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ABSTRACT

Transformers have made great progress in dealing with computer vision tasks.
However, existing vision transformers have not yet possessed the ability of build-
ing the interactions among features of different scales, which is perceptually im-
portant to visual inputs. The reasons are two-fold: (1) Input embeddings of each
layer are equal-scale, so no cross-scale feature can be extracted; (2) to lower
the computational cost, some vision transformers merge adjacent embeddings
inside the self-attention module, thus sacrificing small-scale (fine-grained) fea-
tures of the embeddings and also disabling the cross-scale interactions. To this
end, we propose Cross-scale Embedding Layer (CEL) and Long Short Distance
Attention (LSDA). On the one hand, CEL blends each embedding with multiple
patches of different scales, providing the self-attention module itself with cross-
scale features. On the other hand, LSDA splits the self-attention module into a
short-distance one and a long-distance counterpart, which not only reduces the
computational burden but also keeps both small-scale and large-scale features in
the embeddings. Through the above two designs, we achieve cross-scale atten-
tion. Besides, we put forward a dynamic position bias for vision transformers to
make the popular relative position bias apply to variable-sized images. Hinging
on the cross-scale attention module, we construct a versatile vision architecture,
dubbed CrossFormer, which accommodates variable-sized inputs. Extensive ex-
periments show that CrossFormer outperforms the other vision transformers on
image classification, object detection, instance segmentation, and semantic seg-
mentation tasks. 1

1 INTRODUCTION

It turns out that transformer (Vaswani et al., 2017; Devlin et al., 2019; Brown et al., 2020) has
achieved great success in the field of natural language processing (NLP). Benefitting from its self-
attention module, transformer is born with the key ability to build long-distance dependencies. Since
long-distance dependencies are also needed by a number of vision tasks (Zhang & Yang, 2021; Chu
et al., 2021), a surge of research work (Dosovitskiy et al., 2021; Touvron et al., 2021; Wang et al.,
2021) has been conducted to explore various transformer-based vision architectures.

A transformer requires a sequence of embeddings2(e.g., word embeddings) as input. To adapt this
requirement to typical vision tasks, most existing vision transformers (Dosovitskiy et al., 2021;
Touvron et al., 2021; Wang et al., 2021; Liu et al., 2021b) produce embeddings by splitting an
input image into equal-sized patches. For example, a 224 × 224 image can be split into 56 × 56
patches of size 4 × 4, and these patches are projected through a linear layer to yield an embedding
sequence. Inside a certain transformer, self-attention is engaged to build the interactions between any
two embeddings. Thus, the computational or memory cost of the self-attention module is O(N2),
where N is the length of an embedding sequence. Such a cost is too big for a visual input because
its embedding sequence is much longer than that of NLP. Therefore, the recently proposed vision

∗The corresponding authors.
1The code has been released: https://github.com/cheerss/CrossFormer
2In this paper, we also use “embeddings” to represent the input of each layer.
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transformers (Wang et al., 2021; Liu et al., 2021b; Lin et al., 2021) develop multiple substitutes to
approximate the vanilla self-attention module with a lower cost.

Though the aforementioned vision transformers have made some progress, they do not explicitly
utilize features of different scales, whereas multi-scale features are very vital for a lot of vision
tasks. For example, an image often contains many objects of different scales, and to fully understand
the image, building the interactions among those objects is helpful. Besides, some particular tasks
such as instance segmentation need the interactions between large-scale (coarse-grained) features
and small-scale (fine-grained) ones. Existing vision transformers fail to deal with the above cases
due to two reasons: (1) The embeddings are generated from equal-sized patches. Though these
patches theoretically have a chance to extract any scale features if only the receptive field is large
enough, it is difficult to promise that they can learn appropriate multi-scale features automatically
in practice. (2) Inside the self-attention module, adjacent embeddings are often grouped together
and merged (Wang et al., 2021). Since the number of groups is smaller than that of embeddings,
such a behavior can reduce the computational budget of the self-attention. In this case, however,
even if embeddings have both small-scale and large-scale features, merging operations will lose the
small-scale features of each individual embedding, thereby disabling the cross-scale attention.

To enable the building of cross-scale interactions, we co-design a novel embedding layer and a self-
attention module as follows. 1) Cross-scale Embedding Layer (CEL) – Following Wang et al. (2021),
we also employ a pyramid structure for our transformer, which naturally splits the vision transformer
model into multiple stages. CEL appears at the start of each stage, which receives last stage’s output
(or an input image) as input and samples patches with multiple kernels of different scales (e.g., 4×4
or 8 × 8). Then, each embedding is constructed by projecting and concatenating these patches.
Through this way, we enforce some dimensions (e.g., dimensions from 4 × 4 patches) to focus on
small-scale features only, while others (e.g., those from 8× 8 patches) have a chance to learn large-
scale features, leading to an embedding with explicitly cross-scale features. 2) Long Short Distance
Attention (LSDA) – We propose a substitute of the vanilla self-attention, but to preserve small-scale
features, the embeddings will not be merged. In contrast, we split the self-attention module into
Short Distance Attention (SDA) and Long Distance Attention (LDA). SDA builds the dependencies
among neighboring embeddings, while LDA takes charge of the dependencies among embeddings
far away from each other. The proposed LSDA can also reduce the cost of the self-attention module
like previous studies (Wang et al., 2021), but different from them, LSDA does not undermine either
small-scale or large-scale features. As a result, attention with cross-scale interactions is enabled.

Besides, following prior work (Shaw et al., 2018; Liu et al., 2021b), we employ a relative position
bias for embeddings’ position representations. The Relative Position Bias (RPB) only supports fixed
image/group size3. However, image size for many vision tasks such as object detection is variable, so
does group size for many architectures, including ours. To make the RPB more flexible, we further
introduce a trainable module called Dynamic Position Bias (DPB), which receives two embeddings’
relative distance as input and outputs their position bias. The DPB module is optimized end-to-end
in the training phase, inducing an ignorable cost but making RPB apply to variable image/group size.

All our proposed modules can be implemented with about ten lines of code. Based on them, we
construct four versatile vision transformers of different sizes, dubbed CrossFormers. Other than im-
age classification, the proposed CrossFormer can handle a variety of tasks with variable-sized inputs
such as object detection. Experiments on four representative vision tasks (i.e., image classification,
object detection, instance segmentation, and semantic segmentation) demonstrate that CrossFormer
outperforms the other state-of-the-art vision transformers on all the tasks. Remarkably, the perfor-
mance gains brought by CrossFormer are substantially significant on dense prediction tasks, e.g.,
object detection and instance/semantic segmentation.

