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Abstract

We study the problem of learning a target task when data samples from several1

auxiliary source tasks are available. Examples of this problem appear in multitask2

learning, where several tasks are combined jointly, and weak supervision, where3

multiple programmatic labels are generated for each sample. Because of task data’s4

heterogeneity, negative interference is a critical challenge for solving this problem.5

Previous works have measured first-order task affinity as an effective metric, yet6

it becomes less accurate for approximating higher-order transfers. We propose a7

procedure called task modeling to model first- and higher-order transfers. This8

procedure samples subsets of source tasks and estimates surrogate functions to9

approximate multitask predictions. We show theoretical and empirical results that10

task models can be estimated in nearly-linear time in the number of tasks and11

accurately approximate multitask predictions. Thus, the target task’s performance12

can be optimized using task models to select source tasks. We validate this approach13

on various datasets and performance metrics. Our method increases accuracy up to14

3.6% over existing methods on five text classification tasks with noisy supervision15

sources. Additionally, task modeling can be applied to group robustness and16

fairness metrics. Ablation studies show that task models can accurately predict17

whether or not a set of up to four source tasks transfer positively to the target task.18

1 Introduction19

Given a set of k auxiliary source tasks and a primary target task of interest, how can we select20

the beneficial ones for the target task? This question is motivated by a number of applications. In21

multitask learning [10, 13, 6], several tasks are learned simultaneously. The learned model can be22

further fine-tuned for a single task [29]. Depending on task relatedness, multitask learning may23

worsen performance compared to single task learning [7], a phenomenon known as negative transfer24

[31, 26]. Another example is weak supervision [35, 33]: each sample is annotated with multiple25

(possibly conflicting) labels, generated by labeling functions specified with domain knowledge. The26

labeling functions can be viewed as source tasks alongside the target task in a multitask model [34].27

Early work shows that information sharing across tasks can be realized with explicit regularization in28

shallow linear and kernel models [17, 1, 58]. With deep neural networks, sharing information across29

tasks is more challenging [52]. A naive solution for finding the most beneficial source tasks is to30

search through all possible combinations of source tasks. However, this is prohibitively expensive as k31

grows. Another solution is to determine first-order task affinity by training one model for every source-32

target pair [42]. Such first-order task affinity can also be measured in the gradients during training33

[54, 14, 18]. These methods require training at most k models but ignore higher-order structures,34

such as the transfer from a set of source tasks to the target. Thus, higher-order approximations that35
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average the first-order task affinity are used as a substitute [42]. In our experiments, we have observed36

that the accuracy of averaging deteriorates as the size of S grows (cf. Figure 2, Appendix B).37

In this work, we propose an efficient method to model first- and higher-order transfer predictions.38

Let S be a subset of source tasks from {1, 2, . . . , k}. Our approach estimates a surrogate function39

to approximate the prediction loss of combining S and a target task t, denoted as ft(S). If S is40

similar to t, ft(S) will be small; otherwise ft(S) will be large. Thus, extrapolating such multitask41

predictions provides a way to model higher-order task structures. Our method, called task modeling,42

fits the value of ft(S) of n random subsets S with linear regression. Figure 2 (in Appendix B) shows43

that task modeling remains highly correlated with ft(S) as |S| grows. Additionally, task modeling44

accurately predicts whether a set of source tasks transfer positively to the target.45

Results. We prove that the sample complexity of task modeling is O(kα4 log2 k) for any |S| up to46

order α (cf. Theorem 3.1). In particular, task modeling requires comparable runtime to compute47

first-order task affinity, but accelerates computing higher-order affinity from O(kα) to a nearly linear48

time in k. With task modeling as a surrogate function of ft(S), finding the optimal S can be achieved49

with the task model, by selecting source tasks with negative model coefficients. The premise of50

this algorithm is that there exists one group of source tasks related to the target, while the rest are51

unrelated. In a linear parametric setting, we prove that our algorithm only selects related source tasks52

to the primary target task of interest (cf. Theorem 3.2).53

We conduct a detailed empirical study of our methods on various datasets and performance metrics.54

First, we validate the benefit of modeling higher-order transfer for multitask learning and the efficiency55

of task modeling by detailing the computation costs. Second, we apply the task selection algorithm56

on five text classification tasks with noisy supervision sources [56], showing up to 3.6% accuracy57

improvement over all existing methods. Third, we show that task modeling can be used with group58

robustness and fairness metrics. On a tabular dataset where each task involves nine subpopulation59

groups [15], our approach consistently improves the worst-group accuracy over ten baselines.60

2 Problem Setup61

Consider a target task whose input features and class labels are drawn from an unknown distribution62

Dt, supported on the product of a feature space X and a label space Y . Suppose we have access to63

a training set D̂t and a validation set D̃t, both drawn from Dt. Let N be the size of the validation64

set D̃t. Given a predictor f : X → Rk and a nonnegative function ℓ : Rk × Y → R+, the loss of a65

sample x, y is denoted as ℓ(f(x), y).66

Suppose we have access to k related data distributions D1,D2, . . . ,Dk, called source tasks, which67

are supported on X ×Y . In cross-task transfer learning, we want to select a set of source tasks so that68

combining them with the target task optimizes the target task’s performance. We assume that some69

of the source tasks are related to the target task, while many of them may negatively interfere (see70

Figure 3 in Appendix B). Thus, the problem is to select the related tasks out of the k source tasks.71

A naive solution to this problem is to enumerate all combinations of source tasks. This requires72

training 2k models, which is too costly. Another solution is to train k models, one for every source-73

target pair. Select all source tasks that provide a positive transfer to the target task. This idea trades off74

precision for efficiency and underlies several existing multitask learning approaches [42, 18]. Given75

that several source tasks will be combined with the target task, we consider higher-order transfer.76

To capture higher-order transfer, we will consider a distribution S supported on subsets of a fixed size77

α. For instance, to capture how well five source tasks transfer to the target, S is a uniform distribution78

over subsets of {1, . . . , k} with size five. Later in Section 3.2, we argue that this distribution enjoys a79

certain covariance structure that preserves the gap between related and unrelated tasks.80

3 Methodology81

We present methods to model higher-order transfer and optimize cross-task transfer. Our approach82

estimates a surrogate function to approximate multitask prediction losses. We show that these83

functions can be estimated efficiently and predict the losses accurately. Thus, optimizing cross-task84

transfer can be done using the task models, leading to an algorithm for selecting source tasks.85
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3.1 Efficiently modeling higher-order transfer86

We will estimate a surrogate function to approximate multitask predictions. Informally, this measures87

how well a set of source tasks transfer to the target task. Our method has two steps:88

(i) Evaluate multitask predictions: For i = 1, . . . , n, sample Si from S . Perform multitask training89

with the training samples in Si. With a trained encode ϕ and the predictor ψt, evaluate the multitask90

prediction loss of Si:91

ft(Si) =
1

N

∑
(x,y)∈D̃t

ℓ
(
ψt(ϕ(x)), y

)
. (1)

(ii) Estimate surrogate functions: For S ⊆ {1, . . . , k}, let g(S) = θ⊤1S , parametrized by a k92

dimensional vector θ, where 1S ∈ {0, 1}k be the characteristic vector of whether or not a task is in93

S.. With n subsets and multitask predictions, estimate θ as:94

θ̂n ← arg min
θ∈Rk

L̂n(θ) :=
1

n

n∑
i=1

(
θ⊤1Si − ft(Si)

)2

. (2)

We analyze the sample complexity of estimating θ̂n. To formulate the problem, notice that the95

population risk can be defined by taking the expectation over the randomness of ft:96

L(θ) = E
ft

E
T∼S

[(
θ⊤1T − ft(T )

)2
]
. (3)

Let θ⋆ be the population risk minimizer. Our result will depend on the Rademacher complexity of the97

function class. Additionally, we analyze the convergence of the empirical risk.98

Theorem 3.1 (Proof in Appendix D.1). Suppose the functions in F are bounded by a fixed C.99

Suppose α ≤ k/2. With probability at least 1− δ, for any δ ≥ 0, θ̂n converges to θ⋆:100 ∥∥∥θ̂n − θ⋆∥∥∥ ≲RN (F) +
√
α log(δ−1k)√

N
+
Cα2 log(δ−1k)

√
k√

n
+
Cα
√
δ−1k√
n

. (4)

θ̂n’s empirical risk converges to θ⋆’s population risk:101

L(θ⋆)− L̂n

(
θ̂n

)
≲CαRN (F) +

Cα3/2
√

log(δ−1k)√
N

+
C2α7/2 log(δ−1k)

√
k√

n
+
C2α5/2

√
δ−1k√

n
. (5)

This theorem implies that the sample complexity of estimating linear task models is only102

