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ABSTRACT

Batch normalization (BatchNorm) is an effective yet poorly understood technique
for neural network optimization. It is often assumed that the degradation in
BatchNorm performance to smaller batch sizes stems from it having to estimate
layer statistics using smaller sample sizes. However, recently, Ghost normaliza-
tion (GhostNorm), a variant of BatchNorm that explicitly uses smaller sample
sizes for normalization, has been shown to improve upon BatchNorm in some
datasets. Our contributions are: (i) three types of GhostNorm implementations
are described, two of which employ BatchNorm as the underlying normalization
technique, (ii) we uncover a source of regularization that is unique to GhostNorm,
and not simply an extension from BatchNorm, and visualise the difference in their
loss landscapes, (iii) we extend GhostNorm and introduce a new type of normal-
ization layer called Sequential Normalization (SeqNorm), (iv) we compare both
GhostNorm and SeqNorm against BatchNorm alone as well as with other regu-
larisation techniques, (v) for both GhostNorm and SeqNorm, we report superior
performance over state-of-the-art methodologies on CIFAR–10, CIFAR–100, and
ImageNet data sets.

1 INTRODUCTION

The effectiveness of Batch Normalization (BatchNorm), a technique first introduced by Ioffe &
Szegedy (2015) on neural network optimization has been demonstrated over the years on a variety
of tasks, including computer vision (Krizhevsky et al., 2017; Huang et al., 2016; He et al., 2015),
speech recognition (Graves et al., 2013), and other (Sutskever et al., 2014; Silver et al., 2016; Mnih
et al., 2015). BatchNorm is typically embedded at each neural network (NN) layer either before or
after the activation function, normalizing and projecting the input features to match a Gaussian-like
distribution. Consequently, the activation values of each layer maintain more stable distributions
during NN training which in turn is thought to enable faster convergence and better generalization
performances (Ioffe & Szegedy, 2015; Santurkar et al., 2018; Bjorck et al., 2018).

Despite the wide adoption and practical success of BatchNorm, its underlying mechanics within the
context of NN optimization has yet to be fully understood. Initially, Ioeffe and Szegedy suggested
that it came from it reducing the so-called internal covariate shift (Ioffe & Szegedy, 2015). At a
high level, internal covariate shift refers to the change in the distribution of the inputs of each NN
layer that is caused by updates to the previous layers. This continual change throughout training
was conjectured to negatively affect optimization (Ioffe & Szegedy, 2015; Santurkar et al., 2018).
However, recent research disputes that with compelling evidence that demonstrates how BatchNorm
may in fact be increasing internal covariate shift (Santurkar et al., 2018). Instead, the effectiveness
of BatchNorm is argued to be a consequence of a smoother loss landscape (Santurkar et al., 2018).

Following the effectiveness of BatchNorm on NN optimization, a number of different normalization
techniques have been introduced (Ioffe, 2017; Lei Ba et al., 2016; Qiao et al., 2019; Wu & He, 2018;
Ulyanov et al., 2016). Their main inspiration was to provide different ways of normalizing the ac-
tivations without being inherently affected by the batch size. In particular, it is often observed that
BatchNorm performs worse with smaller batch sizes (Ioffe, 2017; Wu & He, 2018; Yan et al., 2020).
This degradation has been widely associated to BatchNorm computing poorer estimates of mean and
variance due to having a smaller sample size. However, recent demonstration of the effectiveness of
GhostNorm comes in antithesis with the above belief (Summers & Dinneen, 2020). GhostNorm ex-
plicitly divides the mini–batch into smaller batches and normalizes over them independently (Hoffer
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et al., 2017). Nevertheless, when compared to other normalization techniques (Ioffe, 2017; Lei Ba
et al., 2016; Qiao et al., 2019; Wu & He, 2018; Ulyanov et al., 2016), the adoption of GhostNorm
has been rather scarce, and narrow to large batch size training regimes (Summers & Dinneen, 2020).