It is worth highlighting our contributions as follows:

• We propose cross-scale embedding layer (CEL) and long short distance attention (LSDA), which
together compensate for existing transformers’ incapability of building cross-scale attention.

• The dynamic position bias module (DPB) is further proposed to make the relative position bias
more flexible, i.e., accommodating variable image size or group size.

3Some vision transformers split input embeddings into several groups. Group size means the number of
embeddings in a group.
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(a) The architecture of CrossFormer for image classification.

Figure 1: (a) The architecture of CrossFormer for classification. The input size is H0 ×W0, and the
size of feature maps in each stage is shown on the top. Stage-i consists of a CEL and ni CrossFormer
blocks. Numbers in CELs represent kernels’ sizes used for sampling patches. (b) The inner structure
of two consecutive CrossFormer blocks. SDA and LDA appear alternately in different blocks.

• Multiple CrossFormers with different sizes are constructed, and we corroborate their effective-
ness through sufficient experiments on four representative vision tasks.

2 BACKGROUND

Vision Transformers. Motivated by the transformers developed for NLP, researchers design specific
visual transformers for vision tasks to take full advantage of their powerful attention mechanism. In
particular, ViT and DeiT transfer the original transformer Vaswani et al. (2017) to vision tasks (Tou-
vron et al., 2021; Dosovitskiy et al., 2021), achieving impressive performance. Later, PVT (Wang
et al., 2021), HVT (Pan et al., 2021), Swin (Liu et al., 2021b), and ViTAE (Xu et al., 2021b) intro-
duce a pyramid structure into the visual transformers, greatly decreasing the number of patches in
the later layers of a respective model. They also extend the visual transformers to other vision tasks
like object detection and segmentation (Wang et al., 2021; Liu et al., 2021b).

Cross-scale Feature Extraction. Szegedy et al. (2015); Tan & Le (2019) use multi-scale convo-
lutional kernels at every layer of models for cross-scale features, while the largest kernel size can
only be 7 × 7, and larger kernel size will induce unaccpetable computational budget. For vision
transformers, CoaT (Xu et al., 2021a) uses multi-scale features at later layers of models by mixing
features from different layers; CViT (Chen et al., 2021a) keeps embeddings of different scales in
different branches, and introduces cross-scale interaction through self-attention between branches.
More discussions can be seen in the appendix C.1.

Sparse Self-attention. Many substitutes have been proposed (Liu et al., 2021b; Wang et al., 2021;
Chu et al., 2021; Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020) to alleviate the cost
of the vanilla self-attention module. Instead of going self-attention among all embeddings, each
embedding only interacts with part of other embeddings, thus changing dense self-attention to sparse
attention. More discussions can be seen in the appendix C.2.

Position Representations. To make the respective model aware of position information of embed-
dings, many different position representations (Vaswani et al., 2017) are proposed. For example,
Dosovitskiy et al. (2021) directly added the embeddings with the vectors that contain absolute po-
sition information. In contrast, Relative Position Bias (RPB) (Shaw et al., 2018) resorts to position
information indicating the relative distance of two embeddings.

3 CROSSFORMER

The overall architecture of CrossFormer is plotted in Figure 1. Following (Wang et al., 2021; Liu
et al., 2021b; Lin et al., 2021), CrossFormer also employs a pyramid structure, which naturally splits
the transformer model into four stages. Each stage consists of a cross-scale embedding layer (CEL,
Section 3.1) and several CrossFormer blocks (Section 3.2). A CEL receives last stage’s output (or
an input image) as input and generates cross-scale embeddings. In this process, CEL (except that
in Stage-1) reduces the number of embeddings to a quarter while doubles their dimensions for a
pyramid structure. Then, several CrossFormer blocks, each of which involves long short distance
attention (LSDA) and dynamic position bias (DPB), are set up after CEL. A specialized head (e.g.,
the classification head in Figure 1) follows after the final stage accounting for a specific task.
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3.1 CROSS-SCALE EMBEDDING LAYER (CEL)

Cross-scale embedding layer (CEL) is leveraged to generate input embeddings for each stage. Fig-
ure 2 takes the first CEL, which is ahead of Stage-1, as an example. It receives an image as input,
then sampling patches using four kernels of different sizes. The stride of four kernels is kept the same

Embed and
Concatenate

Embedding

64 dims

32 dims
16 dims
16 dims

32 × 32

8 × 8
16 × 16

4 × 4

Embedding Layer

Type Kernel Stride Dim

Conv. 4× 4 4× 4 Dt
2

Conv. 8× 8 4× 4 Dt
4

Conv. 16× 16 4× 4 Dt
8

Conv. 32× 32 4× 4 Dt
8

Figure 2: Illustration of the CEL layer. The in-
put image is sampled by four different kernels
(i.e., 4 × 4, 8 × 8, 16 × 16, 32 × 32) with same
stride 4× 4. Each embedding is constructed by
projecting and concatenating the four patches.
Dt means the total dimension of the embedding.

so that they generate the same number of embed-
dings4. As we can observe in Figure 2, every four
corresponding patches have the same center but
different scales, and all these four patches will be
projected and concatenated as one embedding. In
practice, the process of sampling and projecting
can be fulfilled through four convolutional layers.

For a cross-scale embedding, one problem is how
to set the projected dimension of each scale. The
computational budget of a convolutional layer is
proportional to K2D2, where K and D represent
kernel size and input/output dimension, respec-
tively (assuming the input dimension equals to
the output dimension). Therefore, given the same
dimension, a large kernel consumes more budget
than a smaller one. To control the total budget of
the CEL, we use a lower dimension for large ker-
nels while a higher dimension for small kernels.
Figure 2 provides the specific allocation rule in
its subtable, and a 128-dimensional example is
given. Compared with allocating the dimension
equally, our scheme saves much computational cost but does not explicitly affect the model’s per-
formance. The cross-scale embedding layers in other stages work in a similar way. As shown in
Figure 1, CELs for Stage-2/3/4 use two different kernels (2 × 2 and 4 × 4). Further, to form a
pyramid structure, the strides of CELs for Stage-2/3/4 are set as 2 × 2 to reduce the number of
embeddings to a quarter.

3.2 CROSSFORMER BLOCK

Each CrossFormer block consists of a long short distance attention module (i.e., LSDA, which in-
volves a short distance attention (SDA) module or a long distance attention (LDA) module) and a
multilayer perceptron (MLP). As shown in Figure 1b, SDA and LDA appear alternately in different
blocks, and the dynamic position bias (DPB) module works in both SDA and LDA for obtaining
embeddings’ position representations. Following the prior vision transformers, residual connections
are used in each block.

