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ABSTRACT

The security of Deep Learning classifiers is a critical field of study because of
the existence of adversarial attacks. Such attacks usually rely on the principle
of transferability, where an adversarial example crafted on a surrogate classifier
tends to mislead the target classifier trained on the same dataset even if both clas-
sifiers have quite different architecture. Ensemble methods against adversarial
attacks demonstrate that an adversarial example is less likely to mislead multiple
classifiers in an ensemble having diverse decision boundaries. However, recent
ensemble methods have either been shown to be vulnerable to stronger adver-
saries or shown to lack an end-to-end evaluation. This paper attempts to develop
a new ensemble methodology that constructs multiple diverse classifiers using a
Pairwise Adversarially Robust Loss (PARL) function during the training proce-
dure. PARL utilizes gradients of each layer with respect to input in every classi-
fier within the ensemble simultaneously. The proposed training procedure enables
PARL to achieve higher robustness against black-box transfer attacks compared
to previous ensemble methods without adversely affecting the accuracy of clean
examples. We also evaluate the robustness in the presence of white-box attacks,
where adversarial examples are crafted using parameters of the target classifier.
We present extensive experiments using standard image classification datasets
like CIFAR-10 and CIFAR-100 trained using standard ResNet20 classifier against
state-of-the-art adversarial attacks to demonstrate the robustness of the proposed
ensemble methodology.

1 INTRODUCTION

Deep learning (DL) algorithms have seen rapid growth in recent years because of their unprece-
dented successes with near-human accuracies in a wide variety of challenging tasks starting from im-
age classification (Szegedy et al., 2016), speech recognition (Amodei et al., 2016), natural language
processing (Wu et al., 2016) to self-driving cars (Bojarski et al., 2016). While DL algorithms are ex-
tremely efficient in solving complicated decision-making tasks, they are vulnerable to well-crafted
adversarial examples (slightly perturbed valid input with visually imperceptible noise) (Szegedy
et al., 2014). The widely-studied phenomenon of adversarial examples among the research commu-
nity has produced numerous attack methodologies with varied complexity and effective deceiving
strategy (Goodfellow et al., 2015; Kurakin et al., 2017; Madry et al., 2018; Moosavi-Dezfooli et al.,
2016; Papernot et al., 2017). An extensive range of defenses against such attacks has been proposed
in the literature, which generally falls into two categories. The first category enhances the training
strategy of deep learning models to make them less vulnerable to adversarial examples by train-
ing the models with different degrees of adversarially perturbed training data (Bastani et al., 2016;
Huang et al., 2015; Jin et al., 2015; Zheng et al., 2016) or changing the training procedure like gra-
dient masking, defensive distillation, etc. (Gu & Rigazio, 2015; Papernot et al., 2016; Rozsa et al.,
2016; Shaham et al., 2015). However, developing such defenses has been shown to be extremely
challenging. Carlini & Wagner (2017b) demonstrated that these defenses are not generalized for all
varieties of adversarial attacks but are constrained to specific categories. The process of training
with adversarially perturbed data is hard, often requires models with large capacity, and suffers from
significant loss on clean example accuracy. Moreover, Athalye et al. (2018) demonstrated that the
changes in training procedures provide a false sense of security. The second category intends to
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detect adversarial examples by simply flagging them (Bhagoji et al., 2017; Feinman et al., 2017;
Gong et al., 2017; Grosse et al., 2017; Metzen et al., 2017; Hendrycks & Gimpel, 2017; Li & Li,
2017). However, even detection of adversarial examples can be quite a complicated task. Carlini
& Wagner (2017a) illustrated with several experimentations that these detection techniques could
be efficiently bypassed by a strong adversary having partial or complete knowledge of the internal
working procedure.