O(kα4 log2 k)—a nearly linear rate in the number of tasks. More broadly, the guarantee holds103

under mild conditions of the loss. It applies to group robustness and fairness measures in place of ft.104

Empirical examples. We verify that task modeling estimates an accurate approximation of ft. We105

consider a tabular data with 50 source tasks and a text dataset with 24 source tasks. We evaluate106

the task model g on a holdout set. In both cases, we consider five-way multitask relations, i.e., S is107

a uniform distribution over all combinations of source tasks with size α = 5. For tabular datasets,108
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Figure 1: (a) The MSE of task modeling converges with less than 8k samples. (b) Task modeling
approximates ft accurately with a Spearman correlation of 0.8 on average. Top: Training one tabular
target task along with subsets of 50 source tasks. Bottom: Training one text classification target task
along with subsets of 24 source tasks. Appendix E.2 contains similar results with more target tasks.
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Algorithm 1 Selecting source tasks using task modeling

Input: Training examples from source tasks D̂1, . . . , D̂k; Training and validation sets of target task D̂t and D̃t.
Require: A multitask prediction loss function ft : 2{1,2,...,k} → R+; A distribution over subsets of source
tasks S; Number of subsets n; A threshold γ.
1: For i = 1, . . . , n, sample a set Si from S, perform multitask training and evaluate ft(Si).
2: Estimate the task model coefficients θ̂n following equation 2.
3: Output: Select source tasks S⋆ =

{
i : θ̂n(i) < γ, for any 1 ≤ i ≤ k

}
.

we use a fully-connected layer as the encoder. For text datasets, we use BERT-mini as the encoder.109

Figure 1 plots the convergence of task modeling for eight target tasks. With n ≤ 8k, the MSE of θ̂n110

on a holdout set converges comparably to the variance of ft, defined as follows:111

var(ft) =
1

n

n∑
i=1

(
ft(Si)− E

ft

[ft(Si)]
)2

. (6)

We estimate the empirical mean of ft from ten random seeds. A smaller gap between the empirical112

risk and the variance of ft implies the linear model fits the expected ft values more accurately.113

3.2 Optimizing cross-task transfer learning114

Optimize cross-task transfer performance requires finding an S that minimizes ft(S). With a task115

model, we can select S using the approximated model: S⋆ = argminS g(S). Thus, the minimum116

can be achieved by choosing all source tasks with a negative coefficient in θ̂n. Due to the randomness117

of θ̂n, we set a threshold γ. To illustrate the intuition, we present a case study in a linear model.118

Assume the feature covariate of every task is drawn from an isotropic normal distribution N (0, Idp×p).119

Each task i follows a linear model specified by a parameter vector θ(i). Given a p dimensional feature120

vector x, the label of task i satisfies y = x⊤θ(i) + ϵ, where ϵ is a random variable with mean 0 and121

variance σ2. Let a and b be two fixed values so that b > a > 0, a task is: (i) related if θ(i) = θ(t) + z,122

where z ∼ N (0, a2 Idp×p); (ii) unrelated if θ(i) = θ(t) + z, where z ∼ N (0, b2 Idp×p). We prove123

that with enough samples, Algorithm 1 only selects related source tasks.124

Theorem 3.2 (Proof in Appendix D.2). In the setting described within this subsection, suppose the125

loss function ℓ is bounded from above by C > 0. There are d samples from each task. Let n ≳126

C2k2/((a2 − b2)2)), d ≳ a4k4/(a2 − b2)2 + k log k+ p, and N ≳ p log p. There exists a threshold127

γ such that with probability at least 0.99, (i) θ̂n(i) < γ for any related task i ∈ {1, 2, . . . , k}; (ii)128

θ̂n(j) > γ for any unrelated task j ∈ {1, 2 . . . , k}.129

The analysis uses the fact that S is a uniform distribution over subsets of a fixed size. We show that130

under this distribution, the covariance structure in the task indices of θ̂n is approximately an identity131

matrix plus a constant term for every task (cf. Lemma D.3). This covariance structure allows the task132

model coefficients to separate the related tasks from the unrelated tasks.133

4 Empirical Evaluation134

Our experiments seek to address the following questions: (i) Does modeling higher-order transfers in135

task modeling bring some benefit compared to prior works using first-order task affinity? (ii) Does136

our approach select tasks that transfer positively to the target task? (iii) How well does our approach137

extend to performance metrics beyond the average prediction loss?138

We investigate these questions on various datasets and performance metrics, showing positive results139

to the three questions. First, we present a detailed analysis of task modeling to validate the benefit140

of higher-order transfers over first-order transfer metrics and report the computational cost of our141

approach. Second, we apply our approach to five text classification tasks with noisy supervision142

sources. Our approach increases the test performance over combining all tasks by 6.4% and prior143

methods up to 3.6%. Third, we apply our approach to optimize group robustness and fairness144

measures on datasets with multiple subgroups. Our approach consistently improves performance over145

previous multitask learning approaches. The rest of our experiments can be found in Appendix C.146

Our work highlights the benefit of modeling higher-order transfers in multitask learning.147
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A Related Work288

Our work builds on and extends various settings studied in multitask learning (MTL) and transfer289

learning.290

Multitask Learning: We build on existing MTL approaches using an architecture that shares the291

encoder for all tasks and assigns a separate predictor layer for each task [37]. These approaches have292

shown great progress in both language [29] and vision domains [32]. Meanwhile, many studies have293

observed negative results, where MTL performs worse than single task learning [45, 50]. This raises294

the question of identifying the negative interference and finding the task structures [55]. This is further295

complicated by the nonlinearity of neural networks. One approach is to measure gradient similarity296

during training [54, 18]. Since gradients are noisy, directly precomputing multitask predictions297

is considered [42], which computes first-order task affinity for all pairs of tasks and uses them to298

approximate higher-order transfer predictions. Our work offers an efficient and principled approach299

to model higher-order task structures via sampling. Some studies design neural net architectures to300

encourage information sharing across multiple tasks. Depending on the semantics, layers may be301

shared or separated across the network [22, 59, 28]. However, this approach requires specifying one302

architecture for each application. Low-rank tensor factorization can be used to constrain several task303

model parameters [49, 52]. Complementary to these works, we fix the network encoder and examine304

the relations of task data structures.305

Our approach is inspired by a recent work of Ilyas et al. [23], which predicts the prediction of a306

set of training samples on another sample drawn from the same unknown distribution. The idea of307

Ilyas et al. [23] is to use simple surrogate functions such as linear models to approximate a complex308

function such as the validation loss of a model trained with a subset of samples. Notice that the309
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multitask learning setting crucially differs from the above work, since we estimate the prediction of310

combining a subset of source tasks with a target task, then test on the target task.311

Task Grouping: Our setting is related to the task grouping problem [26, 42, 18], which is defined312

as assigning tasks into several groups with each learned in one network for optimizing the overall313

loss. Different from this problem, we are concerned with a primary target task of interest. This is also314

studied in several recent works [19, 14, 38, 12], and is loosely related to a robust multitask learning315

problem [53, 11] studied earlier within linear and kernel models.316

Generalization Theory: Some of the earliest works in multitask learning study task relatedness from317

a learning theoretic perspective [8, 7]. Ben-David et al. [6] introduce a discrepancy notion called318

H-divergence, which leads to a generalization bound for minimizing the empirical risk of combining319

source and target training data. Transfer exponents are another measure of discrepancy between320

two distributions [21], leading to minimax convergence rates. Notice that our sample complexity321

bound only requires the Rademacher complexity of the encoder. Thus, they can also be combined322

with spectral norm bounds of deep networks [4], leading to a generalization bound for multitask323

learning with deep networks. Variants of the linear parametric model for task selection has also been324

considered in few-shot learning [16] and meta-learning [25]. Extending our approach to these cases325

is a promising research direction.326

Weak Supervision: We draw motivation from recent work which models and integrates weak supervi-327

sion for rapidly training deep models [33, 20, 24, 2, 39, 41]. In particular, our work is inspired by328

previous multitask weak supervision approaches [34, 36]. These approaches, however, do not handle329

the negative interference between multiple labeling functions. Our approach is related to probabilistic330

models of the noisy sources [27], but differ in that each label is treated as a source task rather than331

aggregated together.332

B Figures for Illustrating Task Modeling and Negative Transfer333
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Figure 2: Will combining a set of source tasks S with a primary target of interest help or hurt? We
approach this question by sampling source tasks and estimating the loss of the target. This leads
to a new way to efficiently approximate higher-order task structures, called task modeling in this
work. Top: Task modeling answers the above question with 80% accuracy with up to four tasks in S.
Bottom: Compared with existing higher-order approximations that average first-order task affinity
[42, 18], task modeling consistently captures higher-order predictions more accurately.
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Figure 3: Mixed outcomes are commonly observed due to negative transfer in multitask learning. In
some cases, combining a source task with a target task helps; in other cases, it hurts. x-axis: Each
bar represents one source task, for a total of fifty of them. y-axis: Difference between test accuracy
of combining a source and target task and single task learning.