3.2.1 LONG SHORT DISTANCE ATTENTION (LSDA)

We split the self-attention module into two parts: short distance attention (SDA) and long distance
attention (LDA). For SDA, every G×G adjacent embeddings are grouped together. Figure 3a gives
an example where G = 3. For LDA with input of size S × S, the embeddings are sampled with a
fixed interval I . For example in Figure 3b (I = 3), all embeddings with a red border belong to a
group, and those with a yellow border comprise another group. The group’s height or width for LDA
is computed as G = S/I (i.e., G = 3 in this example). After grouping embeddings, both SDA and
LDA employ the vanilla self-attention within each group. As a result, the memory/computational
cost of the self-attention module is reduced from O(S4) to O(S2G2), and G� S in most cases.

It is worth noting that the effectiveness of LDA also benefits from cross-scale embeddings. Specif-
ically, we draw all the patches comprising two embeddings in Figure 3b. As we can see, the small-
scale patches of two embeddings are non-adjacent, so it is difficult to judge their relationship without
the help of the context. In other words, it will be hard to build the dependency between these two
embeddings if they are only constructed by small-scale patches (i.e., single-scale feature). On the
contrary, adjacent large-scale patches provide sufficient context to link these two embeddings, which
makes long-distance cross-scale attention easier and more meaningful.

4The image will be padded if necessary.
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Figure 3: (a) Short distance attention (SDA). Embeddings (blue cubes) are grouped by red boxes. (b)
Long distance attention (LDA). Embeddings with the same color borders belong to the same group.
Large patches of embeddings in the same group are adjacent. (c) Dynamic position bias (DBP). The
dimensions of intermediate layers are D/4, and the output is a scalar.

We provide the pseudo-code of LSDA in the appendix (A.1). Based on the vanilla multi-head self-
attention, LSDA can be implemented with only ten lines of code. Further, only reshape and permute
operations are used, so no extra computational cost is introduced.

3.2.2 DYNAMIC POSITION BIAS (DPB)

Relative position bias (RPB) indicates embeddings’ relative position by adding a bias to their atten-
tion. Formally, the LSDA’s attention map with RPB becomes:

Attention = Softmax(QKT /
√
d + B)V , (1)

where Q,K,V ∈ RG2×D represent query, key, value in the self-attention module, respectively.
√
d

is a constant normalizer, and B ∈ RG2×G2

is the RPB matrix. In previous work (Liu et al., 2021b),
Bi,j = B̂∆xij ,∆yij , where B̂ is a fixed-sized matrix, and (∆xij ,∆yij) is the coordinate distance
between the ith and jth embeddings. It is obvious that the image/group size is restricted in case that
(∆xij ,∆yij) exceeds the size of B̂. In contrast, we propose an MLP-based module called DPB to
generate the relative position bias dynamically, i.e.,

Bi,j = DPB(∆xij ,∆yij). (2)

The structure of DPB is displayed in Figure 3c. Its non-linear transformation consists of three fully-
connected layers with layer normalization (Ba et al., 2016) and ReLU (Nair & Hinton, 2010). The
input dimension of DPB is 2, i.e., (∆xij ,∆yij), and intermediate layers’ dimension is set as D/4,
where D is the dimension of embeddings. The output Bij is a scalar, encoding the relative position
feature between the ith and jth embeddings. DPB is a trainable module optimized along with the
whole transformer model. It can deal with any image/group size without worrying about the bound
of (∆xij ,∆yij). In the appendix (A.2), we prove that DPB is equivalent to RPB if the image/group
size is fixed. In this case, we can transform a trained DPB to RPB in the test phase. We also provide
an efficient O(G2) implementation of DPB when image/group size is variable (the complexity is
O(G4) in a normal case because B ∈ RG2×G2

).

3.3 VARIANTS OF CROSSFORMER

Table 1 lists the detailed configurations of CrossFormer’s four variants (-T, -S, -B, and -L for tiny,
small, base, and large, respectively) for image classification. To re-use the pre-trained weights, the
models for other tasks (e.g., object detection) employ the same backbones as classification except
that they may use different G and I . Specifically, besides the configurations same to classification,
we also test with G1 = G2 = 14, I1 = 16, and I2 = 8 for the detection (and segmentation) models’
first two stages to adapt to larger images. The specific configurations are described in the appendix
(A.3). Notably, the group size or the interval (i.e., G or I) does not affect the shape of weight tensors,
so the backbones pre-trained on ImageNet can be readily fine-tuned on other tasks even though they
use different G or I .
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Table 1: Variants of CrossFormer for image classification. The example input size is 224 × 224. S
represents the feature maps’ height (and width) of each stage. D and H mean embedding dimensions
and the number of heads in the multi-head self-attention module, respectively. G and I are group
size and interval for SDA and LDA, respectively.