While all the approaches mentioned above deal with standalone classifiers, in this paper, we utilize
the advantage of an ensemble of classifiers instead of a single standalone classifier to resist adversar-
ial attacks. The notion of using diverse ensembles to increase the robustness of a classifier against
adversarial examples has recently been explored in the research community. The primary motivation
of using an ensemble-based defense is that if multiple classifiers with similar decision boundaries
perform the same task, the transferability property of DL classifiers makes it easier for an adver-
sary to mislead all the classifiers simultaneously using adversarial examples crafted on any of the
classifiers. However, it will be difficult for an adversary to mislead multiple classifiers simultane-
ously if they have diverse decision boundaries. Strauss et al. (2017) used various ad-hoc techniques
such as different random initializations, different neural network structures, bagging the input data,
adding Gaussian noise while training for creating multiple diverse classifiers to form an ensemble.
The resulting ensemble increases the robustness of the classification task even in the presence of ad-
versarial examples. Tramèr et al. (2018) proposed Ensemble Adversarial Training that incorporates
perturbed inputs transferred from other pre-trained models during adversarial training to decouple
adversarial example generation from the parameters of the primary model. Grefenstette et al. (2018)
demonstrated that ensembling two models and then adversarially training them incorporates more
robustness in the classification task than single-model adversarial training and ensemble of two sep-
arately adversarially trained models. Kariyappa & Qureshi (2019) proposed Diversity Training of
an ensemble of models with uncorrelated loss functions using Gradient Alignment Loss metric to
reduce the dimension of adversarial sub-space shared between different models and increase the
robustness of the classification task. Pang et al. (2019) proposed Adaptive Diversity Promoting
regularizer to train an ensemble of classifiers that encourages the non-maximal predictions in each
member in the ensemble to be mutually orthogonal, which degenerates the transferability that aids
in resisting adversarial examples. Yang et al. (2020) proposed a methodology that isolates the ad-
versarial vulnerability in each sub-model of an ensemble by distilling non-robust features. While
all these works attempt to enhance the robustness of a classification task even in the presence of
adversarial examples, Adam et al. (2018) proposed a stochastic method to add Variational Autoen-
coders between layers as a noise removal operator for creating combinatorial ensembles to limit the
transferability and detect adversarial examples.

In order to enhance the robustness of a classification task and/or to detect adversarial examples, the
ensemble-based approaches mentioned above employ different strategies while training the mod-
els. These ensembles either lack end-to-end evaluations for complicated datasets or lack evaluation
against more aggressive attack scenarios like the methods discussed by Dong et al. (2018) and Liu
et al. (2017), which demonstrate that adversarial examples misleading multiple models in an en-
semble tend to be more transferable. In this work, our primary objective is to propose a systematic
approach to enhance the classification robustness of an ensemble of classifiers against adversarial
examples by developing diversity in the decision boundaries among all the classifiers within that
ensemble. The diversity is obtained by simultaneously considering the mutual dissimilarity in gradi-
ents of each layer with respect to input in every classifier while training them. The diversity among
the classifiers trained in such a way helps to degenerate the transferability of adversarial examples
within the ensemble.

Motivation behind the Proposed Approach and Contribution: The intuition behind developing
the proposed ensemble methodology is discussed in Figure 1, which shows a case study using clas-
sifiers trained on CIFAR-10 dataset without loss of generality. Figure 1a shows an input image of
a ‘frog’. Figure 1b shows the gradient of loss with respect to input1 in a classifier Mprim, and
denoted as ∇prim. Figure 1c shows the gradient for another classifier Msim with a similar deci-
sion boundary as Mprim, and denoted as ∇sim. The classifier Msim is trained using the same
parameter settings asMprim but with different random initialization. Figure 1d shows the gradients
for a classifierMdiv with a not so similar decision boundary compared toMprim, and denoted as

1Fundamental operation behind the creation of almost all adversarial examples
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Figure 1: (a) Input image; (b) ∇prim: Gradient of loss in the primary classifier; (c) ∇sim: Gradient
of loss in another classifier with similar decision boundaries; (d)∇div: Gradient of loss in a classifier
with not so similar decision boundaries but comparable accuracy; (e) Symbolic directions of all the
gradients in higher dimensions. The gradients are computed with respect to the image shown in (a).

∇div . The classifiersMprim,Msim, andMdiv have similar classification accuracies. The method
for obtaining such classifiers is discussed later in this paper. Figure 1e shows relative symbolic
directions among all the aforementioned gradients in higher dimension. The directions between a
pair of gradients are computed using cosine similarity. We can observe that ∇prim and ∇sim lead
to almost in the same directions, aiding adversarial examples crafted on Mprim to transfer into
Msim. However, adversarial examples crafted inMprim will be difficult to transfer intoMdiv as
the directions of∇prim and ∇div are significantly different.