C Experiments334

C.1 Experimental setup335

Datasets. First, we consider text classification tasks with noisy supervision sources from a weak336

supervision dataset [56]. Each weak supervision source generates noisy labels for a subset of training337

samples. We view noisy sources as source tasks. The task with true labels can be viewed as the target338

task and is not available during training. A validation set of true labels is used for task selection339

and parameter tuning. Table 1 describes the statistics of five text classification tasks along with the340

number of source tasks.341

Table 1: Dataset statistics of five text classification tasks.
Tasks Youtube TREC CDR Chemprot Semeval

Training 1,586 4,965 8,430 12,861 1,749
Validation 120 500 920 1,607 178
Test 250 500 4,673 1,607 600
Source tasks 10 68 33 26 164

Second, we consider binary classification tasks which involve multiple groups of subpopulations. We342

consider the Folktables dataset derived from the US census [15], in particular an income prediction343

task spanning all states. In this task, each record indicates whether an individual’s income is above344

$50,000 or not, using ten tabular features including education level, age, sex, etc. We view each state345

as one task. We use the racial attribute of an individual to split each state dataset into nine groups that346

exhibit group shifts. We evaluate the robustness of a predictor with its worst-group accuracy, defined347

as the predictor’s accuracy in the worst performing group among all nine groups. Table 2 describes348

the statistics of six states/target tasks. In each case, there will be fifty source tasks.349

Table 2: Dataset statistics of six binary classification tasks.
Tasks HI KS LA NJ NV SC

Training 4,638 9,484 12,400 28,668 8,884 14,927
Validation 1,546 3,161 4,133 9,556 2,961 4,976
Test 1,547 3,162 4,134 9,557 2,962 4,976
Smallest group 67 75 58 52 61 203

Baselines. We first compare our approach with training on all tasks using hard parameter sharing.350

Then, we consider approaches that model first-order task affinity, including approximating higher351

order task relations using two-task network performance [42], estimating task relations using cosine352

similarity between task gradients [18] and computing lookahead losses with task gradients [18].353

Additionally, we also consider approaches that alter the optimization using pairwise task relations,354

including auxiliary task gradient update decomposition [14] and target-aware weighted training [12].355

For tasks with weak supervision sources, we incorporate previous weak supervision methods to356

aggregate noisy labels and train an end model on the labels inferred by the methods. The methods357

include Majority Vote, Data Programming [35], and MeTaL [34].358

For the binary prediction tasks, we also consider empirical risk minimization and approaches that359

aim to improve the worst-group performance, including importance weighting [9], group distribu-360
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Table 3: Test performance on five text classification tasks with multiple noisy supervisions, averaged
over five random seeds.

Method/Dataset (Metrics) Youtube (Acc.) TREC (Acc.) CDR (F1) Chemprot (Acc.) Semeval (Acc.) Avg. Rank

Majority Vote 95.36±1.71 66.56±2.31 58.89±0.50 57.32±0.98 85.03±0.83 4.6
Data Programming [35] 93.84±1.61 68.64±3.57 58.48±0.73 57.00±1.20 83.93±0.83 6.6
MeTaL [34] 92.32±1.44 58.28±1.95 58.48±0.90 56.17±0.66 71.74±0.57 8.4

Hard parameter sharing 94.72±0.85 64.10±0.50 58.20±0.55 53.43±0.53 89.00±1.06 7.8
High-order approx. [42] 94.93±1.80 74.67±4.66 59.76±0.97 45.57±0.41 79.94±4.42 6.2
Gradient similarity [18] 95.33±0.68 78.25±3.71 59.21±0.80 53.67±1.89 89.89±2.17 4.0
Task affinity grouping [18] 95.20±0.65 77.50±3.62 59.31±0.15 53.67±2.74 89.06±1.47 4.2
Weighted training [12] 94.53±1.05 72.40±2.36 59.85±0.30 53.76±2.96 86.83±1.78 5.0
Gradient decomposition [14] 95.28±0.16 65.80±1.81 58.81±0.36 54.76±0.67 78.57±0.13 7.0

Task modeling (Alg. 1) 97.47±0.82 81.80±1.14 61.22±0.39 57.54±0.55 93.50±0.24 1.0

tionally robust optimization [40], and supervised contrastive learning [57]. More details concerning361

hyperparameters are described in Section E.1.362

Implementation. We use BERT-Base on the text classification tasks. For the income prediction task363

from the Folktables dataset, we use a two-layer perceptron model with a hidden size 32. We adopt364

the hard parameter sharing architecture for conducting multitask learning on the datasets.365

To estimate a task model, we collect n task subsets along with the multitask training result of each366

subset. We consider a uniform sampling distribution over the task subsets of a constant size. For367

each income prediction task, we obtain n = 400 results on |S| = 5 source tasks. We also construct368

as a holdout set of size 100. For the text classification datasets, since the number of source tasks369

(c.f. Table 1) varies among datasets. We obtain n = {50, 200, 200, 400, 800} results with each370

on |S| = {3, 5, 5, 10, 15} source tasks from Youtube, Chemprot, CDR, TREC, Semeval datasets,371

respectively. We set ft(S) as the negative classification margin — the difference between the logit of372

the correct class and the highest incorrect logit.373

C.2 Task modeling results374

How much does modeling higher-order structures gain? We validate the benefit of using higher-order375

task affinity over first-order and second-order task affinities.376

For first-order task affinity, we select source tasks by training every source task with the target task,377

following HOA [42]. The results in Table 3 and 4 confirm that by sampling subsets of S with size up378

to five, task modeling outperforms HOA by 3.9% averaged over eleven tasks.379

For second-order task affinity, we conduct an exhaustive search over the space of source tasks to380

show that going beyond first-order task affinity is necessary. We search through all possible choices381

of |S| = 2 on one binary classification task, which amounts to training 1225 models, each with two382

source tasks and one target task. The results show that our approach outperforms the best S by 1.21%383

accuracy. See Table 5 for the results.384

How long does constructing task models take? We detail the computation costs of our approach. As385

shown in Section 3.1, for each target task, using n ≤ 8k subsets suffices for task models to converge.386

We validate similar convergence for other tasks in Figure 5 of Appendix E.2. We also report the GPU387

hours of collecting training results for each target task in Appendix E.3. Across all eleven cases,388

constructing task models until convergence takes at most 85.9 GPU hours, evaluated on an NVIDIA389

TITAN RTX instance.390

Next, we compare the computation costs of task modeling and prior methods. We use one binary391

classification task as an example. To only precompute first-order task affinity, our approach takes the392

same amount of time as HOA, which takes 1.24 GPU hours to train on all source-target pairs, and393

comparable time to TAG, which takes 0.87 GPU hours.394

Notice that both HOA and TAG are not designed to predict higher-order transfers. Thus, we compare395

our approach with exhaustive search for |S| > 2. Recall that our approach requires sampling396

n = O(kα4 log2 k) in theory. In practice, we notice that n = 8k suffices for training task models397

until convergence in all of our use cases. We also notice that the required n decreases as |S| increases,398

as shown in Figure 4 of Section C.2. As a result, our approach takes the same amount of time for399
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Table 4: Worst-group test accuracy on six binary classification tasks with tabular features, averaged
over ten random seeds.

Method/Dataset HI KS LA NJ NV Avg. Rank

Empirical risk minimization 74.46±0.48 73.73±1.19 72.39±1.96 76.34±0.64 72.89±1.42 9.7
Importance weighting [9] 74.53±0.81 72.84±1.74 74.82±0.94 76.43±0.50 71.25±1.73 7.8
Correct-N-Contrast [57] 74.37±0.27 75.52±1.19 74.25±0.15 77.60±0.10 73.22±0.40 5.0
Group robust optimization [40] 74.56±0.58 75.50±0.59 74.90±0.38 76.95±0.20 73.06±0.66 5.5

Hard parameter sharing 73.63±0.46 75.22±0.73 73.24±1.01 77.28±0.25 73.22±1.12 8.0
High-order approx. [42] 74.67±0.32 75.22±1.48 73.69±0.86 77.49±0.25 73.88±0.66 3.6
Gradient similarity [18] 74.53±0.52 75.22±2.02 73.66±1.22 77.44±0.38 74.38±0.91 3.8
Task affinity grouping [18] 74.48±0.41 75.97±1.18 73.24±1.01 77.41±0.48 74.05±0.84 5.1
Weighted training [12] 73.53±0.44 75.14±1.39 73.51±1.38 76.47±1.31 72.89±0.81 7.8
Gradient decomposition [14] 73.20±0.57 72.24±1.19 73.51±0.66 76.38±0.69 73.71±0.84 8.0

Task modeling (Alg. 1) 75.47±0.73 76.96±0.69 75.62±0.11 78.17±0.36 75.21±0.52 1.0

Table 5: Comparison of different loss functions and exhaustive search over all subsets of at most two
source tasks.