Output Size Layer Name CrossFormer-T CrossFormer-S CrossFormer-B CrossFormer-L

Stage-1 56× 56

Cross Embed. Kernel size: 4× 4, 8× 8, 16× 16, 32× 32, Stride=4

(S1 = 56)
SDA/LDA

D1 = 64
H1 = 2
G1 = 7
I1 = 8

× 1

D1 = 96
H1 = 3
G1 = 7
I1 = 8

× 2

D1 = 96
H1 = 3
G1 = 7
I1 = 8,

× 2

D1 = 128
H1 = 4
G1 = 7
I1 = 8

× 2MLP

Stage-2 28× 28

Cross Embed. Kernel size: 2× 2, 4× 4, Stride=2

(S2 = 28)
SDA/LDA

D2 = 128
H2 = 4
G2 = 7
I2 = 4

× 1

D2 = 192
H2 = 6
G2 = 7
I2 = 4

× 2

D2 = 192
H2 = 6
G2 = 7
I2 = 4

× 2

D2 = 256
H2 = 8
G2 = 7
I2 = 4

× 2MLP

Stage-3 14× 14

Cross Embed. Kernel size: 2× 2, 4× 4, Stride=2

(S3 = 14)
SDA/LDA

D3 = 256
H3 = 8
G3 = 7
I3 = 2

× 8

D3 = 384
H3 = 12
G3 = 7
I3 = 2

× 6

D3 = 384
H3 = 12
G3 = 7
I3 = 2

× 18

D3 = 512
H3 = 16
G3 = 7
I3 = 2

× 18MLP

Stage-4 7× 7

Cross Embed. Kernel size: 2× 2, 4× 4, Stride=2

(S4 = 7)
SDA/LDA

D4 = 512
H4 = 16
G4 = 7
I4 = 1

× 6

D4 = 768
H4 = 24
G4 = 7
I4 = 1

× 2

D4 = 768
H4 = 24
G4 = 7
I4 = 1

× 2

D4 = 1024
H4 = 32
G4 = 7
I4 = 1

× 2MLP

Head 1× 1
Avg Pooling Kernel size: 7× 7

Linear Classes: 1000

4 EXPERIMENTS

The experiments are carried out on four challenging tasks: image classification, object detection, in-
stance segmentation, and semantic segmentation. To entail a fair comparison, we keep the same data
augmentation and training settings as the other vision transformers as far as possible. The competi-
tors are all competitive vision transformers, including DeiT (Touvron et al., 2021), PVT (Wang et al.,
2021), T2T-ViT (Yuan et al., 2021), TNT (Han et al., 2021), CViT (Chen et al., 2021a), Twins (Chu
et al., 2021), Swin (Liu et al., 2021b), NesT (Zhang et al., 2021b), CvT (Wu et al., 2021), ViL (Zhang
et al., 2021a), CAT (Lin et al., 2021), ResT (Zhang & Yang, 2021), TransCNN (Liu et al., 2021a),
Shuffle (Huang et al., 2021), BoTNet (Srinivas et al., 2021), and RegionViT (Chen et al., 2021b).

4.1 IMAGE CLASSIFICATION

Experimental Settings. The experiments on image classification are done with the ImageNet (Rus-
sakovsky et al., 2015) dataset. The models are trained on 1.28M training images and tested on 50K
validation images. The same training settings as the other vision transformers are adopted. In par-
ticular, we use an AdamW (Kingma & Ba, 2015) optimizer training for 300 epochs with a cosine
decay learning rate scheduler, and 20 epochs of linear warm-up are used. The batch size is 1,024
split on 8 V100 GPUs. An initial learning rate of 0.001 and a weight decay of 0.05 are used. Be-
sides, we use drop path rate of 0.1, 0.2, 0.3, 0.5 for CrossFormer-T, CrossFormer-S, CrossFormer-B,
CrossFormer-L, respectively. Further, Similar to Swin (Liu et al., 2021b), RandAugment (Cubuk
et al., 2020), Mixup (Zhang et al., 2018a), Cutmix (Yun et al., 2019), random erasing (Zhong et al.,
2020), and stochastic depth (Huang et al., 2016) are used for data augmentation.

Results. The results are shown in Table 2. As we can see, CrossFormer achieves the highest accu-
racy with parameters and FLOPs comparable to other state-of-the-art vision transformer structures.
In specific, compared against strong baselines DeiT, PVT, and Swin, our CrossFormer outperforms
them at least absolute 1.2% in accuracy on small models. Further, though RegionViT achieves the
same accuracy (82.5%) as ours on a small model, it is 0.7% (84.0% vs. 83.3%) absolutely lower
than ours on the large model.

4.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

Experimental Settings. The experiments on object detection and instance segmentation are both
done on the COCO 2017 dataset (Lin et al., 2014), which contains 118K training and 5K val images.
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Table 2: Results on the ImageNet validation set. The input size is 224× 224 for most models, while
is 384× 384 for the model with a †. Results of other architectures are drawn from original papers.

Architectures #Params FLOPs Acc.

PVT-S 24.5M 3.8G 79.8%
RegionViT-T 13.8M 2.4G 80.4%
Twins-SVT-S 24.0M 2.8G 81.3%
CrossFormer-T 27.8M 2.9G 81.5%
DeiT-S 22.1M 4.6G 79.8%
T2T-ViT 21.5M 5.2G 80.7%
CViT-S 26.7M 5.6G 81.0%
PVT-M 44.2M 6.7G 81.2%
TNT-S 23.8M 5.2G 81.3%
Swin-T 29.0M 4.5G 81.3%
NesT-T 17.0M 5.8G 81.5%
CvT-13 20.0M 4.5G 81.6%
ResT 30.2M 4.3G 81.6%
CAT-S 37.0M 5.9G 81.8%
ViL-S 24.6M 4.9G 81.8%
RegionViT-S 30.6M 5.3G 82.5%
CrossFormer-S 30.7M 4.9G 82.5%

Architectures #Params FLOPs Acc.

BoTNet-S1-59 33.5M 7.3G 81.7%
PVT-L 61.4M 9.8G 81.7%
CvT-21 32.0M 7.1G 82.5%
CAT-B 52.0M 8.9G 82.8%
Swin-S 50.0M 8.7G 83.0%
RegionViT-M 41.2M 7.4G 83.1%
Twins-SVT-B 56.0M 8.3G 83.1%
NesT-S 38.0M 10.4G 83.3%
CrossFormer-B 52.0M 9.2G 83.4%
DeiT-B 86.0M 17.5G 81.8%
DeiT-B† 86.0M 55.4G 83.1%
ViL-B 55.7M 13.4G 83.2%
RegionViT-B 72.0M 13.3G 83.3%
Twins-SVT-L 99.2M 14.8G 83.3%
Swin-B 88.0M 15.4G 83.3%
NesT-B 68.0M 17.9G 83.8%
CrossFormer-L 92.0M 16.1G 84.0%

Table 3: Object detection results on COCO 2017 val set with RetinaNets as detectors. Results for
Swin are drawn from Twins as Swin does not report results on RetinaNet. Results in blue fonts are
the second-placed ones. CrossFormers with ‡ use different group sizes from classification models.
(More details are put in the appendix (A.3))

Method Backbone #Params FLOPs APb APb
50 APb

75 APb
S APb

M APb
L

RetinaNet

ResNet-50 37.7M 234.0G 36.3 55.3 38.6 19.3 40.0 48.8

1× schedule

CAT-B 62.0M 337.0G 41.4 62.9 43.8 24.9 44.6 55.2
Swin-T 38.5M 245.0G 41.5 62.1 44.2 25.1 44.9 55.5
PVT-M 53.9M − 41.9 63.1 44.3 25.0 44.9 57.6
ViL-M 50.8M 338.9G 42.9 64.0 45.4 27.0 46.1 57.2
RegionViT-B 83.4M 308.9G 43.3 65.2 46.4 29.2 46.4 57.0
TransCNN-B 36.5M − 43.4 64.2 46.5 27.0 47.4 56.7
CrossFormer-S 40.8M 282.0G 44.4 (+1.0) 65.8 47.4 28.2 48.4 59.4
CrossFormer-S‡ 40.8M 272.1G 44.2 (+0.8) 65.7 47.2 28.0 48.0 59.1