The principal motivation behind the proposed methodology is to introduce a constraint for reducing
the cosine similarity of gradients among each classifier in an ensemble while training them simulta-
neously. Such a learning strategy with mutual cooperation intends to ensure that gradients between
each pair of classifiers in the ensemble are as dissimilar as possible. We make the following contri-
butions using the proposed ensemble training method:

• We propose a methodology to increase diversity in the decision boundaries among all the classi-
fiers within an ensemble to degrade the transferability of adversarial examples.

• We propose a Pairwise Adversarially Robust Loss (PARL) function by utilizing the gradients of
each layer with respect to input of every classifier within the ensemble simultaneously for training
them to produce such varying decision boundaries.

• The proposed method can significantly improve the overall robustness of the ensemble against
black-box transfer attacks without substantially impacting the clean example accuracy.

• We evaluated the robustness of PARL with extensive experiments using two standard image classi-
fication benchmark datasets on ResNet20 architecture against state-of-the-art adversarial attacks.

2 THREAT MODEL

We consider the following two threat models in this paper while generating adversarial examples.

• Zero Knowledge Adversary (AZ): The adversaryAZ does not have access to the target ensemble
MT but has access to a surrogate ensembleMS trained with the same dataset. We term AZ as a
black-box adversary. The adversaryAZ crafts adversarial examples onMS and transfers toMT .

• Perfect Knowledge Adversary (AP): The adversary AP is a stronger than AZ who has access to
the target ensembleMT . We term AP as a white-box adversary. The adversary AP can generate
adversarial examples onMT knowing the parameters used by all the networks withinMT .

3 OVERVIEW OF THE PROPOSED METHODOLOGY

In this section, we provide a brief description of the proposed methodology used in this paper to
enhance classification robustness against adversarial examples using an ensemble of classifiersMT .
The ensemble consists of N neural network classifiers and denoted asMT =

⋃N
i=1Mi. All the

Mi’s are trained simultaneously using the Pairwise Adversarially Robust Loss (PARL) function,
which we discuss in detail in Section 4. The final decision for an input image onMT is decided
based on the majority voting among all the classifiers. Formally, let us assume a test set of t inputs
{x1, x2, . . . , xt} with respective ground truth labels as {y1, y2, . . . , yt}. The final decision of the
ensembleMT for an input xj is defined as

C(MT , xj) = majority{M1(xj),M2(xj), · · · ,MN (xj)}

3



Under review as a conference paper at ICLR 2022

C(MT , xj) = yj for most xj’s in an appropriately trainedMT . The primary argument behind the
proposed ensemble method is that allMi’s have dissimilar decision boundaries but not significantly
different accuracies. Hence, a clean example classified as class Cx in Mi will also be classified
as Cx in most otherMj’s (where j = 1 . . .N , j 6= i) within the ensemble with a high probability.
Consequently, because of the diversity in decision boundaries betweenMi andMj (for i = 1 . . .N ,
j = 1 . . .N , and i 6= j), the adversarial examples generated by a zero knowledge adversary (AZ) for
a surrogate ensembleMS will have a different impact on each classifiers within the ensembleMT ,
i.e., the transferability of adversarial examples will be challenging within the ensemble. A perfect
knowledge adversary (AP) can generate adversarial examples for the ensembleMT . However, in
this scenario, the input image perturbation will be in different directions because of the diversity in
decision boundaries among allMi’s within the ensemble. The collective disparity in perturbation
directions makes it challenging to craft adversarial examples for the ensemble. We evaluated our
proposed methodology considering both the adversaries and presented the results in Section 5.

4 BUILDING THE ENSEMBLE NETWORKS USING PARL
In this section, we provide a detailed discussion on training an ensemble of neural networks using the
proposed Pairwise Adversarially Robust Loss (PARL) function for increasing diversity among the
networks. First, we define the basic terminologies used in the construction, followed by a detailed
methodology of the training procedure.

