
Compositional generalization in Neuro-Symbolic Visual Question Answering

Adam Dahlgren Lindström1 , Soham Dan2
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Abstract
Compositional generalization is a key challenge in
artificial intelligence. This paper investigates com-
positional generalization capabilities in multimodal
mathematical reasoning problems. We introduce
compositional generalization splits for CLEVR-
Math for reasoning hop- and attribute generaliza-
tion, testing both systematicity and productivity.
We evaluate the NS-VQA architecture and com-
pare it to two neural baselines, ViLT and CLIP.
Our results show that none of the models generalize
to longer reasoning chains than trained on, while
showing similar patterns on fewer hops. For our
compositional generalization split, ViLT and the
CLIP-based model performs better then NS-VQA
on the objects held out during training. However,
all models see a significant drop in performance.
For length generalization, we propose that explic-
itly learning recursive definitions can be important
for compositional generalization. We discuss how
knowledge-based curriculum learning can help fu-
ture architectures achieve such capabilities.

1 Introduction
Compositional generalization is a key challenge for artifi-
cial intelligence, as human language and cognition are both
largely compositional. It requires a system to understand the
underlying characteristics (such as structure, types, grammar)
of the data and to be able to recombine elements in novel
ways rather than rely on its ability to memorise specific exam-
ples. A classical example from [Fodor and Pylyshyn, 1988]
is that if a system knows the meaning of John loves Mary,
then it should be able to generalize to the sentence Mary loves
John without seeing such examples during training. Compo-
sitional generalization is a key feature of classical approaches
to language modeling, such as grammars. Recent work often
focuses on evaluating neural networks for this task, in part
to understand how to close the gap between general-purpose
models, such as seq2seq language models, with specialized
architectures with strong compositional bias [Shaw et al.,
2021]. As a bridge between the two, neuro-symbolic meth-
ods have been proposed as a way to combine the strengths of
neural and symbolic methods. For instance, neuro-symbolic

Figure 1: An example scene from the CLEVR [Johnson et al., 2017]
dataset. We use the mathematical reasoning subtraction-task from
CLEVR-Math [Lindström and Abraham, 2022] to create composi-
tional generalization splits for attributes and program length.

methods have been shown to be effective for a variety of syn-
thetic tasks of a compositional nature, including visual ques-
tion answering (VQA). While neuro-symbolic methods often
have a explicit compositional bias in the symbolic compo-
nent, we need to understand the challenges and opportunities
for compositional generalization. In this work, we identify is-
sues in neuro-symbolic visual question answering that could
benefit from knowledge injection.

A common approach to analyzing compositional general-
ization is to construct synthetic benchmarks where certain
compositions are held out from training and used only in
testing. In this paper, we describe ongoing work extending
CLEVR-Math [Lindström and Abraham, 2022], a synthetic
dataset with splits to test compositional generalization in the
VQA domain. It consists of questions about simple arithmetic
operations on images of 3D scenes, where one operation cor-
responds to one reasoning step or “hop”. [Lindström and
Abraham, 2022] reports that NS-VQA performs poorly on 2-
hop questions, regardless of whether 2-hop questions are part
of the training data or not. In order to address this issue, we
extend the Neuro-Symbolic Visual Question Answering (NS-
VQA) model to manage non-linear program executions with
mutable internal representations of scenes. Finally, we com-
pare the extended NS-VQA model with a neural baseline.



1.1 Contributions
This paper makes the following contributions:

1. Extends CLEVR-Math with compositional generaliza-
tion splits on colors, shapes, and length generalization

2. Extends NS-VQA with mutable internal representations
of scenes to manage more complex programs than those
in CLEVR

3. A comparison between the extended NS-VQA and a
neural baseline

Section 4 describes the additions to CLEVR-Math and the
compositional splits we investigate. Section 3 describes how
we modify the NS-VQA architecture to be able to learn the
tasks in CLEVR-Math. Our results in Section 5 show how the
modified NS-VQA can learn 2- and 3-hop problems perfectly,
but struggles with compositional generalization. In Section 6,
we argue for recursion as a key aspect of compositional gener-
alization, and how injecting more knowledge into the training
process can help models perform this type of generalization.
This is in line with other arguments put forth by related work,
describe in Section 2.