HI KS LA NJ NV SC

Exhaustive search of |S| ≤ 2 75.10±0.37 77.03±0.76 73.60±1.02 77.40±0.24 73.21±1.10 77.16±0.21
ft uses zero-one accuracy 75.16±0.70 76.39±1.09 75.15±0.43 77.40±0.49 74.34±1.81 77.29±0.19
ft uses cross-entropy loss 75.33±0.80 75.82±0.60 74.19±1.37 77.51±0.35 74.55±1.60 77.21±0.27
ft uses classification margin 75.47±0.73 76.96±0.69 75.62±0.11 78.17±0.36 75.21±0.52 77.62±0.34

different sizes of S up to 20, which is less than 52 GPU hours. By contrast, the runtime of the400

exhaustive search increases exponentially as the size of S grows.401

C.3 Task selection results402

Cross-task transfer learning. Our result in Section 3.2 shows that task modeling provides signals to403

identify beneficial source tasks. We validate the result with the text classification tasks with several404

noisy supervision sources. We apply Algorithm 1 to select the noisy sources and evaluate the test405

performance on the classification task with true labels. Table 3 shows the results.406

Compared with hard parameter sharing which trains all tasks in the same network, our algorithm407

improves the test performance by 6.4% on average. This shows that our algorithm excludes tasks408

with negative interference, thus performing better than training on all tasks. Compared with existing409

multitask learning approaches that either reweight the source tasks [14, 12] or select with first-order410

task affinity [42, 18], our algorithm increases up to 3.6% accuracy.411

Group robustness and fairness metrics. Next, we show that task modeling also captures task affinity412

with various performance metrics of the primary target task. We consider the binary classification413

tasks with multiple subpopulation groups. We apply Algorithm 1 to select source tasks as an414

augmentation of the target classification task. Table 4 presents the comparison.415

Compared with single task learning, including ERM, GroupDRO, and CNC, we find that task416

modeling improves the worst-group accuracy by 1.17% on average, confirming the benefit of data417

augmentation. Compared with existing multitask learning approaches, our approach shows a favorable418

gain of up to 1.9% absolute accuracy. On two fairness measures, our algorithm outperforms all419

methods by 1.8% on average. Due to the space limit, this result is described in Appendix E.3. Hence,420

we conclude that task modeling is a general approach that approximates multitask predictions for421

various performance measures.422

C.4 Ablation study of model parameters423

We ablate the parameters used in our algorithm, providing further insights into its working.424

Subset size |S|: Recall that we collect training results by sampling n subsets from a uniform425

distribution over subsets of a constant size. We evaluate the MSE of task models by varying426

|S| ∈ {2, 5, 10, 20}. To control the computation budget the same, we scale the number of subsets n427

according to |S|. We train n = 800, 400, 200, 100 models with |S| = 2, 5, 10, 20, respectively. We428

observe similar convergence results as in Figure 1. Among them, |S| = 5 yields a highest Spearman429
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correlation of 0.89 between ft(·) and g(·). The reason why higher values of |S| do not help is that430

the number of beneficial tasks is limited in this setting.431

Number of samples n: Next, we explore how n affects the estimated task models. We measure the432

effect on two tasks (HI and LA) by comparing the 10 tasks with the smallest coefficients estimated433

from n = 100, 200, 400 subsets. We observe that using 100 subsets identifies 7 (out of 10) same434

source tasks as using 400. Increasing n to 200 further identifies 9 (out of 10) same source tasks as435

using 400.436

Loss function ℓ: We consider three choices of prediction losses, including zero-one accuracy, cross-437

entropy loss, and classification margin. We observe that using the classification margin is more438

effective than the other two metrics. The Spearman correlation of using the margin is 0.86 on average439

over two tasks (HI and LA). In contrast, the Spearman correlations of using the loss and accuracy are440

0.61 and 0.34, respectively. Besides, we compare the task selection using the three metrics in Table441

5. We find that using the margin outperforms the other two by 0.37% on average over the six target442

tasks in terms of worst-group accuracy.443
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Figure 4: Ablation study of choosing different subset sizes on the same target task. From left to right:
|S| = 2, 5, 10, 20.

D Proofs of Theorems 3.1 and 3.2444

Notations: Let Idp×p denote the identity matrix with dimension p by p. Let ∥ · ∥ denote the445

Euclidean norm of a vector. For two functions f(n) and g(n), we write g(n) ≲ f(n) if there exists446

a fixed value c that does not grow with n such that g(n) ≤ c · f(n) when n is large enough. Let447

F = {ℓ(ψt(ϕ(x)), y) | ∀ψt, ϕ} be a function class of the target task. Let RN (F) be the Rademacher448

complexity of F on N samples of the target task distribution.449

We follow the convention of big-O notations in the proof. Given two functions f(n) and g(n), we450

use f(n) = O(g(n)) to indicate that f(n) ≤ C · g(n) for some fixed constant C when n is large451

enough. The notation f(n) ≲ g(n) indicates that f(n) = O(g(n)). We use f(n) = (1 + o(1))g(n)452

to indicate that |f(n)− g(n)|/g(n) approaches zero as n goes to infinity.453

For a matrix X , denote the spectral norm (or the largest singular value) of X as ∥X∥2. Denote the454

Frobenius norm of X as ∥X∥F . For a vector v, denote the Euclidean norm of v as ∥v∥.455

Let D̃t = {x(t)1 , x
(t)
2 , . . . , x

(t)
N } be N i.i.d. samples of Dt. Let σ1, σ2, . . . , σN be independent456

Rademacher random variables. Denote the Rademacher complexity of task t with N samples from457

Dt as:458

RN (F) = E
D̃t,σ

[
sup
f∈F

1

N

N∑
i=1

σif
(
x
(t)
i

)]
. (7)

D.1 Proof of Theorem 3.1459

We prove the convergence rate of task modeling as a function of n—the number of subsets that one460

needs to sample in order to learn a task model, and N—the size of the target task’s validation set461

used to evaluate ft. Let III ∈ R|S|×k be a zero-one matrix including 1T as its row vectors, for all462

T ∈ S. Let fff be an |S| dimensional vector such that fffT = ft(T ) for every T ∈ S. Let In ∈ Rn×k463

be a zero-one matrix including 1S1 , . . . ,1Sn as its row vectors. Let f̂ be an n dimensional vector464

such that f̂i = ft(Si).465
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Recall from equation (29) that the minimizer of the empirical loss L̂n(θ) is equal to:1466

θ̂n =
(
I⊤
n In

)−1
vn,

where the i-th entry of vn is defined as467 ∑
1≤j≤n: i∈Sj

ft(Sj).

In a similar vein, denote the minimizer of the population loss L(θ) as468

θ⋆ =
(
III⊤III

)−1 III⊤ E [fff ].

Lemma D.1. In the setting of Theorem 3.1, let θ̂|S| be defined as
(
III⊤III
|S|

)−1 III⊤fff
|S| . Conditional on ft469

and D̂1, . . . , D̂k, with probability 1− 2δ over the randomness of the sampled subsets S1, S2, . . . , Sn,470

for any δ ≥ 0, θ̂n converges to θ̂|S| in probability:471 ∥∥∥θ̂n − θ̂|S|

∥∥∥ ≤ Z

√
k

n
. (8)

where Z = 4Cα2 log(2kδ−1) + (1− α/k)−3Cαδ−1/2.472

Proof. We will use the triangle inequality to attribute the error between θ̂n and θ̂|S| to two parts.473 ∥∥∥θ̂n − θ̂|S|

∥∥∥ =

∥∥∥∥∥
((I⊤

n In
n

)−1

−
(III⊤III

|S|

)−1
)
vn
n

+

(III⊤III
|S|

)−1 (vn
n

− III⊤ E [fff ]

|S|
)∥∥∥∥∥

≤
∥∥∥∥∥
(I⊤

n In
n

)−1

−
(III⊤III

|S|

)−1
∥∥∥∥∥
2

·
∥∥∥vn
n

∥∥∥ (9)

+

∥∥∥∥∥
(III⊤III

|S|

)−1
∥∥∥∥∥
2

·
∥∥∥∥vnn − III⊤fff

|S|

∥∥∥∥ . (10)

We compare the sampled score vector vn
n and the population score vector III⊤fff

|S| . Recall that both474

vectors have k coordinates, each corresponding to one task. For any task i = 1, . . . , k, let Ei denote475

the difference between the i-th coordinate of vn
n and the i-th coordinate of III⊤fff

|S| :476

Ei =
1

n

∑
1≤j≤n: i∈Sj

ft(Sj)−
1

|S|
∑

T∈S: i∈T

ft(T ). (11)

Notice that the sampling of S1, S2, . . . , Sn is independent of the randomness in fA. Therefore, we477

have that the expectation of Ei is zero: E [Ei] = 0. Next, we apply the Chebyshev’s inequality478

to analyze the deviation of Ei from its expectation. We consider the variance of Ei, which is the479

expectation of E2
i :480

E
[
E2i

]
= E

 1

n

∑
1≤j≤n:i∈Sj

ft(Sj)−
1

|S|
∑

T∈S:i∈T

ft(T )

2 (12)

= E

 ∑
1≤j≤n:i∈Sj

ft(Sj)

2

− 2

n |S|
∑

1≤j≤n:i∈Sj

ft(Sj)
∑

T∈S:i∈T

ft(T ) +
1

|S|2
( ∑

T∈S:i∈T

ft(T )
)2


Notice that for any T ∈ S such that i ∈ T , the probability that T is sampled in a size n (training) set481

is equal to482 (|S|−1
n−1

)(|S|
n

) =
n

|S| .

