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Abstract

In manufacturing settings, workers rely on their
sense of hearing and their knowledge of what
sounds correct to help them identify machine
quality problems based on the sound pitch,
rhythm, timbre and other characteristics of
the sound of the machine in operation. Using
machine learning to classify these sounds has
broad applications for automating the manual
quality recognition work currently being done,
including automating machine operator training,
automating quality control detection, and
diagnostics across manufacturing and mechanical
service industries. We previously established that
models taking input pitch information from music
domains can dramatically improve classification
model performance on industrial machine audio
leveraging a pretrained pitch model.

In this work, we explore the use of self-supervised
learning on pitch-intensive birdsong rather than
a pre-trained model. To reduce our reliance on a
pretrained pitch model and reduce the quantity of
labeled industrial audio required, we implement
self-supervised representation learning using plen-
tiful, license-free, unlabeled, pitch-intensive wild
birdsong recordings, with audio data augmenta-
tion to perform classification on industrial audio.
We show that: 1. We can preprocess the unlabeled
birdsong data sample with unsupervised methods
to eliminate low signal sample and mask low fre-
quency noise leaving just desirable chirp-rich sam-
ple. 2. We can identify effective representations
and approaches for learning birdsong pitch con-
tent by comparing select self-supervised pretext
task training of temporal sequence prediction and
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sequence generation. 3. We can identify effective
augmentation methods for learning pitch through
comparison of the impact of a variety of audio
data augmentation methods on self-supervised
learning. And 4. Downstream fine-tuned models
deliver improved performance classifying indus-
trial motor audio. We demonstrate that motorized
sound classification models using self-supervised
learning with a dataset of pitch intensive bird-
song, combined with select data augmentation,
achieves better results than using the pre-trained
pitch model.

1. Introduction
We were introduced to the challenge of classifying indus-
trial audio last year when working with a manufacturer that
sought to improve welding quality. The correct distance
of the welding device to the weld is a critical element in
creating a quality weld. If the weld were to be conducted too
close or too far from the weld, the weld would be weak and
could fail. The master welder, in a tour of the factory floor,
was able to immediately call our attention to the difference
in the sounds of good welds and the sounds of bad welds.
They had distinctively different pitches due to the reflection
of the sound off the surface at different distances. However,
the light emitted during welding made photography at this
distance impractical. And so we investigated classifying the
audio based on representations of the pitch with the imme-
diate application of enabling training by allowing welders
to get immediate feedback on the quality of their welds.

While there were recent advances using deep learning in ar-
eas of music machine learning classification and music syn-
thesis, there are very few applications of these frequency and
pitch machine learning methods on classification of audio
in the industrial environment. We leveraged the CREPE pre-
trained pitch estimation model (Kim et al., 2018) and found
it performed reasonably well at classifying weld pitches. We
implemented a multi-input ConvNet model combining 1D
representations of CREPE pitch estimations from the time
domain waveform, and Constant-Q (CQT) 2D transforms
of the waveform, yielding a high accuracy classification of
welding distance (Ryan et al., 2019).
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We experimented with other industrial audio datasets with
the same modeling approach to understand whether the
approach was generalizable. We classified correct and in-
correct machining lathe settings and distinguished between
the motors of different ferry boats operating on the Puget
Sound. However, we had two challenges. Labeled data
in industrial audio is scarce and expensive to collect, and
relying on the CREPE model prediction proved too slow in
industrial production settings. In this work we explore the
use of self-supervised learning to reduce our labeled data
requirements, and we explore whether we can learn enough
of the pitch information from a birdsong dataset to allow
us to eliminate our reliance on the CREPE pretrained pitch
model.