2 Related Work
Compositionality is an important characteristic of language
understanding by humans. There has been a long-standing
debate on whether connectionist architectures like neural net-
works are able to generalize compositionally [Fodor and
Pylyshyn, 1988]. Recently, with the ubiquity of neural net-
works, there have been a number of benchmarks proposed to
study compositional generalization, including SCAN [Lake
and Baroni, 2018; Loula et al., 2018], COGS [Kim and
Linzen, 2020] and PCFG [Hupkes et al., 2020; Ruis et al.,
2020]. Several of these papers have shown that end-to-end
neural networks are not able to compositionally generalize,
especially in few-shot regimes. [Kim and Linzen, 2020] show
that neural networks can achieve great performance on lexi-
cal generalization, i.e. using known words in new contexts.
However, they fail completely on generalizing to novel syn-
thetic structures, so called structural generalization. [Weißen-
horn et al., 2022] and [Qiu et al., 2022] both show that neu-
ral models that are made aware of structure can do structural
generalization. [Qiu et al., 2022] identify that transformer
models can be augmented with synthetic data that is gen-
erated from structured methods, in their case quasi-context
free grammars. [Weißenhorn et al., 2022] uses neural net-
work components for dependency parsing and constructing a
graph representation, hence building highly structured repre-
sentations of sentences. It might be possible to see all syn-
thetic structures used in the majority of human communica-
tion given enough data, but humans perform structural gener-
alization with far less data [Linzen, 2020].

2.1 Compositional Generalization benchmarks
The SCAN sequence benchmark [Lake and Baroni, 2018] pro-
vides different splits for i.i.d. generalization, length general-
ization, and generalization to held-out phrases (for example,
the jump instruction has only been seen in isolation during
training and at test-time the model has to be able to parse

all other instructions involving jump). [Lake and Baroni,
2018] shows that end-to-end recurrent neural architectures
fail to generalize to longer sentences than seen during train-
ing (length generalization) and novel actions jump, despite
obtaining near-perfect accuracy on the random iid split. We
complement these experiments with splits testing generaliza-
tion to shorter sequences. To extend SCAN into the multi-
modal domain, [Ruis et al., 2020] introduces gSCAN where
the task is to navigate a 2D grid world using language in-
structions. We will now review reported failings of COGS
and gSCAN, and what has been done to address these issues.
This will inform design decisions in our own compositional
generalization benchmark.

[Wu et al., 2021] identify a set of limitations in gSCAN
which they address with ReaSCAN. They remark that the
ideas gSCAN build on are powerful, but that there are some
central limitations coming from specific design choices. The
first observation is that the word order of commands does
not matter for the defined tasks, where a simple bag-of-word
model is sufficient to encode the original gSCAN commands.
[Qiu et al., 2021] suggest that the remaining challenges for
gSCAN may not necessarily be related to visual grounding
[...], and propose an additional task with more complex nat-
ural language. The authors also evaluate cross-modal at-
tention as a way for Transformer-based models to achieve
strong performance on gSCAN. Their approach outperforms
other methods specifically built for gSCAN, and observe that
performance degrade significantly when less than 40% of
the training data is used. [Sikarwar et al., 2022] extends
the work by [Qiu et al., 2021] with GroCoT, a multimodal
transformer model achieving state-of-the-art performance on
ReaSCAN. The authors complement their experiments on
extended ReaSCAN and GSRR [Qiu et al., 2021] with lin-
ear probing classifiers to identify what information the trans-
former is encoding for each object property. They conclude
that their modifications to a multimodal transformer does im-
prove compositional generalization in the gSCAN domain.
Their probing experiments show that identifying the target lo-
cation is a main challenge for better solving the benchmark.

2.2 Mathematical Reasoning
Math Word Problems (MWPs) have many characteristics use-
ful for benchmarking compositional generalization in the
intersection of natural language and reasoning [Lin et al.,
2023]. Each element in an equation has a direct and of-
ten unique influence on the outcome. Consider the follow-
ing word math problem, given by [Lindström and Abraham,
2022]:

Adam has three apples, Eve has five. Eve gives Adam all her
apples. How many apples does Adam have, if he eats one?

For a system to answer this question, it must reason in multi-
ple steps, as well as translate verbs into mathematical opera-
tions. Small changes in the text will also lead to large seman-
tic changes, e.g. changing eats to finds. Previous work mostly
explores word math problems in a text-only setting, like the
problem shown above, using neural networks [Robaidek et
al., 2018; Sundaram et al., 2020; Sundaram and Khemani,
2015], and other methods [Sundaram and Abraham, 2018;



Mitra and Baral, 2016]. [Lan et al., 2022] gives an overview
of the different aspects of compositional generalization that
math word problems cover, and propose ways to improve cur-
rent architectures. See [Huang et al., 2016] for an overview
of how to construct word math problems.