1With a similar analysis one could also prove the convergence from L̂n(·) to L(·) with the minimizer of the
ridge regression, which includes λ times an identity matrix in the inverted sample covariance of θ̂n.
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For any two subsets T ̸= T ′, both in S , such that i ∈ T and i ∈ T ′, the probability that T and T ′ are483

both sampled in a size n (training) set is equal to484 (|S|−1
n−1

)(|S|
n

) ·
(|S|−1

n−1

)(|S|
n

) =
n2

|S|2
.

Thus, by taking the expectation over the randomness of the sampled subsets in equation (12) condi-485

tional on ft, we get that486

E
[
E2
i

]
= E

[( 1

n |S| −
1

|S|2
) ∑

T∈S:i∈T

(
ft(T )

)2] ≤ C2

n
,

since we have assumed that the loss function ℓ(·, ·) is bounded from above by an absolute constant C487

and ft is the average loss. Therefore,488

E

[
k∑

i=1

E2
i

]
≤ C2k

n
.

By Markov’s inequality, for any a > 0,489

Pr


√√√√ k∑

i=1

E2
i ≥ a

√
k

n

 ≤ C2

a2
.

Therefore, with probability 1− δ, for any δ > 0, we have that490 ∥∥∥∥vnn − III⊤ E [fff ]

|S|

∥∥∥∥ ≤ Cδ−1/2

√
k

n
. (13)

Next, we use random matrix concentration results to analyze the difference between the indicator491

matrix of the sampled subsets and the indicator matrix of all subsets in S. Denote by492

E =
I⊤
n In
n

− III⊤III
|S| and A =

III⊤III
S .

By the Sherman-Morrison formula (for matrix inversion), we get493 ∥∥∥∥(I⊤
n In
n

)−1

−
(III⊤III

|S|
)−1

∥∥∥∥
2

=
∥∥(E +A)−1 −A−1

∥∥
2

=A−1
(
AE−1 + Idk×k

)−1

=A−1E
(
A+ E

)−1

≤
(
λmin(A)

)−1 · ∥E∥2 ·
(
λmin(A+ E)−1

)
≤ ∥E∥2
λmin(A)(λmin(A)− ∥E∥2)

. (14)

We now use the matrix Bernstein inequality (cf. Theorem 6.1.1 in Tropp [43]) to deal with the spectral494

norm of E. Let495

Xi = 1Si1
⊤
Si

− III⊤III
|S| , for any i = 1, . . . , n.

Let D denote the uniform distribution over S. In expectation over D, we know that E [Xi] = 0, for496

any i = 1, . . . , n. Additionally, ∥Xi∥2 ≤ 2α, since it is a linear combination of indicator vectors497

with α ones. Therefore, for all t ≥ 0,498

Pr [∥E∥2 ≥ t] = Pr

[∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

≥ nt

]
≤ 2k · exp

(
− (nt)2/2

(2α)2n+ (2α)nt/3

)
.
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This implies (with some calculation) that for any δ ≥ 0, with probability at least 1− δ,499

∥E∥2 ≤ 4α · log
(
2kδ−1

)
√
n

. (15)

By applying equation (13) into equation (9) and equation (15) into equation (10), we have shown that500

with probability at least 1− 2δ, for any δ ≥ 0,501 ∥∥∥θ̂n − θ̂|S|

∥∥∥ ≤
∥∥∥vn
n

∥∥∥
2
·
4α · log

(
2kδ−1

)
√
n

+
1(

λmin(A)
)2(

λmin(A)− ∥E∥2
) · Cδ−1/2

√
k

n
.

(16)

For the first part, let zi be the number of subsets Sj among 1 ≤ j ≤ n such that i ∈ Sj , for any502

i = 1, . . . , n. Recall that the loss ℓ(·, ·) is bounded from above by an absolute constant C. Thus,503

∥∥∥vn
n

∥∥∥ ≤ 1

n

√√√√C2 ·
k∑

i=1

z2i ≤ C

n

( k∑
i=1

zi

)
= Cα. (17)

Regarding the minimum eigenvalue of A, notice that the diagonal entry of III⊤III
|S| is equal to

(
k−1
α−1

)
.504

The off diagonal entries of this matrix is equal to
(
k−2
α−2

)
. Thus,505

λmin(A) ≥ 1−
(
k−2
α−2

)(
k−1
α−1

) = 1− α− 1

k − 1
≥ 1− α

k
. (18)

Applying equations (17) and (18) back into equation (16), we conclude that with probability at least506

1− 2δ, θ̂n deviates from θ̂|S| by a rate of
√
k/n:507 ∥∥∥θ̂n − θ̂|S|

∥∥∥ ≤
(
4Cα2 log(2kδ−1) + (1− α/k)−3Cαδ−1/2

)√k

n
.

508

Next, we show the uniform convergence of θ̂|S|. The key observation is that the size of S only509

depends on the number of tasks k. Therefore, one can afford to apply a union bound over S.510

Lemma D.2. In the setting of Theorem 3.1, for any δ > 0, with probability at least 1 − δ, the511

deviation between θ̂|S| and θ⋆ satisfies:512 ∥∥∥θ̂|S| − θ⋆
∥∥∥ ≤ (1− α/k)−1RN (F)

2
+ (1− α/k)−1

√
α log

(
k/δ
)

2N
. (19)

Proof. Based on the definitions of θ̂|S| and θ⋆, we analyze their difference as follows:513 ∥∥∥θ̂|S| − θ⋆
∥∥∥ =

∥∥∥∥(III⊤III
)−1

III⊤(fff − E [fff ]
)∥∥∥∥ (20)

≤
∥∥∥∥√|S|

(
III⊤III

)−1

III⊤
∥∥∥∥
2

· ∥fff − E [fff ]∥√
|S|

=
(
λmin(III⊤III)

)−1/2

· ∥fff − E [fff ]∥√
|S|

≤(1− α)−1 ∥fff − E [fff ]∥√
|S|

. (by equation (18))

For each subset T ∈ S, we will apply a Rademacher complexity based generalization bound to514

analyze the generalization error fffT − E [fffT ]. Recall the Rademacher complexity of F with Nt515

samples from Dt is defined as516

RN (F) = E
D̃t,σ

sup
f∈F

1

N

N∑
j=1

σjf(x
(t)
j )

 .
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By Theorem 5 of Bartlett and Mendelson [5], with probability at least 1− δ, we can get:517

fffT ≤ E [fffT ] +
RN (F)

2
+

√
log
(
1/δ
)

2N
. (21)

Similarly, one can get the result for other direction of the error estimate. With a union bound over all518

subsets T ∈ S, with probability at least 1− δ, we get:519

fffT ≤ E [fffT ] +
RN (F)

2
+

√
α log

(
k/δ
)

2N
, for all T ∈ S, (22)

since log
((

k
α

)
/δ
)
≤ α log(kδ−1). Let z =

√
α log

(
kδ−1

)
/(2N). Applying equation (22) back520

into equation (20), we have shown521 ∥∥∥θ̂|S| − θ⋆
∥∥∥ ≤ (1− α)−1

√√√√ 1

|S|
∑
T∈S

(RN (F)

2
+ z

)2

= (1− α)−1

(RN (F)

2
+ z

)
.