4.1 BASIC TERMINOLOGIES USED IN THE CONSTRUCTION

Let us consider an ensembleMT =
⋃N
i=1Mi, whereMi is the ith network in the ensemble. We

assume that each of these networks has the same architecture with LH number of hidden layers.
Let JMi(x,y) be the loss functions evaluating the amount of loss incurred by the networkMi for
a data point x, where y is the ground-truth label for x. Let FLk

Mi
(x) be the output of kth hidden

layer on the networkMi for the data point x. Let us assume FLk

Mi
(x) has D(Lk) number of output

features. Let us consider ∇xFLk

Mi
(x) denote the sum of gradients over each output feature of kth

hidden layer with respect to input on the networkMi for the data point x. Hence,

∇xFLk

Mi
(x) =

D(Lk)∑
f=1

∇x[FLk

Mi
(x)]f

where ∇x[FLk

Mi
(·)]f is the gradient of the f th output feature of kth hidden layer on network Mi

with respect to input for the data point x. Let X be the training dataset containing |X | examples.

4.2 PAIRWISE ADVERSARIALLY ROBUST LOSS FUNCTION

The principal idea behind the proposed approach is to train an ensemble of neural networks such
that the gradients of loss with respect to input in all the networks will be in different directions. The
gradients represent the directions in which the input needs to be perturbed such that the loss of the
network increases, helping to transfer adversarial examples. In this paper, we introduce the Pairwise
Adversarially Robust Loss (PARL) function, which we will use to train the ensemble. The objective
of PARL is to train the ensemble so that the gradients of loss lead to different directions in different
networks for the same input example. Hence, the fundamental strategy is to make the gradients as
dissimilar as possible while training all the networks. Since the gradient computation depends on
all intermediate parameters of a network, we force the intermediate layers of all the networks within
the ensemble to be dissimilar for producing enhanced diversity at each layer.

The pairwise similarity of gradients of the output of kth hidden layer with respect to input between
the classifiersMi andMj for a particular data point x can be represented as

G(i,j)Lk
(x) =

< ∇xFLk

Mi
(x),∇xFLk

Mj
(x) >

‖∇xFLk

Mi
(x)‖ · ‖∇xFLk

Mj
(x)‖

where < a, b > represents the dot product between two vectors a and b. The overall pairwise
similarity between the classifiersMi andMj for a particular data point x considering LH hidden
layers can be written as
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G(i,j)(x) =
H∑
k=1

G(i,j)Lk
(x)

Next, we define a penalty term R(Mi,Mj) for all the training examples in X to pairwise train the
modelsMi andMj as

R(Mi,Mj) =
1

|X |
∑
x∈X
G(i,j)(x)

We can observe thatR computes average pairwise similarity for all the training examples. Now, for
networkMi andMj , if all the gradients with respect to input for each training example are in the
same direction, value ofR will be close to 1, indicating similarity in decision boundaries. The value
of R will gradually decrease as the relative angle between the pair of gradients increases in higher
dimension. Hence, the objective of diversity training using PARL is to reduce the value ofR. Thus,
we addR to the loss function as a penalty parameter to penalize the training for a largeR value.

In the ensemble MT , we compute the R values for each distinct pair of Mi and Mj in order to
enforce diversity between each pair of classifiers. We define PARL to train the ensembleMT as

PARL(MT ) = γ1 ·
1

|X |
∑
x∈X

N∑
i=1

JMi
(x,y) + γ2 ·

∑
1≤i<j≤N

R(Mi,Mj) (1)

where γ1 and γ2 are hyperparameters controlling the accuracy-robustness trade-off. A higher value
of γ1 and a lower value of γ2 helps to learn the models with good accuracy but is less robust against
adversarial attacks. However, a lower value of γ1 and a higher value of γ2 makes the models more
robust against adversarial attacks but with a compromise in overall accuracy.

One may note that the inclusion of the penalty values for each distinct pair of classifiers within
the ensemble to compute PARL has one fundamental advantage. If we do not include the pair
(Ma,Mb) in the PARL computation, the training will continue without any diversity restrictions be-
tweenMa andMb. Consequently,Ma andMb will produce similar decision boundaries, thereby
increasing the likelihood of adversarial transferability betweenMa andMb, affecting the robust-
ness of the ensemble MT . One may also note that the number of gradient computations in an
efficient implementation of PARL is linearly proportional to the number of classifiers in the ensem-
ble. The gradients for each classifier are computed once and are reused to compute R values for
each pair of classifiers. The reuse of gradients protects the implementation from the exponential
computational overhead due to pairwise similarity computation.