2.3 CLEVR
[Johnson et al., 2017] introduce CLEVR as synthetic dataset
to benchmark compositional multimodal reasoning. The
dataset is uses 3D scenes rendered using Blender, together
with a templating engine to generate questions based on the
structural representations of the visual scenes. With CLEVR,
one can decide to generate a training set with images hav-
ing only a specific combination of objects (red cubes and
blue cylinders), and a test set with a different combination
of objects (red cylinders and blue cubes), as done in, e.g.,
CLEVR-Hans [Stammer et al., 2021]. This control allows us
to study various aspects like compositional generalization of
systems. Since its publication in 2017, several benchmarks
have built on CLEVR to study various aspects of visual ques-
tion answering [Stammer et al., 2021; Sampat et al., 2021a;
Kottur et al., 2019; Liu et al., 2019; Arras et al., 2022;
Li et al., 2022; Salewski et al., 2022]. CLEVRER (Collision
Events for Video Representation and Reasoning) dataset [Yi
et al., 2020] and CLEVR-Hyp dataset [Sampat et al., 2021b].
The questions on videos in CLEVRER [Yi et al., 2020] re-
quires reasoning about the state of objects after an video
event, instead of after actions in text as in CLEVR-Math.
CLEVR-Hyp [Sampat et al., 2021b] focus on VQA where
reasoning about effects of actions, whereas CLEVR-Math in-
troduces an additional mathematical reasoning dimension to
the problem. GQA is another relevant dataset, where real
world images are annotated with rich scene graphs and a large
set of relations and attributes, and focuses on compositional-
ity in visual reasoning [Hudson and Manning, 2019]. How-
ever, such real world datasets does not give the same flexibil-
ity to create compositional splits.

3 Extending NS-VQA with an internal state
Neuro-Symbolic Visual Question Answering (NS-VQA) was
introduced by [Yi et al., 2018] as a three-component system
that disentangles reasoning from vision and language under-
standing. The method is evaluated on the original CLEVR
dataset, showing how almost perfect accuracy is achievable
with relatively small amounts of data. The three components
are 1) a neural network to parse visual scenes into structured
representations of the objects and attributes, 2) a neural net-
work to parse questions into executable sequences of program
elements, and 3) a program engine that executes the program
sequences over the structured scene representations to com-
pute the answers to queries. The method is used in many sub-
sequent works, most recently [Hong et al., 2023], to showcase
the strength of neuro-symbolic methods on visual question
answering tasks.

In the recent CLEVR-Math dataset [Lindström and Abra-
ham, 2022], NS-VQA is shown to perform well on 1-hop
problems such as Remove all blue cubes. How many objects
are left? This is consistent with the results from the original

CLEVR dataset [Johnson et al., 2017]. However, NS-VQA
fails on 2-hop problems such as Remove all cubes. Remove
all red spheres. How many objects are left?. In this paper,
we observe that this is due to how the program templates are
parsed into linear sequences of tokens used by the program
executor. As an improvement, we contribute with two modi-
fications to NS-VQA to handle multihop questions.

First, we give the program executor the ability to represent
and reason with a mutable internal representation of a scene.
In the original architecture, NS-VQA relies on two variables
to manage the results of previous functions. The program
parser has to produce execution trees that are stateless and
only rely on feeding the output of functions as the input to
the next immediate function. These two issues lead to the
inability of NS-VQA to handle the 2-hop questions, As a so-
lution we introduce a managed state, where the program ex-
ecutor keeps track of any changes to the scene. Every time a
state-modifying operation is used, the internal representation
is modified accordingly. This allows NS-VQA to chain scene-
modifying operations indefinitely. The second modification is
to the program parser so that it can produce stateful execution
trees for operations that rely on the internal scene representa-
tion. This means that we can parse flat sequences of operators
that exactly correspond the 2-hop problems, whereas before
the sequences contained many nonsensical repetitions in an
attempt to remain stateless.

We will now show how these modifications allow NS-VQA
to solve 2- and 3-hop problems.