Thus, the proof is complete.522

Based on the result from Lemma D.1 and Lemma D.2, we are now ready to prove our main result.523

Proof of Theorem 3.1. Notice that equation (4) follows by combining equation (8) (from Lemma524

D.1) and equation (19) (from Lemma D.2), together with the condition that α ≤ 1/2.525

To analyze the generalization error of L̂n(θ̂n), we first expand it out as526

L̂n(θ̂n) =
∥∥∥Inθ̂n − f̂

∥∥∥2
=

1

n

∥∥∥∥∥Inθ̂n − Ê
f

[
f̂
]
+ Ê

f

[
f̂
]
− f̂

∥∥∥∥∥
2

=
1

n

∥∥∥∥∥Inθ̂n − Ê
f

[
f̂
]∥∥∥∥∥

2

+
1

n
⟨Inθ̂n − Ê

f

[
f̂
]
, Ê
f

[
f̂
]
− f̂⟩+ 1

n

∥∥∥∥∥Êf
[
f̂
]
− f̂

∥∥∥∥∥
2

. (23)

Based on Lemma D.1, the distance between θ̂n and θ⋆ is at the order of O
(
n−1/2

)
with high527

probability. We will use this result to deal with the first term in equation (23):528

1

n

∥∥∥∥∥Inθ̂n − Ê
f

[
f̂
]∥∥∥∥∥

2

− 1

n

∥∥∥∥∥Inθ⋆ − Ê
f

[
f̂
]∥∥∥∥∥ (24)

=

∣∣∣∣∣ 1n ⟨I⊤
n In, θ̂n(θ̂n)⊤ − θ⋆(θ⋆)⊤⟩ − 2

n
⟨Ê
f

[
f̂
]
, θ̂n − θ⋆⟩

∣∣∣∣∣
≤
∥∥∥∥ 1nI⊤

n In
∥∥∥∥
2

·
∥∥∥θ⋆(θ⋆)⊤ − θ̂n(θ̂n)

⊤
∥∥∥
F
+

2

n

∥∥∥∥∥Êf
[
f̂
]∥∥∥∥∥ · ∥∥∥θ⋆ − θ̂n

∥∥∥ (by triangle inequality)

≤α
∥∥∥θ⋆(θ⋆)⊤ − θ̂n(θ̂n)

⊤
∥∥∥
F
+ 2Cα · e1, (by equations (17) and (4))

where e1 denotes the right hand side of equation (4). In the last step, we used the fact that I⊤
n In/n is529

the average of n rank one matrices, each with spectral norm α, since they have exactly α ones. Next,530 ∥∥∥θ⋆(θ⋆)⊤ − θ̂n(θ̂n)
⊤
∥∥∥
F
=
∥∥∥θ⋆(θ⋆ − θ̂n)

⊤ + (θ⋆ − θ̂n)(θ̂n)
⊤
∥∥∥
F

≤
∥∥∥θ⋆(θ⋆ − θ̂n)

⊤
∥∥∥
F
+
∥∥∥(θ⋆ − θ̂n)(θ̂n)

⊤
∥∥∥
F

(by triangle inequality)

≤
(
∥θ⋆∥+

∥∥∥θ̂n∥∥∥)e1. (by equation (4))
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We show that the norm of θ⋆ and θ̂n are both bounded by a constant factor times
√
k. To see this,531

∥θ⋆∥ =

∥∥∥∥(III⊤III)−1III⊤ E
fff
[fff ]

∥∥∥∥
≤
∥∥∥∥(III⊤III

|S|
)−1

∥∥∥∥
2

·
∥∥∥∥III⊤ Efff [fff ]

|S|

∥∥∥∥
≤ (1− α/k)−1 · C√α (by equation (18) and ℓ(·, ·) ≤ C)

Notice that the spectral norm between III⊤III/ |S| and I⊤
n In/n is bounded by equation (15). Thus,532

with similar steps as above, we can show533 ∥∥∥θ̂n∥∥∥ ≤
(
(1− α/k)−1 +

4α log
(
2kδ−1

)
√
n

)
C
√
k.

To wrap up our analysis above, we have shown that equation (24) is at most534

e3 = α

(
2(1− α/k)−1 +

4α log
(
2kδ−1

)
√
n

)
C
√
α · e1 + 2Cα · e1.

Next, we consider the second term in equation (23). Let e2 be the deviation error indicated in equation535

(22) Thus, every entry of f̂ −Ef̂

[
f̂
]

is at most e2. Besides, each entry of Inθ̂n −Ef̂

[
f̂
]

is less than536

√
α∥θ̂n∥+ C.

Thus, the second term in equation (23) is less than537

e4 = e2

(
√
α
(
(1− α/k)−1 +

4α log
(
2kδ−1

)
√
n

)
C
√
α+ C

)
For the population loss L(θ⋆), notice that538

L(θ⋆) = E
fff

[
1

|S| ∥IIIθ
⋆ − fff∥2

]
= E

fff

[
1

|S|

∥∥∥∥IIIθ⋆ − E
fff
[fff ] + E

fff
[fff ]− fff

∥∥∥∥2
]

=
1

|S|

∥∥∥∥IIIθ⋆ − E
fff
[fff ]

∥∥∥∥2 + 1

|S|

(
E
fff

[∥∥∥∥fff − E
fff
[fff ]

∥∥∥∥2
])

(25)

We know that each entry of IIIθ⋆ − Efff [fff ] is at most (1 − α/k)−1
√
α + C. Thus, by Hoeffding’s539

inequality, with probability at least 1− δ, we have540 ∣∣∣∣∣ 1n
∥∥∥∥∥Inθ⋆ − Ê

f

[
f̂
]∥∥∥∥∥− 1

|S|

∥∥∥∥IIIθ⋆ − E
fff
[fff ]

∥∥∥∥
∣∣∣∣∣ ≤ ((1− α/k)−1

√
α+ C

)√ log
(
δ−1
)

n
. (26)

Lastly, we consider the third term in equation (23), compared with the second term in equation (25).541

For every T ∈ S, let eT = fffT − E [fffT ]. By equation (22), we know that eT is of order O(N−1/2),542

for every T ∈ S. Therefore543 ∣∣∣∣∣ 1n
n∑

i=1

e2Si

∣∣∣∣∣ ≤ (RN (F)

2
+

√
α log(k/δ)

2N

)2
, (27)

which is of order O(N−1). Similarly, the same holds for variance of fff in the second term of equation544

(25). Comparing equations (26) and (23), we have shown that545

L(θ⋆)− L̂n(θ̂n)

≤
(
(1− α/k)−1

√
α+ C + C2

)√ log(δ−1)

n
+ C · e2 + e3 + e4

≲(C + Cα)

(
RN (F) +

√
α log(kδ−1)√

N

)
+
C2α7/2 log

(
2kδ−1

)
+ 8C2α5/2δ−1/2

√
k√

n
.

The above follows by incorporating the definitions of the error terms. Thus, we have completed the546

proof of equation (5). The proof is now finished.547
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D.2 Proof of Theorem 3.2548

Recall that In ∈ {0, 1}n×k is the indicator matrix corresponding to the task indices from the training549

dataset. Given a set of tasks S with size α, denote their feature covariate matrices and label vectors550

as (X1, Y1), (X2, Y2), . . . , (Xα, Yα). With hard parameter sharing [51], we minimize551

ℓ(B) =

α∑
i=1

∥XiB − Yi∥2 . (28)

The minimizer of ℓ(B), denoted as B̂, is equal to the following552

B̂ =

(
α∑

i=1

X⊤
i Xi

)−1( α∑
i=1

X⊤
i Yi

)
.

For isotropic covariates, the loss of using B on the validation set of the target task is equal to553

ft(S) =
∥∥∥B̂ − β(t)

∥∥∥2 +O

(√
p

N

)
.

By solving equation (2), the estimated task model θ̂n is equal to554

θ̂n =
(
I⊤
n In

)−1

vn, (29)

where vn = I⊤
n f̂ ∈ Rk is a vector that satisfies:555

vn(i) =
∑

j: i∈Sj

ft(Sj), for any 1 ≤ i ≤ k.