The contributions of this paper are as follows: (i) Outlining three different ways of using Ghost-
Norm as a normalization layer, (ii) Identifying a source of regularization in GhostNorm that is
fundamentally different from BatchNorm, (iii) Visualizing the loss landscape of GhostNorm un-
der vastly different experimental setups, and observing that GhostNorm consistently decreases the
smoothness of the loss landscape, especially on the later epochs of training, (iv) Introducing a new
normalization layer called SeqNorm, (v) Comparing GhostNorm and SeqNorm with other regular-
ization methods, to first investigate how both stand out against established regularization techniques
but to also observe whether there are any synergies, (vi) Showcasing consistently better general-
ization performances on CIFAR–10, CIFAR–100, and ImageNet when BatchNorm is replaced with
either GhostNorm or SeqNorm, with the latter even surpassing the current SOTA on CIFAR–100
and ImageNet.

1.1 RELATED WORK

Ghost Normalization is a technique originally introduced by Hoffer et al. (2017). Over the years,
the primary use of GhostNorm has been to optimize NNs with large batch sizes and multi-
ple GPUs (Summers & Dinneen, 2020). However, when compared to other normalization tech-
niques (Ioffe, 2017; Lei Ba et al., 2016; Qiao et al., 2019; Wu & He, 2018; Ulyanov et al., 2016),
the adoption of GhostNorm has been rather scarce.

Closest in spirit to the present work is the recent research by Summers & Dinneen (2020) who have
experimented with GhostNorm on both small and medium batch size training regimes.Summers &
Dinneen (2020) tuned the number of groups within GhostNorm (see section 2.1) on CIFAR–100,
Caltech–256, and SVHN, and reported positive results on the first two data sets. More results are
reported on other data sets through transfer learning. However, the use of other new optimization
methods confounds the attribution of the observed improvement.

The closest line of work to SeqNorm is, again, found in the work of Summers & Dinneen (2020).
Therein they employ a normalization technique which although at first glance may appear similar
to SeqNorm, at a fundamental level, is rather different. This stems from the vastly different goals
between our works, i.e. Summers & Dinneen (2020) try to increase the available information when
small batch sizes are used (Summers & Dinneen, 2020), whereas we strive to improve BatchNorm
in the more general setting. At a high level, where SeqNorm performs GroupNorm and GhostNorm
sequentially, their normalization method applies both simultaneously. At a fundamental level, the
latter embeds the stochastic nature of GhostNorm (see section 2.2) into that of GroupNorm, thereby
potentially disrupting the learning of channel grouping within NNs. Switchable normalization is
also of some relevance to SeqNorm as it enables the NN to learn which normalization techniques to
employ at different layers (Luo et al., 2019). However, similar to the previous work, simultaneously
applying different normalization techniques has a fundamentally different effect than SeqNorm.

Related to our work is also research geared towards exploring the effects of BatchNorm on opti-
mization (Bjorck et al., 2018; Santurkar et al., 2018; Kohler et al., 2019). Finally, of some rele-
vance is also the large body of work that exists on improving BatchNorm at the small batch training
regime (Ioffe, 2017; Wu & He, 2018; Luo et al., 2020; Yan et al., 2020).

2 METHODOLOGY

2.1 FORMULATION

Given a fully-connected or convolutional neural network, the parameters of a typical layer l with
normalization, Norm, are the weights W l as well as the scale and shift parameters γl and βl. For
brevity, we omit the l superscript. Given an input tensor X, the activation values A of layer l are
computed as:

A = g(Norm(X�W )⊗ γ + β) (1)
where g(·) is the activation function, � corresponds to either matrix multiplication or convolution
for fully-connected and convolutional layers respectively, and ⊗ describes an element-wise multi-
plication.
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Figure 1: The input tensor is divided into a number of line (1D) or plane (2D) slices. Each normal-
ization technique slices the input tensor differently and each slice is normalized independently of
the other slices. SeqNorm sequentially slices and normalizes the tensor as GroupNorm and then as
GhostNorm.

Most normalization techniques differ in how they transform the product X�W . Let the product be
a tensor with (M,C,F ) dimensions where M is the so-called mini–batch size, or just batch size, C
is the channels dimension, and F is the spatial dimension.