4 Experimental setup with compositional
generalization splits for CLEVR-Math

Given that mathematical reasoning tasks are suitable for com-
positional generalization experiments [Lin et al., 2023], we
use CLEVR-Math as the basis for our experiments. Our work
consists of a few extensions of the templates and constraints
of CLEVR-Math, as well as generating new data in composi-
tional generalization splits. More specifically, the benchmark
is constructed as following:

1. New CLEVR constraints to exclude certain com-
binations from a particular dataset, used to create
no-red-cubes split.

2. Modifications to the existing 1- and 2-hop templates to
fit the NS-VQA extensions, and 3-hop questions. Exam-
ple seen in Figure 2.

3. Construct a new templates for compositional generaliza-
tion splits.

4. Length generalization splits of between 1-, 2-, and 3-hop
questions.

4.1 Models
We evaluate our modified NS-VQA described in Section 3,
the CLIP-based model used in [Lindström and Abraham,
2022], and ViLT [Kim et al., 2021]. NS-VQA is trained in
two steps; an initial supervised step on a few samples, and
then using reinforcement learning with REINFORCE on all
data. For the supervised step, we train NS-VQA using 100



Figure 2: Part of the modified program template in the CLEVR lan-
guage corresponding to 2-hop questions.

samples for 2000 iterations. For the REINFORCE step, we
use all samples in the training data and train for 5000 itera-
tions. Given the narrow set of objectives to learn compared to
e.g. in the original CLEVR dataset, NS-VQA does not need
the full set of iterations to converge. We train the neural base-
lines for 10 epochs, as the loss plateaus after that. We use the
same hyper parameters as [Johnson et al., 2017] and [Lind-
ström and Abraham, 2022] for NS-VQA and the CLIP-based
model, respectively. Table 1 shows the amount of training,
validation, and testing data used by each model. Ongoing
work investigates the scaling laws on this task, where initial
results show similar generalization behaviour but different ac-
curacy depending on the amount of data.

Model Training Validation Testing
NS-VQA 10 000 5 000 1000
CLIP 10 000 5 000 1000
ViLT 10 000 5 000 1000

Table 1: The sizes of the dataset splits used to train each model. The
sizes of test data vary slightly between compositionality splits due
to the nature of the scenes, in the order of 100’s of samples.

4.2 Length generalization
Complementary to the length generalization experiments in,
e.g., [Lake and Baroni, 2018], we also create length general-
ization splits for generalizing to shorter sequences that those
trained on. We construct splits such that the training data
contains 1-hop questions, where the test data contains only
2-hop questions. Table 2 illustrates the splits we use. We also
note that 2- and 3-hop questions inherently address the bag-
of-words issue identified by [Wu et al., 2021] , since Remove
all blue cubes. Remove all red spheres. rely on the pairing
of attributes in the two subtasks. Our 2- and 3-hop questions
also introduce a bit more linguistic complexity, following the
issues identified by [Qiu et al., 2021]. In order to focus on
length generalization, the attributes are restricted to shapes
and colors in these experiments.

4.3 Attribute generalization
For our no-red-cubes split, we create training data with
no questions involving red cubes, while the test data consists
of only questions mentioning red cubes. The questions are all
1-hop questions, to isolate the compositional generalization
over attributes from length generalization. The training data
contains no questions on red cubes, however, they are present
in the scenes.

Name Training Testing
1- to 2-
hop

Remove all blue
cubes. How many
objects are left?

Remove all
blue cubes.
Remove all red
spheres.?

3- to 2-
hop

Remove all blue
cubes. Remove all
spheres. Remove all
gray cylinders. How
many objects are
left?

Remove all
blue cubes.
Remove all red
spheres.?

Table 2: Examples of the length generalization splits of the bench-
mark.

4.4 Reproducability
The code used to generate the data used in our experiments
and the modified NS-VQA is available through Github https:
//github.com/dali-does/compgen-clevr. The models were
trained on a local GPU cluster using 1 NVIDIA V100-
card. The code uses NVIDIA driver version 515.105.01 with
CUDA 11, and Pytorch 1.13.1+cu117.