First we show that θ̂n is approximately a scaling of the vector vn. The key observation is that I⊤
n In556

is approximately an identity matrix plus a constant shift for every task.557

Lemma D.3. In the setting of Theorem 3.2, with probability 1 − δ, for any δ > 0, the following558

holds:559 ∣∣∣∣∣ θ̂n(i)− θ̂n(j)

n
− k

α
· vn(i)− vn(j)

n

∣∣∣∣∣ ≲ log(δ−1k)√
n

, for any 1 ≤ i < j ≤ k. (30)

Proof. we have that Yi = Xiβ
(i) + ϵ(i), where ϵ(i) is a random vector whose entries are sampled560

independently with mean 0 and variance σ2. We have561

ft(S) =

∥∥∥∥∥∥
(

α∑
i=1

X⊤
i Xi

)−1 α∑
i=1

X⊤
i ϵ

(i)

∥∥∥∥∥∥
2

. (31)

For a task i, we know that its coefficient is equal to the i-th entry of562 (I⊤
n In
n

)−1 I⊤
n f̂

n
,

Let Z = I⊤
n In/n. The expectation of Z over the randomness of In satisfies563

E [Z] =
α

k
Idk×k +

α(α− 1)

k(k − 1)
ee⊤,

where e ∈ Rk is the all ones vector. Thus, by the Woodbury matrix identity,564

E
Z
[Z]

−1
=
k

α

(
Idk×k −

k(α− 1)

α(kα− 1)
ee⊤

)
. (32)
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Thus, for any i ̸= j, we observe that565 ∣∣∣∣∣ θ̂n(i)− θ̂n(j)

n
− k

α
· vn(i)− vn(j)

n

∣∣∣∣∣ = ∣∣∣(ei − ej)
⊤(Z−1 − E [Z]

−1 )vn
n

∣∣∣
≤ ∥ei − ej∥ ·

∥∥∥Z−1 − E [Z]
−1
∥∥∥
2
·
∥∥∥vn
n

∥∥∥
≤ 2Cα ·

∥∥∥Z−1 − E [Z]
−1
∥∥∥
2

(by equation (17))

≤ 4α log
(
2kδ−1

)
√
n

2

(1− α/k)2
.

(by equations (14), (15), (18))

The last step follows by applying equations (15) and (18) into equation (14). Thus, we have finished566

the proof of equation (30).567

Second we show that provided n and d are sufficiently large, a separation exists in vn between related568

and unrelated tasks.569

Proof of Theorem 3.2. We calculate vn(i)/n for all i = 1, . . . , k and compare it between a related570

task and an unrelated task. We first compare their expectations over the randomly sampled subsets.571

By equation (13), we get572 ∣∣∣∣∣vn(i)n
− 1

|S|
∑

T∈S:i∈T

ft(T )

∣∣∣∣∣ ≤ Ckδ−1/2

√
n

, and∣∣∣∣∣∣vn(j)n
− 1

|S|
∑

T∈S:j∈T

ft(T )

∣∣∣∣∣∣ ≤ Ckδ−1/2

√
n

.

Therefore, by applying the triangle inequality with the above two results, we get573 ∣∣∣∣vn(i)− vn(j)

n
−
∑

T∈S:i∈T ft(T )−
∑

T∈S:j∈T ft(T )

|S|

∣∣∣∣ ≤ 2Ckδ−1/2

√
n

. (33)

To deal with equation (33), we shall apply a union bound over the sample covariance of every subset574

T in S to show that they are close to their expectation. By Gaussian covariance estimation results575

(e.g., equation (6.12) in Wainwright [46]), for a fixed T ∈ S, we get576 ∣∣∣∣∣∣ 1

md

m∑
j=1

X⊤
ijXij − Idp×p

∣∣∣∣∣∣ ≤ 2

√
p

md
+ 2ϵ+

(√
p

md
+ ϵ

)2

,

with probability at least 1− 2 exp(−mdϵ2/2). With a union bound over all T ∈ S , we have that the577

above holds with probability at least 1− δ for all T ∈ S , with ϵ =
√

2αk log(2kδ−1)/(md). Let ε1578

denote the error term above:579

ε1 = 2

√
p

md
+ 2

√
2α log(2kδ−1)

md
+

(√
p

md
+ ϵ

)2

.

Let uT = 1
md

∑
j∈T X

⊤
j ϵ

(j), for any T ∈ S. Therefore, , one can verify that580 ∣∣∣ft(T )− ∥uT ∥2
∣∣∣ ≤ ((1− ε1)

−2 − 1
)
∥uT ∥2 ≤ 3ε1 ∥uT ∥2 .

Notice that581

E
[
∥uT ∥2

]
= E

 1

(md)2
Tr

∑
j∈T

X⊤
j ε

(j)(ε(j))⊤Xj

 .
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If j is a related task, then the expectation over ε(j) is equal to a2 Id by our assumption. If j is an582

unrelated task, on the other hand, then the expectation over ε(t) is equal to b2 Id. Let s(T ) be equal583

to the number of similar tasks in T . Thus,584

E
[
∥uT ∥2

]
=
p(a2s(T ) + b2(m− s(T )))

m2d
.

To argue about the deviation error of ∥uT ∥2, we use the following two estimates (see, e.g., Vershynin585

[44]), which holds with high probability:586 ∣∣∣(ε(j))⊤XjX
⊤
j ε

(j) − E
[
(ε(j))⊤XjX

⊤
j ε

(j)
]∣∣∣ ≲ p

√
da2, for any j = 1, . . . , k∣∣∣(ε(i))⊤XiX

⊤
j ε

(j)
∣∣∣ ≲ p

√
da2, for any 1 ≤ i < j ≤ k.

Therefore, we get that for any T ∈ S,587 ∣∣∣∥uT ∥2 − E
[
∥uT ∥2

]∣∣∣ ≤ p
√
da2

d2
.

To finish the proof, consider a related task i versus an unrelated task j. Provided that588

(1− 3ε1)
p(a2 − b2)

m2d
≥ (1 + 3ε1)

p
√
da2

d2
+

2Ckδ−1/2

√
n

, (34)

there must exist a threshold that separates all the related tasks from the unrelated tasks. One can589

verify that condition (34) is satisfied when590

n ≳ C2 · k2 · 1

(a2 − b2)2
, and d ≳

( a2

a2 − b2

)2
k4 + k log

(2k
δ

)
+ p.

Set the threshold γ as k/α times any value between the left and right hand side of equation (34).591

Thus, when n and d satisfy the condition above, combined with Lemma D.3, with high probability,592

for any i such that θ̂n(i) < γ, i must be a related task. When θ̂n(j) > γ, i much be a unrelated task.593

Thus, we have finished the proof.594

E Experiment Details595

We describe details that were left out from Section C. First, we describe the additional experimental596

setup and the implementation specifics. Second, we present results to further validate the sample597

complexity of task modeling. Third, we provide the experimental results omitted from Section C.598

E.1 Additional experimental setup599

Experimental setup for predicting higher-order transfers. Figure 2 (Top) measures the accuracy600

of task modeling in predicting whether combining a set of source tasks S with a primary target task601

leads to a positive transfer to the target task. We measure the positive transfer as whether training602

with the set of tasks S improves single task learning of the target task. Figure 2 (Bottom) measures603

the correlation between multitask prediction losses ft(S) and task model predictions g(S) as the size604

of subset |S| varies. For previous approaches [42, 18], we use the higher-order approximation that605

averages first-order task affinity in a set S as the prediction score g(S). Both figures are studied on606

the target task HI with fifty source tasks.607

Figure 3 measures the transferability from a source task to a target task in multitask learning. For each608

figure, we fix a target task and vary the source task. We measure the transferability as the difference609

between: (i) the multitask prediction result from a source and the target task averaged over multiple610

subsets containing the source task; (ii) single task learning with the target task alone. For both, we611

measure the worst-group accuracy of the target task.612

Figure 1 (Top) provides the convergence of task modeling on binary prediction tasks. We use four613

target tasks, including HI, LA, MN, and NM. Figure 1 (Bottom) provides the convergence of task614

modeling on text datasets. We collect twenty-five tasks from several natural language processing615

benchmarks, including GLUE [48], SuperGLUE [47], TweetEval [3], and ANLI [30]. The collection616
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Table 6: Dataset description and statistics of twenty-five text datasets.