In BatchNorm, the given tensor is normalized across the channels dimension. In particular, the mean
and variance are computed across C number of slices of (M,F ) dimensions (see Figure 1) which
are subsequently used to normalize each channel c ∈ C independently. In LayerNorm, statistics are
computed over M slices, each having the dimension (C,F ), normalizing the values of each data
sample m ∈ M independently. InstanceNorm normalizes the values of the tensor over both M and
C, i.e. computes statistics across M × C slices of F dimension.

GroupNorm can be thought as an extension to LayerNorm wherein the C dimension is divided
into GC number of groups, i.e. (M,GC ,

C /GC
, F ). Statistics are calculated over M × GC

slices of (C/GC
, F ) dimensions. Similarly, GhostNorm can be thought as an extension to Batch-

Norm, wherein the M dimension is divided into GM groups, normalizing over C × GM slices
of (M/GM

, F ) dimensions. Both GC and GM are hyperparameters that can be tuned based on a
validation set. All of the aforementioned normalization techniques are illustrated in Figure 1.

SeqNorm employs both GroupNorm and GhostNorm in a sequential manner. Initially, the input
tensor is divided into (M,GC ,

C /GC
, F ) dimensions, normalizing acrossM×GC number of slices,

i.e. same as GroupNorm. Then, once the GC and C/GC
dimensions are collapsed back together, the

input tensor is divided into (GM ,
M /GM

, C, F ) dimensions for normalizing over C ×GM slices of
(M/GM

, F ) dimensions, i.e. same as GhostNorm.

Any of the slices described above is treated as a set of values S with one dimension. The mean
and variance of S are computed in the traditional way (see Equation 2). The values of S are then
normalized as shown below.

µ =
1

M

∑
x∈S

x and σ2 =
1

M

∑
x∈S

(x− µ)2 (2)
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∀x ∈ S, x =
x− µ√
σ2 + ε

(3)

Once all slices are normalized, the output of theNorm layer is simply the concatenation of all slices
back into the initial tensor shape.

2.2 THE EFFECTS OF GHOST NORMALIZATION

There is only one other published work which has investigated the effectiveness of Ghost Nor-
malization for small and medium mini-batch sizes (Summers & Dinneen, 2020). Therein, the au-
thors hypothesise that GhostNorm offers stronger regularization than BatchNorm as it computes the
normalization statistics on smaller sample sizes (Summers & Dinneen, 2020). In this section, we
support that hypothesis by providing insights into a particular source of regularization, unique to
GhostNorm, that stems from normalizing groups of activations during a forward pass.

Consider as an example the tuple X with (35, 39, 30, 4, 38, 26, 27, 19) values which can be thought
as an input tensor with (8, 1, 1) dimensions. Given to a BatchNorm layer, the output is the nor-
malized version X̄ with values (0.7, 1.1, 0.3,−2.2, 1.0,−0.1,−0.02,−0.8). Note how although the
values have changed, the ranking order of the activation values has remained the same, e.g. the
2nd value is larger than the 5th value in both X (39 > 38) and X̄ (1.1 > 1.0). More formally, the
following holds true:

Given n-tuples X = (x0, x1, ..xn) and X̄ = (x̄0, x̄1, ..., x̄n),
∀i, j ∈ I, x̄i > x̄j ⇐⇒ xi > xj

x̄i < x̄j ⇐⇒ xi < xj
x̄i = x̄j ⇐⇒ xi = xj

(4)

On the other hand, given X to a GhostNorm layer with GM = 2, the output X̄ is
(0.6, 0.9, 0.2,−1.7, 1.5,−0.2,−0.07,−1.2). Now, we observe that after normalization, the 2nd
value has become much smaller than the 5th value in X̄ (0.9 < 1.5). Where BatchNorm preserves
the ranking order, GhostNorm can modify the importance of each sample, and hence alter the course
of optimization. Our experimental results demonstrate how GhostNorm improves upon BatchNorm,
supporting the hypothesis that the above type of regularization can be beneficial to optimization.
Note that for BatchNorm the condition in Equation 4 only holds true across the M × F dimension
of the input tensor whereas for GhostNorm it cannot be guaranteed for any dimension.

GhostNorm to BatchNorm One can argue that the same type of regularization can be found in
BatchNorm over different mini–batches, e.g. given [35, 39, 30, 4] and [38, 26, 27, 19] as two different
mini–batches. However, GhostNorm introduces the above during each forward pass rather than
between forward passes. Hence, it is a regularization that is embedded during learning (GhostNorm),
rather than across learning (BatchNorm).