ResNet101 56.7M 315.0G 38.5 57.8 41.2 21.4 42.6 51.1
PVT-L 71.1M 345.0G 42.6 63.7 45.4 25.8 46.0 58.4
Twins-SVT-B 67.0M 322.0G 44.4 66.7 48.1 28.5 48.9 60.6
RegionViT-B+ 84.5M 328.2G 44.6 66.4 47.6 29.6 47.6 59.0
Swin-B 98.4M 477.0G 44.7 65.9 49.2 − − −
Twins-SVT-L 110.9M 455.0G 44.8 66.1 48.1 28.4 48.3 60.1
CrossFormer-B 62.1M 389.0G 46.2 (+1.4) 67.8 49.5 30.1 49.9 61.8
CrossFormer-B‡ 62.1M 379.1G 46.1 (+1.3) 67.7 49.0 29.5 49.9 61.5

We use MMDetection-based (Chen et al., 2019) RetinaNet (Lin et al., 2020) and Mask R-CNN (He
et al., 2017) as the object detection and instance segmentation head, respectively. For both tasks,
the backbones are initialized with the weights pre-trained on ImageNet. Then the whole models are
trained with batch size 16 on 8 V100 GPUs, and an AdamW optimizer with an initial learning rate
of 1× 10−4 is used. Following previous works, we adopt 1× training schedule (i.e., the models are
trained for 12 epochs) when taking RetinaNets as detectors, and images are resized to 800 pixels for
the short side. While for Mask R-CNN, both 1× and 3× training schedules are used. It is noted that
multi-scale training (Carion et al., 2020) is also employed when taking 3× training schedules.

Results. The results on RetinaNet and Mask R-CNN are shown in Table 3 and Table 4, respectively.
As we can see, the second-placed architecture changes along with the experiment, that is, these
architectures may perform well on one task but poorly on another task. In contrast, our CrossFormer
outperforms all the others on both tasks (detection and segmentation) with both model sizes (small
and base). Further, CrossFormer’s performance gain over the other architectures gets sharper when
enlarging the model, indicating that CrossFormer enjoys greater potentials.

4.3 SEMANTIC SEGMENTATION

Experimental Settings. ADE20K (Zhou et al., 2017) is used as the benchmark for semantic seg-
mentation. It covers a broad range of 150 semantic categories, including 20K images for training
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Table 4: Object detection and instance segmentation results on COCO val 2017 with Mask R-CNNs
as detectors. APb and APm are box average precision and mask average precision, respectively.

Method Backbone #Params FLOPs APb APb
50 APb

75 APm APm
50 APm

75

Mask R-CNN

PVT-M 63.9M − 42.0 64.4 45.6 39.0 61.6 42.0

1× schedule

Swin-T 47.8M 264.0G 42.2 64.6 46.2 39.1 61.6 42.0
Twins-PCPVT-S 44.3M 245.0G 42.9 65.8 47.1 40.0 62.7 42.9
TransCNN-B 46.4M − 44.0 66.4 48.5 40.2 63.3 43.2
ViL-M 60.1M 261.1G 43.3 65.9 47.0 39.7 62.8 42.0
RegionViT-B 92.2M 287.9G 43.5 66.7 47.4 40.1 63.4 43.0
RegionViT-B+ 93.2M 307.1G 44.5 67.6 48.7 41.0 64.4 43.9
CrossFormer-S 50.2M 301.0G 45.4 (+0.9) 68.0 49.7 41.4 (+0.4) 64.8 44.6
CrossFormer-S‡ 50.2M 291.1G 45.0 (+0.5) 67.9 49.1 41.2 (+0.2) 64.6 44.3

CAT-B 71.0M 356.0G 41.8 65.4 45.2 38.7 62.3 41.4
PVT-L 81.0M 364.0G 42.9 65.0 46.6 39.5 61.9 42.5
Twins-SVT-B 76.3M 340.0G 45.1 67.0 49.4 41.1 64.1 44.4
ViL-B 76.1M 365.1G 45.1 67.2 49.3 41.0 64.3 44.2
Twins-SVT-L 119.7M 474.0G 45.2 67.5 49.4 41.2 64.5 44.5
Swin-S 69.1M 354.0G 44.8 66.6 48.9 40.9 63.4 44.2
Swin-B 107.2M 496.0G 45.5 − − 41.3 − −
CrossFormer-B 71.5M 407.9G 47.2 (+1.7) 69.9 51.8 42.7 (+1.4) 66.6 46.2
CrossFormer-B‡ 71.5M 398.1G 47.1 (+1.6) 69.9 52.0 42.7 (+1.4) 66.5 46.1

Mask R-CNN

PVT-M 63.9M − 44.2 66.0 48.2 45.0 63.1 43.5

3× schedule

ViL-M 60.1M 261.1G 44.6 66.3 48.5 40.7 63.8 43.7
Swin-T 47.8M 264.0G 46.0 68.2 50.2 41.6 65.1 44.8
Shuffle-T 48.0M 268.0G 46.8 68.9 51.5 42.3 66.0 45.6
CrossFormer-S‡ 50.2M 291.1G 48.7 (+1.9) 70.7 53.7 43.9 (+1.6) 67.9 47.3

PVT-L 81.0M 364.0G 44.5 66.0 48.3 40.7 63.4 43.7
ViL-B 76.1M 365.1G 45.7 67.2 49.9 41.3 64.4 44.5
Shuffle-S 69.0M 359.0G 48.4 70.1 53.5 43.3 67.3 46.7
Swin-S 69.1M 354.0G 48.5 70.2 53.5 43.3 67.3 46.6
CrossFormer-B‡ 71.5M 398.1G 49.8 (+1.3) 71.6 54.9 44.5 (+1.2) 68.8 47.9

Table 5: Semantic segmentation results on the ADE20K validation set. “MS IOU” means testing
with variable input size.