5 EXPERIMENTAL EVALUATION

5.1 EVALUATION CONFIGURATIONS

We consider an ensemble of three standard ResNet20 (He et al., 2016) architecture for all the ensem-
bles used in this paper. We consider two standard image classification datasets for our evaluation,
namely CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky et al., 2009). We consider
two scenarios for the evaluation:

• Unprotected Ensemble: A baseline ensemble (ENSU ) of ResNet20 architectures without any
countermeasure against adversarial attacks.

• Protected Ensemble: An ensemble (ENSZ) of ResNet20 architectures, where Z is the coun-
termeasure used to design the ensemble. In our evaluation we have considered three previ-
ously proposed countermeasures to compare the performance of PARL. We denote the ensembles
ENSADP , ENSGAL, and ENSDVERGE to be the ensembles trained with the methods pro-
posed by Pang et al. (2019), Kariyappa & Qureshi (2019), and Yang et al. (2020), respectively.
The ensemble trained with our proposed method is denoted as ENSPARL.

We use the adam optimization (Kingma & Ba, 2015) to train all the ensembles with adaptive learning
rate starting from 0.001. We dynamically generate a augmented dataset using random shifts, flips
and crops to train both CIFAR-10 and CIFAR-100. We use the default hyperparameter settings
mentioned in the respective papers for ENSADP , ENSGAL, and ENSDVERGE2. We use γ1 =

2We implemented ENSGAL following the approach mentioned in the paper. Whereas, we adopted the
official GitHub repositories for ENSADP and ENSDV ERGE implementation.
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1.0, γ2 = 0.5, and categorical crossentropy loss for JMi
(·) (ref. Equation (1)) for ENSPARL. We

enforce diversity among all the classifiers in ENSPARL for the first seven convolution layers3.

We consider four state-of-the-art untargeted adversarial attacks Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015), Basic Iterative Method (BIM) (Kurakin et al., 2017), Momen-
tum Iterative Method (MIM) (Dong et al., 2018), and Projected Gradient Descent (PGD) (Madry
et al., 2018) for crafting adversarial examples. A brief overview on crafting adversarial examples
using these attack methodologies are discussed in Appendix A. We consider 50 steps for generating
adversarial examples using the iterative methods BIM, MIM, and PGD with the step size of ε/5,
where ε is the attack strength. We consider the moment decay factor as 0.01 for MIM. We use 10
different random restarts for PGD to generate multiple instances of adversarial examples for an im-
partial evaluation. We use ε = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, and 0.07 for generating adversarial
examples of different strengths. We use CleverHans v2.1.0 library (Papernot et al., 2018) to
generate all the adversarial examples.

In order to evaluate against a stronger adversarial setting for AZ , we train a black-box surrogate
ensemble and generate adversarial examples from the surrogate ensemble instead of a standalone
classifier. As also mentioned previously, adversarial examples that mislead multiple models in an
ensemble tend to be more transferable (Dong et al., 2018; Liu et al., 2017). All the results in the
subsequent discussions are reported by taking average value over three independent runs.

5.2 ANALYSING THE DIVERSITY

The primary objective of PARL is to increase the diversity among all the classifiers within an en-
semble. In order to analyze the diversity of different classifiers trained using PARL, we use Linear
Central Kernel Alignment (CKA) analysis proposed by Kornblith et al. (2019). The CKA metric,
which lies between [0, 1], measures the similarity between decision boundaries represented by a
pair of neural networks. A higher CKA value between two neural networks indicates a significant
similarity in decision boundary representations, which implies good transferability of adversarial
examples. We present an analysis on layer-wise CKA values for each pair of classifiers within the
ensemble ENSU and ENSPARL trained with CIFAR-10 and CIFAR-100 in Figure 2 to show the
effect of PARL on diversity. We can observe that each pair of models in ENSU show a signifi-
cant similarity at every layer. However, since ENSPARL is trained by restricting the first seven