1.1. Contribution

We make several contributions that we outline here. We
demonstrate the efficacy of using self-supervision with a
pitch-intensive birdsong model to allow downstream clas-
sification of pitch-intensive industrial motor audio. The
application of learning pitch is extensively applied in the
music realm (Kim et al., 2018), (Huang et al., 2018), (Engel
et al., 2019). Enabling learning from the pitch present in
birdsong, and using those pretrained weights to improve
classification on the pitch present in industrial audio is
novel. We describe unsupervised methods to preprocess
the unlabeled birdsong audio to exclude low quality sam-
ples leaving us only with high quality samples. Finally, we
demonstrate the efficacy of several audio data augmenta-
tion methods at enhancing self-supervised learning of pitch
and demonstrate this on the downstream classification task.
The source code for the implementation of our paper is
available at: https://github.com/SingingData/birdsong-self-
supervised-learning

2. Data Augmentation for Self-Supervised
Learning on a Birdsong Dataset

2.1. Dataset

In the foothills of the Carson Range, within the Sierra
Mountains, we captured footage and audio from a motion-
activated wildlife camera. The camera was trained on bird
feeders and the surrounding area, and captured eleven sec-
ond video and audio samples (44.1 kHz). The birds recorded
included Quail, Blue Jays, Black Headed Grosbeaks, Doves,
Robins, Red Finches, Stellars Jays, Black-billed Magpies,
Yellow Warblers and Varied Thrush, among others. We ex-
tracted the audio from the captured video and resampled it
to a 22 kHz sample rate.

2.2. Preprocessing

Some of our video samples were undesirable and needed
to be excluded from our sample. For example, some of
the motion activated video samples had inadvertent wind
activations with no birdsong. Some samples had very faint
birdsong. Still others had background noise including sprin-
klers, cars, and airplanes. First, we eliminated audio samples
with little differential between average magnitude and max-
imum magnitude of the audio signal. Next, we performed
a K-means cluster analysis on the CQT unrolled vectors to
quickly identify and eliminate clusters of undesirable noise.
These two methods allowed us to quickly eliminate one-
third of our sample, leaving 1,252 total clean, high quality
audio samples.

2.3. Transform

Once these samples were cleaned, we converted pitch and
timbre through frequency domain changes over time. We
use a Constant-Q Transform (CQT) to a 2D CQT spec-
trogram for each of our audio waveform inputs. CQT is
a time-frequency analysis method with greater frequency
resolution at lower frequencies and greater time resolution
towards higher frequencies better capturing human audible
pitch and timbre. Our use of CQT was inspired by Tim-
breTRON (Huang et al., 2018).

2.4. Augmentations

The data augmentation methods we applied are as follows:

• Pitch Shifting: The pitch shift augmentation is applied
using the Python library librosa (McFee et al., 2020)
with the values {-2, -1, 1, 2} being empirically chosen
based on the methods from (Salamon & Bello, 2016).
The raw frequency values are shifted in increments of
semitones with a positive value increasing the pitch
and a negative value decreasing the pitch.

• Octave Shifting: The octave shift augmentation uses
the same methodology as the pitch shift augmentation
with an octave shift of 1 being equivalent to a pitch shift
of 12 semitones. We reason that for our pretext task on
birdsong data to translate well to the industrial audio
setting, very large shifts in pitch would be valuable.
We used octave shifts with the values {-2, -1, 1, 2}.

• Time Stretching: The time stretching augmentation
extends or compresses the waveform by the following
rates {2, 5, 0.2, 0.5}. A rate of 2 will lead to the
audio sample being twice its original speed, leading to
a compressed waveform. Likewise, a rate of 0.5 will
lead to the audio sample being half its original speed,
creating an extended waveform.
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Table 1. Classification accuracies on the pretext task with birdsong data. All models trained for 20 epochs.