Semantic FPN (80K iterations)
Backbone #Params FLOPs IOU

PVT-M 48.0M 219.0G 41.6
Twins-SVT-B 60.4M 261.0G 45.0
Swin-S 53.2M 274.0G 45.2
CrossFormer-S 34.3M 220.7G 46.0 (+0.8)
CrossFormer-S‡ 34.3M 209.8G 46.4 (+1.2)

PVT-L 65.1M 283.0G 42.1
CAT-B 55.0M 276.0G 43.6
CrossFormer-B 55.6M 331.0G 47.7 (+4.1)
CrossFormer-B‡ 55.6M 320.1G 48.0 (+4.4)

Twins-SVT-L 103.7M 397.0G 45.8
CrossFormer-L 95.4M 497.0G 48.7 (+2.9)
CrossFormer-L‡ 95.4M 482.7G 49.1 (+3.3)

UPerNet (160K iterations)
Backbone #Params FLOPs IOU MS IOU

Swin-T 60.0M 945.0G 44.5 45.8
Shuffle-T 60.0M 949.0G 46.6 47.6
CrossFormer-S 62.3M 979.5G 47.6 (+1.0) 48.4
CrossFormer-S‡ 62.3M 968.5G 47.4 (+0.8) 48.2
Swin-S 81.0M 1038.0G 47.6 49.5
Shuffle-S 81.0M 1044.0G 48.4 49.6
CrossFormer-B 83.6M 1089.7G 49.7 (+1.3) 50.6
CrossFormer-B‡ 83.6M 1078.8G 49.2 (+0.8) 50.1
Swin-B 121.0M 1088.0G 48.1 49.7
Shuffle-B 121.0M 1096.0G 49.0 −
CrossFormer-L 125.5M 1257.8G 50.4 (+1.4) 51.4
CrossFormer-L‡ 125.5M 1243.5G 50.5 (+1.5) 51.4

and 2K for validation. Similar to models for detection, we initialize the backbones with weights pre-
trained on ImageNet, and MMSegmentation-based (Contributors, 2020) semantic FPN and UPer-
Net (Xiao et al., 2018) are taken as the segmentation head. For FPN (Kirillov et al., 2019), we use
an AdamW optimizer with learning rate and weight deacy of 1× 10−4. Models are trained for 80K
iterations with batch size 16. For UPerNet, an AdamW optimizer with an initial learning rate of
6× 10−5 and a weight decay of 0.01 is used, and models are trained for 160K iterations.

Results. All results are shown in Table 5. Similar to object detection, CrossFormer exhibits a greater
performance gain over the others when enlarging the model. For example, CrossFormer-T achieves
1.4% absolutely higher on IOU than Twins-SVT-B, but CrossFormer-B achieves 3.1% absolutely
higher on IOU than Twins-SVT-L. Totally, CrossFormer shows a more significant advantage over the
others on dense prediction tasks (e.g., detection and segmentation) than on classification, implying
that cross-scale interactions in the attention module are more important for dense prediction tasks
than for classification.
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Table 6: Results on the ImageNet validation set. The baseline model is CrossFormer-S (82.5%). We
test with different kernel sizes of CELs.

CEL’s Kernel Size #Params/FLOPs Acc. APm

Stage-1 Stage-2 Stage-3 Stage-4

4× 4 2× 2 2× 2 2× 2 28.3M / 4.5G 81.5% 39.7
8× 8 2× 2 2× 2 2× 2 28.3M / 4.5G 81.9% 40.2

4× 4, 8× 8 2× 2, 4× 4 2× 2, 4× 4 2× 2, 4× 4 30.6M / 4.8G 82.3% −
4× 4, 8× 8, 16× 16, 32× 32 2× 2, 4× 4 2× 2, 4× 4 2× 2, 4× 4 30.7M / 4.9G 82.5% 41.4
4× 4, 8× 8, 16× 16, 32× 32 2× 2, 4× 4, 8× 8 2× 2, 4× 4 2× 2 29.4M / 5.0G 82.4% −

Table 7: Experimental results of ablation studies.

(a) Ablation studies on cross-scale embeddings
(CEL) and long short distance attention (LSDA).
The base model is CrossFormer-S (82.5%).

PVT-like Swin-like LSDA CEL Acc.

X X 81.3%
X X 81.9%

X X 82.5%
X 81.5%

(b) Comparisons between different position representa-
tions. The base model is CrossFormer-S. Throughput is
tested on 1× V100 GPU.

Method #Params/FLOPs Throughput Acc.

APE 30.9342M/4.9061G 686 imgs/sec 82.1%
RPB 30.6159M/4.9062G 684 imgs/sec 82.5%
DPB 30.6573M/4.9098G 672 imgs/sec 82.5%
DPB-residual 30.6573M/4.9098G 672 imgs/sec 82.4%

4.4 ABLATION STUDIES

Cross-scale Embeddings vs. Single-scale Embeddings. We conduct the experiments by replac-
ing cross-scale embedding layers with single-scale ones. As we can see in Table 6, when using
single-scale embeddings, the 8 × 8 kernel in Stage-1 brings 0.4% (81.9% vs. 81.5%) absolute im-
provement compared with the 4× 4 kernel. It tells us that overlapping receptive fields help improve
the model’s performance. Besides, all models with cross-scale embeddings perform better than those
with single-scale embeddings. In particular, our CrossFormer achieves 1% (82.5% vs. 81.5%) abso-
lute performance gain compared with using single-scale embeddings for all stages. For cross-scale
embeddings, we also try several different combinations of kernel sizes, and they all show similar
performance (82.3% ∼ 82.5%). In summary, cross-scale embeddings can bring a large performance
gain, yet the model is relatively robust to different choices of kernel size.

LSDA vs. Other Self-attentions. Two self-attention modules used in PVT and Swin are compared.
Specifically, PVT sacrifices the small-scale features when computing the self-attention, while Swin
restricts the self-attention in a local region, giving up the long-distance attention. As we can observe
in Table 7a, compared against the PVT-like and Swin-like self-attention mechanisms, our Cross-
Former outperforms them at least absolute 0.6% accuracy (82.5% vs. 81.9%). The results show that
performing the self-attention in a long-short distance manner is most conducive to improving the
model’s performance.

DPB vs. Other Position Representations. We compare the parameters, FLOPs, throughputs, and
accuracies of the models among absolute position embedding (APE), relative position bias (RPB),
and DPB. The results are shown in Table 7b. DPB-residual means DPB with residual connections.
Both DPB and RPB outperform APE for absolute 0.4% accuracy, which indicates that relative po-
sition representations are more beneficial than absolute ones. Further, DPB achieves the same accu-
racy (82.5%) as RPB with an ignorable extra cost; however, as we described in Section 3.2.2, it is
more flexible than RPB and applies to variable image size or group size. The results also show that
residual connection in DPB does not help improve or even degrades the model’s performance.