GhostNorm to GroupNorm Despite the visual symmetry between GhostNorm and GroupNorm,
there is one major difference. Grouping has been employed extensively in classical feature engi-
neering, such as SIFT, HOG, and GIST, wherein independent normalization is often performed over
these groups (Wu & He, 2018). At a high level, GroupNorm can be thought as motivating the net-
work to group similar features together (Wu & He, 2018). However, for GhostNorm, this would not
be possible due to random sampling, and random arrangement of the data within each mini–batch.
Therefore, we hypothesise that the effects of these two normalization techniques could be combined
for their benefits to be accumulated. Specifically, we propose SeqNorm, a normalization technique
that employs both GroupNorm and GhostNorm in a sequential manner.

2.3 IMPLEMENTATION1

Ghost Normalization The direct approach of implementing GhostNorm is shown in Appendix
Figure 4. Although the exponential moving averages are omitted for brevity, it is worth mentioning

1The implementations of GhostNorm and SeqNorm layers will be provided in a public repository.
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that they were accumulated in the same way as BatchNorm. In addition to the above direct im-
plementation, GhostNorm can be effectively employed while using BatchNorm as the underlying
normalization technique.

When the desired batch size exceeds the memory capacity of the available GPUs, practitioners of-
ten resort to the use of accumulating gradients. That is, instead of having a single forward pass
with M examples through the network, nfp number of forward passes are made with M/nfp

ex-
amples each. Most of the time, gradients computed using a smaller number of training examples,
i.e. M/nfp

, and accumulated over a number of forward passes nfp are identical to those computed
using a single forward pass of M training examples. However, it turns out that when BatchNorm is
employed in the neural network, the gradients can be substantially different for the above two cases.
This is a consequence of the mean and variance calculation (see equation 2) since each forwarded
smaller batch of M/nfp

data will have a different mean and variance than if all M examples were
present. Accumulating gradients with BatchNorm can thus be thought as an alternative way of using
GhostNorm with the number of forward passes nfp corresponding to the number of groups GM . A
PyTorch implementation of accumulating gradients is shown in Appendix Figure 5.

Finally, the most popular implementation of GhostNorm via BatchNorm, albeit typically uninten-
tional, comes as a consequence of using multiple GPUs. Given ng GPUs and M training examples,
M/ng examples are forwarded to each GPU. If the BatchNorm statistics are not synchronized across
the GPUs, often the case for image classification, then ng corresponds to the number of groups GM .

A practitioner who would like to use GhostNorm should employ the implementation shown in Fig-
ure 4. Nevertheless, under the discussed circumstances, one could explore GhostNorm through the
use of the other implementations.

Sequential Normalization The implementation of SeqNorm is straightforward since it applies
GroupNorm, a widely implemented normalization technique, and GhostNorm, for which we have
discussed three possible implementations, in a sequential manner.

3 EXPERIMENTS

In this section, we first strive to take a closer look into GhostNorm by visualizing the smoothness
of the loss landscape during training; a component which has been described as the primary rea-
son behind the effectiveness of BatchNorm. Then, we conduct a number of ablation experiments
comparing both GhostNorm and SeqNorm against with other regularization approaches. Finally,
we evaluate the effectiveness of both GhostNorm and SeqNorm on the standard image classification
data sets of CIFAR–10, CIFAR–100, and ImageNet. Note that in all of our experiments, the small-
est M/GM

we employ for both SeqNorm and GhostNorm is 4. A ratio of 1 would be undefined for
normalization, whereas a ratio of 2 results in large information corruption, i.e. all activations are
reduced to either 1 or −1 values.

3.1 LOSS LANDSCAPE VISUALISATION

Loss landscape We visualize the loss landscape during optimization on MNIST and CIFAR–10
using an approach that was described by Santurkar et al. (Santurkar et al., 2018). Each time the
network parameters are to be updated, we walk towards the gradient direction and compute the loss
at multiple points. This enable us to visualise the smoothness of the loss landscape by observing how
predictive the computed gradients are. In particular, at each step of updating the network parameters,
we compute the loss at a range of learning rates, and store both the minimum and maximum loss.
Implementation details are provided in the Appendix.