ARCHITECTURE AUGMENTATIONS TRAINING SAMPLES TRAIN (ACC) TRAIN (LOSS) VAL (ACC) VAL (LOSS)

TRIPLET ALEXNET NONE 763 92.27 2.5789 83.44 2.4384
TRIPLET ALEXNET PITCH + OCTAVE 11445 85.64 1.5740 81.05 1.2945
TRIPLET ALEXNET TIME STRETCHING 3052 84.19 1.5734 74.13 1.3982
TRIPLET ALEXNET SPECAUGMENT 3052 87.13 3.0731 77.16 2.9691

• SpecAugment: Introduced for speech recognition,
(Park et al., 2019) applied a frequency mask and a time
mask on top of the log mel spectrogram representation
of the audio sample. We use the library nlpaug (Ma,
2019) to apply this augmentation on the CQT represen-
tation of the audio sample. Using the notation and de-
scriptions from (Park et al., 2019), on each audio sam-
ple we apply a frequency mask that covers 30 consecu-
tive frequency channels denoted as [f, f + 30) where
f is chosen from a uniform distribution of [0, ν − f)
where ν is the number of frequency channels in the
CQT representation. Additionally, two time masks are
applied on 10 and 20 consecutive time steps denoted
as T0 = [t0, t0 + 20) and T1 = [t1, t1 + 10) with the
additional constraint that T0 ∩ T1 = ∅.

3. Self-Supervised Learning Methods
3.1. Self-Supervised Learning Pretext Task

For the self-supervised pretext task, we chose verifying se-
quence temporal order, drawing inspiration from the “Shuffle
and Learn” pretext task by (Misra et al., 2016). We reasoned
that the pattern of the birdsong could be learned in order
to determine temporal order, and in so doing would enable
the pitch of the notes of the birdsong to be learned. We first
created tuples of sequences by splitting each sample into
four sequence chunks of 2.6 seconds a piece that we denote
as (a, b, c, d) following the (Misra et al., 2016) approach.
Next, for each sample we labeled a positive example as the
sequence (a, b, c) leaving out the last chunk. To create neg-
ative examples, we incorrectly ordered the sequence using
the left out chunk ‘d’ resulting in the sequence (b, a, d) and
(d, a, b).

3.2. Model Architecture

Again, following the “Shuffle and Learn” design, we de-
signed a Triplet Siamese network for sequence verification.
We reduced the last dense layer of the AlexNet architecture
modestly to fit available computational resources. We ap-
plied the Lecun normal initializer, leaky ReLu and liberally
applied drop-out. We balanced the datasets.

3.3. Downstream Task

For our downstream task, we classified Washington State
Ferry recordings, distinguishing between the Wenatchee and
the Tacoma motors based on 2.6 second samples.

For our downstream architecture, we took just one of the
Siamese Triplets to form the basis of our downstream model.
We loaded the pre-trained weights on each of the convolu-
tional layers, and added two trainable dense layers and an
output layer. We froze the first three layers and allowed the
last three layers to be trainable. We trained the downstream
task for 20 epochs with each of the data augmentation per-
mutations.

4. Results
Self-supervised training on birdsong proved effective for im-
proving our downstream classification model performance.
First, two data augmentation techniques in particular, pitch
shifting and time stretching, proved the most effective at im-
proving downstream performance. With either of these data
augmentation techniques present, our downstream model
achieved 100% classification accuracy with 10 epochs of
training. By contrast, without pre-training, the downstream
model failed to learn. In comparison, the model attained a
comparable accuracy of 99.75% using a pre-trained pitch
model, CREPE, combined with CQT with spec augment
data augmentation. The performance of the model on the
pretext task is noted in Table 1. The performance of the
model on the pretext task is noted in Table 2 . We note the
quantity of augmented training data in the table. For pitch
+ octave augmentations and our time stretching augmenta-
tions, we generated a greater number of training samples
which may have resulted in lower training loss on the down-
stream ferry audio training.