5 CONCLUSIONS

We proposed a novel transformer-based vision architecture, namely CrossFormer. Its core ingredi-
ents are Cross-scale Embedding Layer (CEL) and Long Short Distance Attention (LSDA), thereby
yielding the cross-attention module. We further proposed a dynamic position bias, making the rel-
ative position bias apply to any input size. Extensive experiments show that CrossFormer achieves
superior performance over other state-of-the-art vision transformers on several representative vision
tasks. Particularly, CrossFormer is demonstrated to gain great improvements on object detection and
segmentation, which indicates that CEL and LSDA are together essential for dense prediction tasks.
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A CROSSFORMER

A.1 PSEUDO CODE OF LSDA

The pseudo code for LSDA is shown in Algorithm 1. As we can see, based on the vanilla self-
attention module, both SDA and LDA are implemented with only ten lines of code, and only reshape
and permute operations are used.

Algorithm 1 LSDA code (PyTorch-like)

# H: height, W: width, G: group size of SDA/LDA
# x: input tensor (H, W, D)
class LSDA():

def forward(x, type):
## group the embeddings
if type == "SDA":

x = x.reshaspe(H // G, G, W // G, G, D).permute(0, 2, 1, 3, 4)
elif type == "LDA":

x = x.reshaspe(G, H // G, G, W // G, D).permute(1, 3, 0, 2, 4)
x = x.reshape(H * W // (G ** 2), G ** 2, D)

## the vanilla self-attention module
x = Attention(x)

## un-group the embeddings
x = x.reshaspe(H // G, W // G, G, G, D)
if type == "SDA":

x = x.permute(0, 2, 1, 3, 4).reshaspe(H, W, D)
elif type == "LDA":

x = x.permute(2, 0, 3, 1, 4).reshaspe(H, W, D)
return x

A.2 DYNAMIC POSITION BIAS (DPB)

Δ𝑥!" = −1
Δ𝑦!" = −2𝑥

𝑦

Figure 4: An example of com-
puting (∆xij ,∆yij).

Figure 4 gives an example of computing (∆xij ,∆yij) with G = 5
in the DPB module. For a group of size G×G, it is easy to deduce
that:

0 ≤ x, y < G

1−G ≤ ∆xij ≤ G− 1

1−G ≤ ∆yij ≤ G− 1.

(3)

Thus, motivated by the relative position bias, we construct a matrix
B̂ ∈ R(2G−1)×(2G−1), where

B̂i,j = DPB(1−G + i, 1−G + j), 0 ≤ i, j < 2G− 1. (4)

The complexity of computing B̂ is O(G2). Then, the bias matrix
B in DPB can be drawn from B̂, i.e.,

Bi,j = B̂∆xij ,∆yij . (5)

When the image/group size (i.e., G) is fixed, both B̂ and B will be also unchanged in the test phase.
Therefore, we only need to compute B̂ and B once, and DPB is equivalent to relative position bias
in this case.

A.3 VARIANTS OF CROSSFORMER FOR DETECTION AND SEGMENTATION

We test two different backbones for dense prediction tasks. The variants of CrossFormer for dense
prediction (object detection, instance segmentation, and semantic segmentation) are in Table 8. The
architectures are the same as those for image classification except that different G and I in the first
two stages are used. Notably, group size (i.e., G and I) does not affect the shape of weight tensors,
so backbones pre-trained on ImageNet can be fine-tuned directly on other tasks even if they use
different G and I .
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Table 8: CrossFormer-based backbones for object detection and semantic/instance segmentation.
The example input size is 1280 × 800. D and H mean embedding dimension and the number of
heads in the multi-head self-attention module, respectively. G and I are group size and interval for
SDA and LDA, respectively.

Output Size Layer Name CrossFormer-T CrossFormer-S CrossFormer-B CrossFormer-L

Stage-1 320× 200

Cross Embed. Kernel size: 4× 4, 8× 8, 16× 16, 32× 32, Stride=4

SDA/LDA

D1 = 64
H1 = 2
G1 = 14
I1 = 16

× 1

D1 = 96
H1 = 3
G1 = 14
I1 = 16

× 2

D1 = 96
H1 = 3
G1 = 14
I1 = 16,

× 2

D1 = 128
H1 = 4
G1 = 14
I1 = 16

× 2MLP

Stage-2 160× 100

Cross Embed. Kernel size: 2× 2, 4× 4, Stride=2

SDA/LDA

D2 = 128
H2 = 4
G2 = 14
I2 = 8

× 1

D2 = 192
H2 = 6
G2 = 14
I2 = 8

× 2

D2 = 192
H2 = 6
G2 = 14
I2 = 8

× 2

D2 = 256
H2 = 8
G2 = 14
I2 = 8

× 2MLP

Stage-3 80× 50

Cross Embed. Kernel size: 2× 2, 4× 4, Stride=2

SDA/LDA

D3 = 256
H3 = 8
G3 = 7
I3 = 2

× 8

D3 = 384
H3 = 12
G3 = 7
I3 = 2

× 6

D3 = 384
H3 = 12
G3 = 7
I3 = 2

× 18

D3 = 512
H3 = 16
G3 = 7
I3 = 2

× 18MLP

Stage-4 40× 25

Cross Embed. Kernel size: 2× 2, 4× 4, Stride=2

SDA/LDA

D4 = 512
H4 = 16
G4 = 7
I4 = 1

× 6

D4 = 768
H4 = 24
G4 = 7
I4 = 1

× 2

D4 = 768
H4 = 24
G4 = 7
I4 = 1

× 2

D4 = 1024
H4 = 32
G4 = 7
I4 = 1

× 2MLP

Table 9: Object detection results on COCO val 2017. “Memory” means the allocated memory
per GPU reported by torch.cuda.max memory allocated(). ‡ indicates that models use different
(G, I) from classification models.

Method Backbone G1 I1 G2 I2 Memory #Params FLOPs APb APb
50 APb

75

RetinaNet

CrossFormer-S 7 8 7 4 14.7G 40.8M 282.0G 44.4 65.8 47.4

1× schedule

CrossFormer-S‡ 14 16 14 8 11.9G 40.8M 272.1G 44.2 65.7 47.2

CrossFormer-B 7 8 7 4 22.8G 62.1M 389.0G 46.2 67.8 49.5
CrossFormer-B‡ 14 16 14 8 20.2G 62.1M 379.0G 46.1 67.7 49.0

Mask-RCNN

CrossFormer-S 7 8 7 4 15.5G 50.2M 301.0G 45.4 68.0 49.7

1× schedule

CrossFormer-S‡ 14 16 14 8 12.7G 50.2M 291.1G 45.0 67.9 49.1

CrossFormer-B 7 8 7 4 23.8G 71.5M 407.9G 47.2 69.9 51.8
CrossFormer-B‡ 14 16 14 8 21.0G 71.5M 398.1G 47.1 69.9 52.0

Table 10: Semantic segmentation results on ADE20K validation set with semantic FPN or UPerNet
as heads.

