Performance v.s. variance

VI. CONCLUSION AND DISCUSSION
Conclusion

In this report, we attempted to prove the reproducibility of
Q-k-means and DC-k-means algorithms proposed by Ginart et
al. by means of performing experiments on runtime efficiency
and clustering performance.

In our experiment for loss ratio versus epsilon and width,
we observed that the trends we derived were consistent with
those demonstrated by F'igure 3 and Figure 4 in the original
paper. In the aspect of amortized runtime versus the two
parameters, we observed that the time complexity reduced
with lower epsilons and the point of highest efficiency lied
around tree width of 30. Moreover, we tested how heights
of DC-trees affected the time and loss. We concluded that
having the height equal to 2 led to shortest runtime overall,
corresponded to what was proposed in the original paper.

Thus we demonstrate that, as stated in the original paper,
the proposed algorithms have competitive statistical cluster-
ing performance compared to the k-means baseline. While
the results vary for different datasets, the proposed methods
generally reduce deletion runtime to a high degree.

Discussion

In terms of reproducibility, the experiments presented in
the original paper is easy to follow and implement. Although
not affecting understanding, there is a minor error labeling
the horizontal axis of figure 4. It should be “width” instead
of epsilon.

MCGILL COMP 551 2019F MINIPROJECT 4 GROUP 98

Overall, we focused on the main parts of original results,
and we left the mathematical proof of theoretical runtime of
algorithms for further exploration.

For the databases used in the original report, there are some
points that could be justified more clearly for the ease of
reproduction. First, although the Celltype dataset is referenced,
we were not able to find that data resource from the original
paper and thus we did not use Celltype dataset as part of
experiment. Second, Gaussian dataset misses variance value
for each cluster of data. This value has been added in the latest
version of the paper. However, Gaussian dataset with different
variance would have various distribution, that could potentially
change the retrain frequency of the proposed algorithms,
resulting in incompatible deletion efficiency.

REFERENCES

[1] A. Ginart, M. Y. Guan, G. Valiant, and J. Zou, “Making ai forget you:
Data deletion in machine learning,” 2019.

[2] E. A. Nadaraya, “On estimating regression,” Theory of Probability & Its
Applications, vol. 9, no. 1, pp. 141-142, 1964.

[3] D. Coomans and D. L. Massart, “Alternative k-nearest neighbour rules in
supervised pattern recognition : Part 1. k-nearest neighbour classification
by using alternative voting rules,” 1982.

[4] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., vol. 9, pp. 211-407, Aug.
2014.

[5]1 G. Guo, “MCA DGE Data,” 10 2018.

[6] Y. Meidan et al., “N-baiot—network-based detection of iot botnet attacks
using deep autoencoders,” IEEE Pervasive Computing, vol. 17, no. 3,
pp- 12-22, 2018.

[7] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

[8] FE. Chollet et al., “Keras.” https://keras.io, 2015.

[9] D. Dua and C. Graff, “UCI machine learning repository,” 2017.

https://keras.io

	INTRODUCTION
	Related work
	Datasets
	Proposed datasets for experiments
	Synthesis and pre-processing of datasets
	Gaussian
	Covtype
	MNIST
	Posture

	Methods
	Baseline
	Quantized k-means
	Divide-and-Conquer k-Means

	Results
	Statistical Performance Metrics
	Effect of Quantization Granularity on Optimization Loss
	Effect of Tree Width on Optimization Loss and amortized runtime
	Effect of Tree Height on DC-k-means training time
	Variance for Q-k-means

	Conclusion and Discussion
	References