5 Results
Table 3 shows that NS-VQA can generalize to questions with
fewer instructions, but completely fails to generalize out of
distribution. NS-VQA perfectly learns how to answer 1-, 2-,
and 3-hop questions within the training distribution. Looking

Model Trained on 1-hop 2-hop 3-hop
NS-VQA 1-hop 1.0 0.0 0.0

2-hop 0.48 1.0 0.03
3-hop 0.20 0.82 1.0

CLIP 1-hop 0.50 0.20 0.0
2-hop 0.11 0.31 0.29
3-hop 0.05 0.21 0.33

ViLT 1-hop 0.61 0.04 0.04
2-hop 0.21 0.52 0.11
3-hop 0.05 0.23 0.52

Table 3: Accuracy of NS-VQA and CLIP-based model on length
generalization over multihop questions. Results averaged over 5
runs.

at the program accuracy, it is close to 100% for n-hop to n-
hop, but consistently 0% for all the out of distribution tests. In
other words, the system answers the questions correctly, but
with an incorrect program. We observe the predicted 1-hop
programs for the NS-VQA model trained on 3-hop questions
to help explain the behaviour. For the 1-hop sample Remove
all blue cubes. How many objects are left?, the 3-hop-trained
model produces the program sequence equivalent to Remove
all blue objects. Remove all blue cubes. Remove all blue
cubes. How many objects are left?. If only cubes are blue in
the scene, the model will still answer correctly. Similarly, the
two “extra” remove operations can be of objects that are not
present in the scene and still answer the question correctly. It
seems that the LSTM in NS-VQA produces the first n−1 op-

https://github.com/dali-does/compgen-clevr
https://github.com/dali-does/compgen-clevr


erations of the program, but always outputs a 3-hop structure
of three chained filter-remove pairs.

Table 4 shows the performance of NS-VQA and the CLIP-
based model on the no-red-cubes split. Both models
see a degradation in performance when tested on out-of-
distribution compositions. NS-VQA goes from perfect ac-
curacy to answering only 42% of the questions correctly. The
CLIP-based model drops to 20% accuracy on the red cubes
test data, which is not significantly better than a simple major-
ity vote (the largest class is 3 as the answer, making up about
15% of the samples). We note that the CLIP-performance
in Table 3 and Table 4 for 1-hop questions does not align.
Running the training for more epochs does not address this
issue. One possible explanation is that the constraints on the
no-red-cubes training data to exclude red cubes gives a
more difficult distribution to learn. The results are instead
similar to the 2- and 3-hop performance. However, we also
note that the relative performance is what we are interested in
here.

Model No Red Cubes (I.I.D.) Red Cubes
NS-VQA 1.0 0.42
CLIP 0.30 0.20
ViLT 0.61 0.44

Table 4: Accuracy of NS-VQA and CLIP-based model over multi-
hop questions. Results averaged over 5 runs.

6 Discussion and Conclusion
We introduced a modified NS-VQA architecture that can
learn the previously impossible multihop questions. We have
shown that both NS-VQA and CLIP handles our length gen-
eralization task poorly. The results show similar patterns
where generalizing to more hops is difficult, with e.g. 1- to
3-hop generalization seeing complete failure of 0% accuracy
for both models. For NS-VQA, generalizing to fewer hops
sees less of a degradation but further investigation shows that
the model hallucinates and forces the predicted program se-
quences to use as many hops as trained on. The CLIP-based
model follows a similar pattern. The results are also in line
with related work on math word problems such as [Lan et al.,
2022] where LSTMs and Transformers perform similarly out
of the box.

One previous argument in the domains of neuro-symbolic
language learning and compositional generalization, is that
the language model fails on such tasks because it cannot cap-
ture the complexity of language sufficiently. CLIP uses a
much stronger language component than NS-VQA, but both
fail in similar ways on the splits presented in this paper. In-
stead, we would like to draw focus to the learning procedure
and how we can inject more knowledge.

We argue that learning recursive functions is one key chal-
lenge in compositional generalization. Currently, even if
NS-VQA does answer some 1-hop questions correctly when
trained on 2-hop questions, our investigation shows that it
does not do so by partial application of the 2-hop function.
If both the architecture and the learning procedure would re-
flect the recursive nature of subtraction, generalizing from 1-

to 2-hop should be no different than from 1-hop to 20-hop
questions. Related work partially achieve this by splitting the
multiple hops into separate prompts, but this somewhat re-
duces the problem complexity in the preprocessing step. One
current research direction is to look at curriculum learning
based on attributes and program complexity. Recent results
in curriculum learning shows how curricula can help reduce
the amount of data needed in training. However, the effects
on compositional generalization is unclear.

In ongoing work, we are devising more compositional
generalization splits and will evaluate on multimodal trans-
former architectures such as ViLT. In this work, we aim to an-
swer scaling laws questions concerning how many examples
of a specific composition are needed to achieve good com-
positional generalizability. In preliminary work, NS-VQA
only needs a handful of examples to learn the generalization,
whereas this has little impact on CLIP.
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