Backbone G1 I1 G2 I2
Semantic FPN (80K iterations) UPerNet (160K iterations)

Memory #Params FLOPs IOU Memory #Params FLOP IOU MS IOU

CrossFormer-S 7 8 7 4 20.9G 34.3M 220.7G 46.0 − 62.3M 979.5G 47.6 48.4
CrossFormer-S‡ 14 16 14 8 20.9G 34.3M 209.8G 46.4 14.6G 62.3M 968.5G 47.4 48.2

CrossFormer-B 7 8 7 4 14.6G 55.6M 331.0G 47.7 15.8G 83.6M 1089.7G 49.7 50.6
CrossFormer-B‡ 14 16 14 8 14.6G 55.6M 320.1G 48.0 15.8G 83.6M 1078.8G 49.2 50.1

CrossFormer-L 7 8 7 4 25.3G 95.4M 497.0G 48.7 18.1G 125.5M 1257.8G 50.4 51.4
CrossFormer-L‡ 14 16 14 8 25.3G 95.4M 482.7G 49.1 18.1G 125.5M 1243.5G 50.5 51.4

B EXPERIMENTS

B.1 OBJECT DETECTION

Table 9 provides more results on object detection with RetinaNet and Mask-RCNN as detection
heads. As we can see, a smaller (G, I) achieves a higher AP than a larger one, but the performance
gain is marginal. Considering that a larger (G, I) can save more memory cost, we think (G1 =
14, I1 = 16, G2 = 14, I2 = 8), which accords with configurations in Table 8, achieves a better
trade-off between the performance and cost.
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Table 11: Classification results on ImageNet dataset after plugging CEL into other vision transform-
ers.

Models #Params FLOPs Accuracy

Swin 29.0M 4.5G 81.3%
Swin + CEL 29.2M 4.8G 81.9% (+0.6%)
NesT 38.4M 10.4G 83.3%
NesT + CEL 38.5M 10.6G 83.8% (+0.5%)

B.2 SEMANTIC SEGMENTATION

Similar to object detection, we test two different configurations of (G, I) for semantic segmenta-
tion’s backbones. The results are shown in Table 10. As we can see, the memory costs of the two
configurations are almost the same, which is different from experiments on object detection. Further,
when taking semantic FPN as the detection head, CrossFormers‡ show advantages over CrossForm-
ers on both IOU (e.g., 46.4 vs. 46.0) and FLOPs (e.g., 209.8G vs. 220.7G). When taking UPerNet
as the segmentation head, a smaller (G, I) achieves higher performance like object detection.

B.3 CLASSIFICATION WITH CEL

Table 11 shows results on ImageNet dataset after plugging CEL into other vision transformers. As
we can see, CEL brings about 0.5% performance gain for both Swin Transformer and NesT, which
further shows the effectiveness of CEL.

C DISCUSSION

C.1 CROSS-SCALE FEATURE EXTRACTION

CEL vs. GoogLeNet/MixConv. Since GoogLeNet (Szegedy et al., 2015) and MixConv (Tan &
Le, 2019) use multi-scale convolutional kernels at every layer of models, the largest kernel size can
only be 7 × 7, and larger kernel size will induce unaccpetable computational budget. In contrast,
CEL only introduces cross-scale features at the start of each stage (at most 4 layers), so kernels with
very large size (e.g., 32× 32) can also be used for diversified-size objects.

CEL vs. CoaT/CViT. Some vision transformers also take advantage of cross-scale features. For
example, CoaT (Xu et al., 2021a) only uses multi-scale features at later layers by mixing features
from front layers, while CEL introduces multi-scale features at the start of each stage, thus tokens
embeddings at all layers (not only those at later layers) could be seen as cross-scale. Besides,
CViT (Chen et al., 2021a) keeps embeddings of different scales in different branches and introduces
cross-scale interaction through self-attention between branches. This method can well preserve
the information of each scale, but multiple branches take more memory/computational/parameters
cost than a single-branch model. As a result, for a controllable cost, CViT can only introduce two
different scales (4× 4 and 8× 8). In contrast, CEL only appears at the start of each stage (at most 4
layers). So, CEL can introduce more different scales (e.g., 4×4, 8×8, 16×16, 32×32) than CViT
with ignorable extra cost (< 0.1M parameters and < 0.3G FLOPs in most cases).

C.2 SPARSE SELF-ATTENTION AND GROUP CONVOLUTION

LSDA vs. ShuffleNet/IGCNet. LSDA, ShuffleNet (Zhang et al., 2018b) and IGCNets (Zhang
et al., 2017) devote to reducing the computational cost by approximating the original operations
(self-attention and convolution) in a lower cost. Nevertheless, they are essentially different: (1)
Different target and dimension: ShuffleNet/IGCNet devotes to reducing the budget caused by the
large channels of convolution. So, both ShuffleNet and IGCNet do shuffle-and-permutation along
channel dimension. While for the self-attention module, the budget mainly attributes to the large
spatial size of feature maps (i.e., the large number of embeddings). Thus, LSDA is mainly operating
along the spatial dimension. (2) Different motivation: During the process of designing LSDA, we
first consider the locality of images and propose to extract short-distance attention through SDA.
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Meanwhile, to preserve the ability of modeling long-distance dependency, LDA is further proposed
to fill this gap. In contrast, ShuffleNet/ICGNets do not need to consider these aspects because all
channels are equivalent, and locality does not exist along channel dimmension. Though they also
perform convolution among adjacent channels first, it is for the sake of fast memory access.

LSDA vs. Other Sparse Self-attention. Previous works proposed some sparse self-attention,
such as Big Bird (Zaheer et al., 2020), Longformer (Beltagy et al., 2020), Sparse Transformer (Child
et al., 2019), etc. Wherein, as a generative model, Sparse Transformer proposed a strided attention
in the one-dimensional case, and every pixel can see the pixel generated ahead of itself. Instead,
LSDA works in two-dimensional case. Further, LSDA has a co-design with CEL. As we described
in Section 3.2.1 and Figure 3, in long-distance attention (LDA), the small-scale patches of two
embeddings are non-adjacent, so it is difficult to judge their relationship without the help of the
context. In other words, it will be hard to build the dependency between these two embeddings
if they are only constructed by small-scale patches (i.e., single-scale feature). On the contrary,
adjacent large-scale patches provide sufficient context to link these two embeddings, which makes
long-distance cross-scale attention easier and more meaningful.
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