For both data sets and networks, we observe that the smoothness of the loss landscape deteriorates
when GhostNorm is employed. In fact for MNIST, as seen in Figure 2, the loss landscape of Ghost-
Norm bears closer resemblance to our baseline which did not use any normalization technique. For
CIFAR–10, this is only observable towards the last epochs of training. In spite of the above obser-
vation, we have consistently witness better generalization performances with GhostNorm in almost
all of our experiments, even at the extremes whereinGM is set to 128, i.e. only 4 samples per group.

Our experimental results challenge the often established correlation between a smoother loss land-
scape and a better generalization performance (Santurkar et al., 2018; Qiao et al., 2019). Although
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Figure 2: Comparison of the loss landscape on MNIST between BatchNorm, GhostNorm, and the
baseline.

Figure 3: Comparison of the loss landscape on CIFAR–10 between BatchNorm, GhostNorm, and
the baseline.
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Table 1: Results on CIFAR–100. For SeqNorm, we only show the best results for each GC . Both
validation and testing performances are averaged over two different runs.

Validation accuracy Testing accuracy
BatchNorm 80.6± 0.2% 82.1± 0.2%
Noisy BatchNorm 80.8± 0.1% 82.0± 0.3%
GhostNorm (GM = 2) 80.9± 0.1% -
GhostNorm (GM = 4) 81.2± 0.1% -
GhostNorm (GM = 8) 81.4± 0.5% 82.8± 0.6%
GhostNorm (GM = 16) 80.3± 0.5% -
SeqNorm (GC = 1, GM = 4) 82.3± 0.1% -
SeqNorm (GC = 2, GM = 4) 82.4± 0.2% -
SeqNorm (GC = 4, GM = 8) 82.5± 0.1%82.5± 0.1%82.5± 0.1% 83.8± 0.04%83.8± 0.04%83.8± 0.04%
SeqNorm (GC = 8, GM = 8) 82.4± 0.2% -
SeqNorm (GC = 16, GM = 8) 82.3± 0.3% -
BatchNorm w/ RandAugment 81.4± 0.0% 82.9± 0.2%
GhostNorm w/ RandAugment 82.3± 0.1% 83.5± 0.1%
SeqNorm w/ RandAugment 82.4± 0.2% 83.8± 0.3%83.8± 0.3%83.8± 0.3%

beyond the scope of our work, a theoretical analysis of the implications of GhostNorm when com-
pared to BatchNorm could potentially uncover further insights into the optimization mechanisms of
both normalization techniques.

3.2 IMAGE CLASSIFICATION

CIFAR–100 Initially, we turn to CIFAR–100, and tune the hyperparameters of both GhostNorm
and SeqNorm in a grid-search fashion. The results are shown in Table 1. We also examine a noisy
version of BatchNorm wherein we inject Gaussian noise on the activations just before normaliza-
tion. Finally, for all normalization layers, we also train models that employ dropout as well as
RandAugment (Cubuk et al., 2019). All of the aforementioned regularization techniques were tuned
as described in Appendix.

Both GhostNorm and SeqNorm improve upon the BatchNorm baseline by a large margin (+0.7%
and +1.7% respectively). On the other hand, noisy BatchNorm does not improve the generalization
performance. Models with dropout are omitted since they fail to provide any improvement on the
validation set over the baselines. RandAugment substantially improves the BatchNorm (+0.9%) and
GhostNorm models (+0.7%), but fails to benefit models with SeqNorm. Despite the lack of synergy
with RandAugment, it is important to note that SeqNorm still manages to surpass the current SOTA
performance on CIFAR–100 by 0.5% (Cubuk et al., 2019). These results support our hypothesis that
sequentially applying GhostNorm and GroupNorm layers can have an additive effect on improving
NN optimization.