3We observed that PARL performs better than previously proposed approaches against adversarial attacks
with high accuracy on clean examples by enforcing diversity in the first seven convolution layers. We present
an Ablation Study by varying the number of layers utilized for diversity training using PARL in Section 5.4
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Figure 2: Layer-wise linear CKA values between each pair of classifiers in ENSU and ENSPARL
trained with CIFAR-10 [(a), (b), (c)] and CIFAR-100 [(d), (e), (f)] datasets showing the similarities
at each layer. The value inside the braces within the corresponding figure legends represent the
overall average Linear CKA values between each pair of classifiers.
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Table 1: Ensemble classification accuracy (%) for CIFAR-10 and CIFAR-100 on clean examples as
well as adversarially perturbed images with attack strength ε = 0.07 for different adversarial attacks.

Clean Example FGSM BIM MIM PGD

ENSU
CIFAR-10 93.11 21.87 7.47 7.27 1.57

CIFAR-100 70.88 7.13 7.17 3.93 5.39

ENSADP
CIFAR-10 92.99 23.53 8.13 7.53 3.08

CIFAR-100 70.01 8.23 10.07 5.83 8.72

ENSGAL
CIFAR-10 91.22 22.8 9.3 8.33 7.64

CIFAR-100 * * * * *

ENSDVERGE
CIFAR-10 91.73 28.88 11.78 10.55 9.68

CIFAR-100 * * * * *

ENSPARL
CIFAR-10 91.09 28.37 20.8 16.17 15.65

CIFAR-100 67.52 12.73 18.97 10.01 21.49

* Did not consider CIFAR-100 dataset for evaluation

convolution layers, we can observe a considerable decline in the CKA values at the initial layers.
The observation is expected as PARL imposes layer-wise diversity in its formulation, as discussed
previously in Section 4. The overall average Linear CKA values between each pair of models in
Figure 2 are mentioned inside braces within the corresponding figure legends, which signifies that
the classifiers within an ensemble trained using PARL shows a higher overall dissimilarity than the
unprotected baseline ensemble. In the subsequent discussions, we analyze the effect of the observed
diversity on the performance of ENSPARL against adversarial examples.

5.3 ROBUSTNESS EVALUATION OF PARL

Performance in the presence of AZ : We evaluate the robustness of all the ensembles discussed
in Section 5.1 considering both CIFAR-10 and CIFAR-100 where the attackers cannot access the
model parameters and rely on surrogate models to generate transferable adversarial examples. Un-
der such a black-box scenario, we use one hold-out ensemble with three ResNet20 models as the
surrogate model. We randomly select 1000 test samples and evaluate the performance of black-box
transfer attacks for all the ensembles across a wide range of attack strength ε. We present the result
for the attack strength (ε = 0.07) in Table 1 along with clean example accuracies. The methods pre-
sented by Kariyappa & Qureshi (2019) and Yang et al. (2020) neither evaluated their approach on
a more complicated CIFAR-100 dataset nor discussed any optimal hyperparameter settings regard-
ing their proposed algorithms for potential evaluation. In our robustness evaluations, we consider
all the ensembles discussed in Section 5.1 for CIFAR-10. In contrast, we only consider ENSU
and ENSADP to compare the performance of ENSPARL for CIFAR-100. We can observe from
Table 1 that the training using PARL does not adversely affect the ensemble accuracy on clean exam-
ples compared to other previously proposed methodologies. However, it provides better robustness
against black-box transfer attacks for almost every scenario.

A more detailed performance evaluation considering all the attack strengths are presented in Fig-
ure 3. For CIFAR-10 evaluation (ref. Figure 3a - Figure 3d), we can observe that ENSPARL
performs at par with ENSDVERGE considering FGSM. However, for stronger iterative attacks
like BIM, MIM, and PGD, ENSPARL outperforms other methodologies with higher accuracy for
large attack strengths. For CIFAR-100 evaluation (ref. Figure 3e - Figure 3h), we can observe that
ENSPARL performs better than both ENSU and ENSADP for all scenarios.