5. Related Works
Self-Supervised Learning. Self-Supervised methods have
shown promising growth in the natural language space
involving audio waveforms with recent contributions such
as Audio ALBERT (Chi et al., 2020). In the general audio
space, there has been a larger focus on learning high-quality
audio representations through unsupervised methods such
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Table 2. Classification accuracies on the downstream task with ferry data. Pre-Trained indicates that the self-supervised model weights
were transferred onto the classifier. The augmentations where indicated were applied on the data for the pretext task (the birdsong) but
were not applied on the downstream task (the ferry sound). Training Samples: 167 recordings. Validation Samples: 66 recordings.

ARCHITECTURE PRE-TRAINED AUGMENTATIONS TRAIN (ACC) TRAIN (LOSS) VAL (ACC) VAL (LOSS)

ALEXNET NO NONE 56.29 17843.1402 53.79 943.1954
ALEXNET YES NONE 59.88 103428.4201 87.12 6730.2180
ALEXNET YES PITCH + OCTAVE 74.85 19469.7310 100 0.3400
ALEXNET YES TIME STRETCHING 69.76 16478.3154 100 0.3400
ALEXNET YES SPECAUGMENT 59.28 15824.3084 92.42 256.0956

as using autoencoders (Roche et al., 2018) equipped with
convolutional layers or additionally with recurrent layers
as well (Meyer et al., 2017), (Chung et al., 2016). One
self-supervised task (Tagliasacchi et al., 2019) is called
TemporalGap which focuses on estimating the length of a
time masked temporal slice. Instead of using TemporalGap
as our pretext task, we incorporated this task as part of our
augmentations through SpecAugment (Park et al., 2019)
which allows us an additional augmentation method that
has demonstrated crucial value to the quality of the learned
representations.

Audio Representations and Augmentations. The usage
of different transformations on the audio waveform such as
the short-time fourier transform (STFT), linear and log mel
spectrograms, and continuous wavlet transform (CWT) has
been studied on environmental audio classification tasks
UrbanSound8K by (Huzaifah, 2017). Additionally from the
speech recognition space, there is (Nguyen et al., 2019)

Application in Vision. While the focus of our methods
is strictly focused on learning from the audio waveform,
the method that we drew inspiration from (Misra et al.,
2016) is performed on video frames. Other methods for
self-supervision when video frames and audio waveforms
are available have been explored (Alwassel et al., 2019),
(Korbar et al., 2018). Our method applied with “Shuffle
and Learn” (Misra et al., 2016) offers a new self-supervised
learning task to the combined video and audio space.

6. Discussion
For pitch-intensive downstream classification tasks, it ap-
pears pretraining with license-free birdsong recordings is
effective at improving performance, even for modestly sized
labelled data sets. For our industrial enterprise implemen-
tations of audio machine learning, self-supervised learning
is a promising approach. In this case, classification on the
ferry motor dataset may be too easy, and we look forward
to extending our experimentation to other more challenging
industrial audio datasets. We believe audio and video of

the natural world with relevant characteristics may prove a
cost-effective data source to build self-supervised learning.

Further experimentation is called for given the differences
in our train and validation accuracies, as shown in Table 2.
We trained our downstream ferry classification models for
10 epochs each. However, additional training may improve
the results.

7. Conclusion
In this paper, we share a simple insight into the strong pitch
component shared by birdsong, music, and industrial au-
dio. We demonstrate the efficacy of a selection of audio
data augmentation techniques at representing the pitch com-
ponent of birdsong and industrial audio. Additionally, we
demonstrate unsupervised data pre-processing methods that
allow selection of unlabeled birdsong data to yield pitch-
intensive sample suited for self-supervised training. Finally,
we demonstrate the effectiveness of using self-supervised
learning techniques with a pretext task of sequence tem-
poral order verification at learning pitch information that
dramatically improves downstream model industrial audio
classification tasks.

In future work, we aim to expand upon our method by
leveraging other sources of audio data for the pretext task
such as AudioSet (Gemmeke et al., 2017). Additionally,
we would like to investigate how our learned representation
can be used in conjunction with representations obtained
from other pretext tasks such as (Tagliasacchi et al., 2019)
to capture different features of the audio waveform.
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