However, the grid–search approach to tuningGC andGM of SeqNorm can be rather time consuming
(time complexity: Θ(GC ×GM )). Hence, we attempt to identify a less demanding hyperparameter
tuning approach. The most obvious, and the one we actually adopt for the next experiments, is to
sequentially tune GM and GC . In particular, we find that first tuning GM , then selecting the largest
gM ∈ GM for which the network performs well (amongst similarly performing models, select the
one with the lowest variance), and finally tuning GC with gM to be an effective approach (time
complexity: Θ(GC + GM )). In other words, for tuning the hyperparameters of SeqNorm, one first
tunes the hyperparameter of GhostNormGM , and then the hyperparameter of GroupNormGC while
keeping GM constant. Note that by following this approach on CIFAR-100, we still end up with the
same best SeqNorm, i.e. GC = 4 and GM = 8.

CIFAR–10 As the first step, we tune GM for GhostNorm. We observe that for GM ∈ (2, 4, 8),
the network performs similarly on the validation set at ≈ 96.6% accuracy. We choose GM = 4 for
GhostNorm since it exhibits slightly higher accuracy.

Based on the tuning strategy described in the previous section, for SeqNorm, we adopt GM = 8
(lowest variance) and tune GC for values between 1 and 16, inclusively. Although the network
performs similarly at ≈ 96.8% accuracy for GC ∈ (1, 8, 16), we choose GC = 16 as it achieves
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Table 2: Results on CIFAR–10 and ImageNet data sets. Both validation and testing performances
of CIFAR–10 are averaged over two different runs. For ImageNet, each model is evaluated on the
conventional validation set, as well as on three newly released test sets Recht et al. (2019).

Validation accuracy Testing accuracy
CIFAR–10
BatchNorm 96.6± 0.1% 97.1± 0.05%
GhostNorm (GM = 4) 96.7± 0.2% 97.3± 0.1%
SeqNorm (GC = 16, GM = 8) 96.8± 0.1%96.8± 0.1%96.8± 0.1% 97.4± 0.2%97.4± 0.2%97.4± 0.2%
ImageNet
BatchNorm 71.2± 0.01% 67.0± 6.9%
GhostNorm (GM = 4) 71.6± 0.1% 67.4± 6.7%
SeqNorm (GC = 4, GM = 4) 72.3± 0.2%72.3± 0.2%72.3± 0.2% 68.1± 6.8%68.1± 6.8%68.1± 6.8%

slightly higher accuracy than the rest. Using the above configuration, SeqNorm is able to match the
current SOTA on the testing set (Cubuk et al., 2019), yet as with CIFAR–100 without the employ-
ment RandAugment.

ImageNet We first train GhostNorm models with GM = (2, 4, 8, 16, 32), and find that GM = 4
achieves the best validation accuracy (69.2%). SeqNorm with GC = 4 (and GM = 4) achieves the
best performance (69.8%) out of (2, 4, 8, 16, 32, 64) GC values. BatchNorm models only achieve
68.3% top1 accuracy, 0.9% lower than GhostNorm, and 1.5% lower than SeqNorm. Following
hyperparameter tuning, the models are trained for more epochs (250 vs 50) and re-evaluated on the
validation set. The difference in performance between the normalization layers is consistent with
all the previous results, i.e. the highest is SeqNorm (72.3%), then GhostNorm (71.6%), and finally
BatchNorm (71.2%).

In addition to the original ImageNet validation set, we also evaluate our models on three recently
released test sets for ImageNet (Recht et al., 2019). Without any further retraining (i.e. on the
validation set), SeqNorm is able to substantially surpass the reproduced top1 accuracy of BatchNorm
by 1.5% while GhostNorm also improves the accuracy by 0.8%.

4 CONCLUSION

It is generally believed that the cause of performance deterioration of BatchNorm with smaller batch
sizes stems from it having to estimate layer statistics using smaller sample sizes (Ioffe, 2017; Wu &
He, 2018; Yan et al., 2020). In this work we challenged this belief by demonstrating the effective-
ness of GhostNorm on a number of different networks, learning policies, and data sets. For instance,
when using super–convergence on CIFAR–10, GhostNorm performs better than BatchNorm, even
though the former normalizes the input activations using 4 samples whereas the latter uses all 512
samples. By providing novel insight on the source of regularization in GhostNorm, and by introduc-
ing a number of possible implementations, we hope to inspire further research into GhostNorm.