Performance in the Presence of AP : Next, we evaluate the robustness of ensembles when the
attacker has complete access to the model parameters. Under such a white-box scenario, we craft
adversarial examples from the target ensemble itself. We consider the same attack methodologies
and settings as discussed in Section 5.1. We randomly select 1000 test samples and evaluate white-
box attacks for all the ensembles across a wide range of attack strength ε. We present the results for
CIFAR-10 and CIFAR-100 in Figure 4. For CIFAR-10 evaluation (ref. Figure 4a - Figure 4d), we
can observe that ENSPARL performs marginally better than the other ensembles. For CIFAR-100
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Figure 3: Ensemble classification accuracy (%) v.s. Attack Strength (ε) against different black-box
transfer attacks generated from surrogate ensemble for CIFAR-10 [(a), (b), (c), (d)] and CIFAR-100
[(e), (f), (g), (h)] datasets.
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Figure 4: Ensemble classification accuracy (%) v.s. Attack Strength (ε) against different white-box
attacks for CIFAR-10 [(a), (b), (c), (d)] and CIFAR-100 [(e), (f), (g), (h)] datasets.

evaluation (ref. Figure 4e - Figure 4h), we can observe that ENSPARL performs better than both
ENSU and ENSADP for all scenarios. Although PARL achieves the highest robustness among
all the previous ensemble methods for black-box transfer attacks, its robustness against white-box
attacks is still quite low. The result is expected as the objective of PARL is to increase the diversity
of an ensemble against adversarial vulnerability rather than entirely eliminate it. In other words,
adversarial vulnerability inevitably exists within the ensemble and can be captured by attacks with
white-box access. One straightforward way to improve the robustness of ensembles against such
vulnerability is to augment PARL with adversarial training (Madry et al., 2018), which we look
forward to as a future research direction.

5.4 ABLATION STUDY

In all the previous evaluations, we consider ENSPARL by enforcing diversity in the first seven
convolution layers for all the classifiers during ensemble training using PARL. In this section, we
provide an ablation study by analyzing a varying number of convolution layers considered for the

8



Under review as a conference paper at ICLR 2022

Table 2: Ensemble classification accuracy (%) on the test set for CIFAR-10 and CIFAR-100. The
numbers in the first row after slash denote the number of convolution layers used to enforce diversity

ENSPARL/7 ENSPARL/5 ENSPARL/3

CIFAR-10 91.09 91.18 92.45

CIFAR-100 67.52 67.54 68.81
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Figure 5: Ensemble classification accuracy (%) v.s. Attack Strength (ε) against different black-box
transfer attacks generated from surrogate ensemble for CIFAR-10 [(a), (b), (c), (d)] and CIFAR-
100 [(e), (f), (g), (h)] datasets. The numbers in the figure legends after slash denote the number of
convolution layers used to enforce diversity

diversity training. We consider three ensemblesENSPARL/7, ENSPARL/5, andENSPARL/3 for
this study, where ENSPARL/N denotes that the first N convolution layers are used for enforcing
the diversity. We consider the same evaluation configurations as discussed in Section 5.1. The
accuracies of all the ensembles on clean examples considering both CIFAR-10 and CIFAR-100 are
mentioned in Table 2. We can observe that as fewer restrictions are imposed, the overall ensemble
accuracy increases, which is expected and can be followed from Equation (1). A detailed analysis
on the diversity achieved by all these ensembles in terms of Linear CKA metric is provided in
Appendix B for interested readers.

Next, we evaluate the robustness of these ensembles against black-box transfer attacks for the eval-
uation configurations discussed in Section 5.1 and provide the results in Figure 5. We can observe
that though the ensemble accuracy on clean examples increases with fewer layer restrictions, the ro-
bustness against black-box transfer attacks decreases significantly. The results present an interesting
trade-off between accuracy and robustness in terms of number of layers considered while computing
PARL (ref. Equation (1)).