Task Benchmark Train. Set Dev. Set Task Category Metrics

CoLA GLUE 8.5k 1k Grammar acceptability Matthews corr.
MRPC GLUE 3.7k 1.7k Sentence Paraphrase Acc./F1
RTE GLUE 2.5k 3k Natural language inference Acc.
SST-2 GLUE 67k 1.8k Sentence classification Acc.
STS-B GLUE 7k 1.4k Sentence similarity Pearson/Spearman corr.
WNLI GLUE 634 146 Natural language inference Acc.
BoolQ SuperGLUE 9.4k 3.3k Question answering Acc.
CB SuperGLUE 250 57 Natural language inference Acc./F1
COPA SuperGLUE 400 100 Question answering Acc.
MultiRC SuperGLUE 5.1k 953 Question answering F1a/EM
WiC SuperGLUE 6k 638 Word sense disambiguation Acc.
WSC SuperGLUE 554 104 Coreference resolution Acc.
Emoji TweetEval 45k 5k Sentence classification Macro-averaged F1
Emotion TweetEval 3.2k 374 Sentence classification Macro-averaged F1
Hate TweetEval 9k 1k Sentence classification Macro-averaged F1
Irony TweetEval 2.9k 955 Sentence classification F1(i)

Offensive TweetEval 12k 1.3k Sentence classification Macro-averaged F1
Sentiment TweetEval 45k 2k Sentence classification Macro-averaged Recall
Stance (Abortion) TweetEval 587 66 Sentence classification Avg. of F1(a) and F1(f)

Stance (Atheism) TweetEval 461 52 Sentence classification Avg. of F1(a) and F1(f)

Stance (Climate) TweetEval 355 40 Sentence classification Avg. of F1(a) and F1(f)

Stance (Feminism) TweetEval 597 67 Sentence classification Avg. of F1(a) and F1(f)

Stance (H. Clinton) TweetEval 620 69 Sentence classification Avg. of F1(a) and F1(f)

ANLI (A1) ANLI 1.7k 1k Natural language inference Acc.
ANLI (A2) ANLI 4.5k 1k Natural language inference Acc.

spans numerous categories of tasks, including sentence classification, natural language inference,617

and question answering. Table 6 shows the statistics of the twenty-five tasks. We choose four target618

tasks, including STS-B, RTE, WNLI, and Emotion. We use BERT-Mini as the encoder. The encoder619

module is shared for all tasks, and a separate predictor is assigned for each task. We construct the620

task models using n = 200 sampled sets with |S| = 5 out of k = 24 source tasks. We construct a621

holdout set of size 50. We set the prediction loss ft as the loss of task t.622

The abbreviation of each US state follows the convention. We include the ones we have referred to623

for reference: California (CA), Hawaii (HI), Kansas (KS), Louisiana (LA), Minnesota (MN), Nevada624

(NV), New Jersey (NJ), New Mexico (NM), Rhode Island (RI), and South Carolina (SC).625

Implementation details. We report the results for baselines by running the official open-sourced626

implementations. We describe the hyperparameters for baselines as follows. For higher-order627

approximation [42] and task affinity grouping [18], we compute the task affinity scores between628

source tasks and target tasks. Then, we select m source tasks as the tasks with the largest task629

affinity scores for each target task. m is searched between 0 and the number of the source tasks.630

For gradient decomposition [14], we search the number of decomposition basis and auxiliary task631

gradient direction parameters, following the search space in [14]. For target-aware weighted training632

[12], we search the task weight learning rate in [10−2, 102]. For our approach (cf. Algorithm 1),633

we use the threshold γ in the range of [−0.2, 0.2]. The hyperparameters are tuned on the validation634

dataset by grid search. For each target task, we search 10 times over the hyperparameter space. We635

use the same number of trials in tuning hyperparameters for baselines.636

E.2 Results on the convergence of task modeling637

Section 3.1 presents that the sample complexity for task models to converge is nearly linear to the638

number of tasks. We further validate the convergence of task modeling on ten more target tasks,639

including five binary classification tasks and five text classification tasks with noisy supervision640

sources. We measure the MSE between task model predictions and empirically training results on641

the holdout set. The experimental setup of is described in Section C.1. Figure 5 shows the results.642

We observe similar results as in Figure 1 that the MSE of task models consistently converges to the643

variance of the prediction loss. Hence, we conclude that the convergence of task modeling generally644

holds for various datasets.645
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(a) Target task: KS
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(b) Target task: NJ

0 100 200 300 400

n

0.0

0.5

1.0

1.5

2.0

M
S

E
(H

ol
d

ou
t)

Spearman Corr.: 0.77

MSE

var(ft)

(c) Target task: NV
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(d) Target task: SC
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(e) Target task: RI
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(f) Target task: Chemprot
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(g) Target task: TREC
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(h) Target task: Semeval

Figure 5: The MSE of task modeling consistently converges close to the variance of ft for various
tasks. (a-e) Binary classification tasks. (f-h) Text classification tasks with noisy supervision sources.

Demographic parity HI KS LA NJ NV Avg. Rank

Empirical risk minimization 12.95±1.76 4.09±1.15 26.30±1.21 26.06±0.53 12.62±1.99 6.3
Hard parameter sharing 8.25±1.31 4.06±1.17 21.24±0.66 27.73±0.94 13.35±0.51 5.0
Higher-order approx. [42] 8.63±2.95 6.15±3.00 22.83±0.53 26.14±0.29 13.15±0.64 5.6
Gradient similarity [18] 9.39±1.45 3.26±1.21 20.61±0.55 25.51±1.17 12.50±1.10 3.5
Task affinity grouping [18] 8.93±2.35 3.97±0.61 20.72±0.86 25.21±0.68 12.24±0.82 2.8
Weighted training [12] 18.12±1.80 4.84±0.71 25.77±0.94 25.66±0.38 12.40±0.74 6.0
Gradient decomposition [14] 11.98±2.55 2.40±0.91 27.38±0.93 26.10±0.55 13.29±0.40 5.6

Task modeling (Alg. 1) 7.63±2.12 1.06±0.62 17.25±1.13 24.96±0.63 11.34±1.31 1.0

Equality of opportunity HI KS LA NJ NV

Empirical risk minimization 9.86±1.29 1.43±3.62 29.64±3.24 22.43±1.02 13.61±3.67 6.0
Hard parameter sharing 3.86±0.84 2.03±2.11 21.26±1.35 24.43±1.49 12.14±2.21 5.0
Higher-order approx. [42] 3.55±2.85 4.34±3.18 22.88±1.72 22.98±1.18 12.92±2.23 5.3
Gradient similarity [18] 3.96±0.60 1.72±1.94 20.89±0.92 21.48±1.79 12.78±2.92 3.6
Task affinity grouping [18] 4.27±0.25 1.18±0.97 20.66±1.43 21.89±0.69 11.66±1.58 3.0
Weighted training [12] 4.21±2.25 1.40±2.14 30.38±2.17 23.26±0.30 11.77±1.01 5.6
Gradient decomposition [14] 3.18±4.92 6.01±2.47 32.31±0.86 22.83±1.01 15.48±1.17 6.1

Task modeling (Alg. 1) 0.24±1.32 0.21±1.34 14.14±2.32 21.48±0.90 9.65±3.49 1.0

Table 7: Violation of two fairness measures (demographic parity and equality of opportunity) on six
binary prediction tasks with tabular features, averaged over ten random seeds.

E.3 Omitted results from Section C646

Results for improving fairness measures. We show that task modeling is applicable to var-647

ious performance metrics for capturing task affinity. Besides the average performance and648

worst-group performance discussed in Section C.3, we consider two fairness measures: de-649

mographic parity and equal opportunity [15]. The demographic parity measure is defined as:650

|Pr[ŷ = 1 | g = black]− Pr[ŷ = 1 | g = white]|. This measures the difference of the positive rates651

between the white and African American demographic groups. The equality of opportunity measure652

is defined as: |Pr[ŷ = 1 | y = 1, g = black]− Pr[ŷ = 1 | y = 1, g = white]|. This measures the dif-653

ference of the true positive rates between the two groups. We consider the binary classification tasks654

with multiple subpopulation groups. Table 7 shows the comparative results.655

First, similar to the worst-group accuracy results, we find that multitask approaches (including ours656

and previous methods) decrease the violation of both fairness measures compared to ERM, suggesting657

the benefit of data augmentation. Second, our approach consistently reduces both fairness measure658

violations more by 1.26% and 2.31% on average than previous multitask learning approaches,659

respectively.660
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Varying the number of sampled sets n. We study how the number of sampled sets affect the661

selected task in the constructed task models. We measure the effect by comparing the 10 tasks with662

the smallest coefficients estimated from n = 100, 200, 400 subsets on two target tasks. We observe663

that using 100 and 200 subsets identifies 7 and 9 the same source tasks as using 400, respectively.664

Thus, we conclude that task selection results remain stable to the number of sampled sets.665

We report the selected tasks with different numbers of sampled sets in the following. On target task666

HI, with 400 subsets, the ten tasks with the smallest task model coefficients are {CA NY TX FL PA667

IL OH NJ MI MA}. Using 200 subsets selects {CA NY TX FL PA IL OH NJ MI MA}. Using 100668

subsets selects {CA TX NY PA OH FL NJ IL IN CO}. On target task LA, with 400 subsets, the ten669

tasks with the smallest task model coefficients are {CA TX NY FL IL GA PA MI NJ VA}. Using 200670

subsets selects {CA TX NY FL IL PA NJ GA MI NC}. Using 100 subsets selects {CA NY TX FL IL671

NC GA IN CO PA}.672

Runtime results. We report the GPU hours of contructing task models for each of the eleven target673

tasks in Table 3 and 4. Dataset (GPU hours) are listed in the following: Youtube (4.0), TREC (37.0),674

CDR (55.4), Chemprot (68.2), Semeval (85.9), HI (42.4), KS (44.0), LA (49.9), NJ (47.6), NV (43.7),675

SC (50.2).676
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