Moreover, based on the understanding developed while investigating GhostNorm, we introduce Se-
qNorm and follow up with empirical analysis. Surprisingly, SeqNorm not only surpasses the perfor-
mances of BatchNorm and GhostNorm, but even meets or surpasses current SOTA methodologies
on CIFAR–10, CIFAR–100, and ImageNet (Cubuk et al., 2019; Cubuk et al., 2019; Recht et al.,
2019). Finally, we also describe and validate a hyperparameter tuning strategy for SeqNorm that
provides a faster alternative to the traditional grid–search approach.
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A APPENDIX

A.1 GHOSTNORM IMPLEMENTATIONS

Herein, we provide both the direct implementation of GhostNorm (Figure 4) as well as through the
use of accumulating gradients (Figure 5), as described in section 2.3.

A.2 LOSS LANDSCAPE VISUALIZATION

Implementation details On MNIST, we train a fully-connected neural network (SimpleNet) with
two fully-connected layers of 512 and 300 neurons. The input images are transformed to one-
dimensional vectors of 784 channels, and are normalized based on the mean and variance of the
training set. The learning rate is set to 0.4 for a batch size of 512 on a single GPU. In addition to
training SimpleNet with BatchNorm and GhostNorm, we also train a SimpleNet baseline without
any normalization technique.

A residual convolutional network with 56 layers (ResNet–56) (He et al., 2015) is employed for
CIFAR–10. We achieve super–convergence by using the one cycle learning policy described in the
work of Smith and Topin (Smith & Topin, 2017). Horizontal flipping, and pad-and-crop transfor-
mations are used for data augmentation. Most of the hyperparameter values were adopted from the
work of Smith & Topin (2017). In particular, we employ stochastic gradient descent with a weight
decay of 0.0001, and a one-cycle learning policy linearly increasing from 0.1 to 3.0 in 15 epochs,
linearly decreasing to 0.1 in the next 15 epochs, and decreasing to 0.003 linearly over the last 10
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def GhostNorm(X, groupsM, eps=1e-05):
"""
X: Input Tensor with (M, C, F) dimensions
groupsM: Number of groups for the mini-batch dimension
eps: A small value to prevent division by zero
"""
# Split the mini-batch dimension into groups of smaller batches
M, C, F = X.shape
X = X.reshape(groupsM, -1, C, F)

# Calculate statistics over dim(0) x dim(2) number
# of slices of dim(1) x dim(3) dimension each
mean = X.mean([1, 3], keepdim=True)
var = X.var([1, 3], unbiased=False, keepdim=True)

# Normalize X
X = (X - mean) / (torch.sqrt(var + self.eps))

# Reshape into the initial tensor shape
X = X.reshape(M, C, F)

return X

Figure 4: Python code for GhostNorm in PyTorch.

epochs. The optimizer does not employ any momentum. In order to train ResNet–56 without a
normalization technique (baseline), we had to adjust the cyclical learning rate schedule to (0.1, 1).

We train the networks on 50, 000 and 60, 000 training images (CIFAR–10 and MNIST respectively),
and evaluate on 10, 000 testing images.

Loss landscape For MNIST, we compute the loss at 8 learning rates ∈ [0.1, 0.2, 0.3, ..., 0.8],
whereas for CIFAR–10, we do so for 4 cyclical learning rates∈ [(0.05, 1.5), (0.1, 3), (0.15, 4.5), (0.2, 6)],
and analogously for the baseline.

Results On MNIST, the smoothness of the loss landscape decreases with a larger GM (see Fig-
ure 6). The best model used GhostNorm with GM set to 64, normalizing over 8 samples. On
CIFAR–10, we only observe an effect on the training loss landscape with large values of GM ,
∀gm ∈ GM = {16, 32, 64, 128}. Nevertheless, all GM configurations with GM > 1, i.e. Ghost-
Norm, improved optimization with models performing better than the BatchNorm baseline on the
testing set.

def train__for_an_epoch():
model.train()
model.zero_grad()
for i, (X, y) in enumerate(train_loader):

outputs = model(X)
loss = loss_function(outputs, y)
loss = loss / acc_steps
loss.backward()
if (i + 1) % acc_steps == 0:

optimizer.step()
model.zero_grad()

Figure 5: Python code for accumulating gradients in PyTorch.