6 CONCLUSION

In this paper, we propose an approach to enhance the classification robustness of an ensemble against
adversarial attacks by developing diversity in the decision boundaries among all the classifiers within
the ensemble. The ensemble network is constructed by the proposed Pairwise Adversarially Robust
Loss function utilizing the gradients of each layer with respect to input in all the networks simultane-
ously. The experimental results show that the proposed method can significantly improve the overall
robustness of the ensemble against state-of-the-art black-box transfer attacks without substantially
impacting the clean example accuracy. Combining the technique with adversarial training and ex-
ploring different efficient methods to construct networks with diverse decision boundaries adhering
to the principle outlined in the paper can be interesting future research directions.
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REPRODUCIBILITY STATEMENT

We have uploaded the codes as a supplementary material along with a README file for reproducing
the results reported in this paper.
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A BRIEF OVERVIEW OF ADVERSARIAL EXAMPLE GENERATION

Let us consider a benign data point x ∈ Rd, classified into class Ci by a classifierM. An untargeted
adversarial attack tries to add visually imperceptible perturbation η ∈ Rd to x and creates a new
data point xadv = x + η such thatM misclassifies xadv into another class Cj other than Ci. The
imperceptibility is enforced by restricting the l∞-norm of the perturbation η to be below a threshold
ε, i.e., ‖η‖∞ ≤ ε (Goodfellow et al., 2015; Madry et al., 2018). We term ε as the attack strength.

An adversary can craft adversarial examples by considering the loss function of a model, assuming
that the adversary has full access to the model parameters. Let J (θ, x, y) denote the loss function of
the model, where θ, x, and y represent the model parameters, benign input, and corresponding label,
respectively. The goal of the adversary is to generate adversarial example xadv such that the loss of
the model is maximized while ensuring that the magnitude of the perturbation is upper bounded by
η. Hence, J (θ, xadv, y) > J (θ, x, y) adhering to the constraint ‖xadv−x‖∞ ≤ ε. Several methods
have been proposed in the literature to solve this constrained optimization problem. We discuss the
methods used in the evaluation of our proposed approach.

Fast Gradient Sign Method (FGSM): This attack is proposed by Goodfellow et al. (2015). The
adversarial example is crafted using the following equation

xadv = x+ ε · sign(∇xJ(θ, x, y))

where∇xJ(θ, x, y) denote the gradient of loss with respect to input.

Basic Iterative Method (BIM): This attack is proposed by Kurakin et al. (2017). The adversarial
example is crafted iteratively using the following equation

x(k+1) = x(k) + clipε(α · sign(∇xJ(θ, x(k), y)))
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where x(0) is the benign example. If r is the total number of attack iteration, xadv = x(r). The
parameter α is a small step size usually chosen as ε/r. The function clipε(·) is used to generate
adversarial examples within ε-ball of the original image x(0).

Moment Iterative Method (MIM): This attack is proposed by Dong et al. (2018), which won
the NeurIPS 2017 Adversarial Competition. This attack is a variant of BIM that crafts adversarial
examples iteratively using the following equations

g(k) = ∇xJ(θ, x(k), y)

g(k+1) = µ · g(k) + g(k)

‖g(k)‖1
x(k+1) = x(k) + clipε(α · sign(g(k)))

where µ is termed as the decay factor.

Projected Gradient Sign Method (PGD): This attack is proposed by Madry et al. (2018). This
attack is a variant of BIM with same adversarial example generation process except for x(0) is a
randomly perturbed image in the ε neighborhood of the original image.

B DIVERSITY RESULTS FOR ABLATION STUDY

In this section, we present an analysis on layer-wise CKA values for each pair of classifiers within the
ensembleENSPARL/7, ENSPARL/5, andENSPARL/3 trained with both CIFAR-10 and CIFAR-
100 datasets. The layer-wise CKA values are shown in Figure 6 to demonstrate the effect of PARL
on diversity. We can observe a more significant decline in the CKA values at the initial layers for
ENSPARL/7 as compared to ENSPARL/5 and ENSPARL/3, which is expected as ENSPARL/7
is trained by restricting more convolution layers. We can also observe that each pair of classifiers
show more overall diversity in ENSPARL/7 than in ENSPARL/5 and ENSPARL/3. The overall
CKA values are mentioned inside braces within the corresponding figure legends.
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Figure 6: Layer-wise linear CKA values between each pair of classifiers in ENSPARL/7,
ENSPARL/5, and ENSPARL/3 trained with CIFAR-10 [(a), (b), (c)] and CIFAR-100 [(d), (e),
(f)] datasets showing the similarities at each layer. The numbers in the figure legends after slash de-
note the number of convolution layers used to enforce diversity. The value inside the braces within
the corresponding figure legends represent the overall average Linear CKA values between each pair
of classifiers.
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