11



Under review as a conference paper at ICLR 2021

Figure 6: Comparison of the loss landscape on MNIST between the baseline, BatchNorm, and
GhostNorm with different GM values. The last figure (bottom right) depicts the misclassification
error on the testing set during training.

Figure 7: Comparison of the loss landscape on CIFAR–10 between BatchNorm and GhostNorm
with different GM values. The last figure (bottom right) depicts the misclassification error on the
testing set during training.
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A.3 IMAGE CLASSIFICATION

Implementation details For both CIFAR–10 and CIFAR–100, we employ a training set of 45, 000
images, a validation set of 5, 000 images (randomly stratified from the training set), and a testing
set of 10, 000. The input data were stochastically augmented with horizontal flips, pad-and-crop
as well as Cutout (DeVries & Taylor, 2017). We use the same hyperparameter configurations as
Cubuk et al. (Cubuk et al., 2019). However, in order to speed up optimization, we increase the batch
size from 128 to 512, and apply a warmup scheme (Goyal et al., 2017) that increases the initial
learning rate by four times in 5 epochs; thereafter we use the cosine learning schedule. Based on the
above experimental settings, we train Wide-ResNet models of 28 depth and 10 width (Zagoruyko &
Komodakis, 2016) for 200 epochs. Note that since 8 GPUs are employed, our BatchNorm baselines
are equivalent to using GhostNorm with GM = 8. Nevertheless, to avoid any confusion, we refer to
it as BatchNorm. It’s worth mentioning that setting GM to 8 on 8 GPUs is equivalent to using 64 on
1 GPU.

For ImageNet, we train on 1.28 million training images and evaluate on 50,000 validation images, as
well as on three testing sets with 10,000 images each (Luo et al., 2020). We adopt the methodology
described in the NVIDIA’s public repository for training on 8 GPUs (20.08 docker container) using
a ResNet-18 v1.5 architecture. See the repository for the full implementation details2. We tune our
hyperparameters using the 50 epoch script, and then retrain using the 250 epochs script. Both mixed
precision (AMP) and DALI are employed. Other than the addition of GhostNorm and SeqNorm, the
only other change we implement is to clip the gradients (threshold=2) as it allows for a more stable
training.

For the ablation studies on CIFAR–100, we tune noisy Batch Norm with Gaussian noise of zero
mean and standard deviations of 0.00003, 0.0001, 0.0003, . . . , 0.1. The best validation accuracy
is achieved with a standard deviation of 0.0003. For models with dropout, we test values of 0.03,
0.1, 0.2, 0.3, and 0.4 for all BatchNorm, GhostNorm, and SeqNorm. Dropout consistently worsens
the validation accuracy and is thus omitted from the results. Finally, for RandAugment, we try
N values of [1, 2] and M values of [2, 6, 10, 14] as also reported by Cubuk et al. (2019). The best
configurations are as follows: (1, 6) for BatchNorm, (1, 14) for GhostNorm, and (1, 4) for SeqNorm.

A.4 NEGATIVE RESULTS

A number of other approaches were adopted in conjunction with GhostNorm and SeqNorm. These
preliminary experiments on CIFAR–100 did not surpass the BatchNorm baseline performances on
the validation sets (most often than not by a large margin), and are therefore not included in detail.
Note that given a more elaborate hyperparameter tuning phase, i.e. that would include learning rate,
weight decay, etc., these approaches may had otherwise succeeded.

In particular, we have also experimented with placing GhostNorm and GroupNorm in reverse order
for SeqNorm (in retrospect, this could have been expected given what we describe in Section 2.2),
and have also experimented with augmenting SeqNorm and GhostNorm with weight standardisa-
tion (Qiao et al., 2019) as well as by computing the variance of batch statistics on the whole input
tensor (Luo et al., 2020). Finally, on all datasets, we have attempted to tune networks with only
GroupNorm (Wu & He, 2018) but the networks were either unable to converge or they achieved
worse performances than the BatchNorm baselines.

2Repository available at https://github.com/NVIDIA/DeepLearningExamples/
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