Causal Bandits: Online Decision-Making in Endogenous Settings

Jingwen Zhang
Foster School of Business
University of Washington, Seattle, WA
jingwenz@uw.edu
Yifang Chen
Paul G. Allen School of Computer Science \& Engineering
University of Washington, Seattle, WA
yifangc@cs.washington.edu
Amandeep Singh
Foster School of Business
University of Washington, Seattle, WA
amdeep@uw.edu

Abstract

The deployment of Multi-Armed Bandits (MAB) has become commonplace in many economic applications. However, regret guarantees for even state-of-the-art linear bandit algorithms (such as Optimism in the Face of Uncertainty Linear bandit (OFUL)) make strong exogeneity assumptions w.r.t. arm covariates. This assumption is very often violated in many economic contexts and using such algorithms can lead to sub-optimal decisions. Further, in social science analysis, it is also important to understand the asymptotic distribution of estimated parameters. To this end, in this paper, we consider the problem of online learning in linear stochastic contextual bandit problems with endogenous covariates. We propose an algorithm we term ϵ-BanditIV, that uses instrumental variables to correct for this bias, and prove an $\tilde{\mathcal{O}}(k \sqrt{T})^{1}$ upper bound for the expected regret of the algorithm. Further, we demonstrate the asymptotic consistency and normality of the ϵ-BanditIV estimator. We carry out extensive Monte Carlo simulations to demonstrate the performance of our algorithms compared to other methods. We show that ϵ-BanditIV significantly outperforms other existing methods in endogenous settings.

1 Introduction

The proliferation of user-level data presents at the same time a unique opportunity and challenge in front of decision-makers. Decision-makers want to use individual-level data to tailor their decisions for each user. Further, given the dynamic nature of the platform, decision-makers want to be able to adopt these decisions with incrementally available data. Woodroofe 1979 first proposed a simple model to solve such sequential decision-making problems with covariates. Langford and T. Zhang

[^0]2007 later named the model "contextual bandit". Contextual linear bandits have been adopted across a wide variety of applications from advertising (Tang et al. 2015, Aramayo, Schiappacasse, and Goic 2022) to healthcare (Durand et al. 2018), dialogue systems (Liu et al. 2018), and personalized product recommendations (L. Li et al. 2010, Qin, S. Chen, and Zhu 2014). In each round, the decision-maker observes a set of actions with each action characterized by a set of features. Decision-maker selects an action and observes a reward corresponding to that action. The objective of the decision-maker is to achieve cumulative reward close to that of optimal policy in hindsight.

Traditional formulations of contextual bandits make the unconfoundedness assumption i.e., the arm covariates are exogenous. However, in many economic settings, arm features can be correlated with the unobserved noise. For instance, consider the problem of generating product recommendations for consumers. Platform operators would usually run online experiments to uncover the relationship between product features and consumer demand. Generally in such settings, product observable features like price are controlled by product owners (different from the platform operator) which could be set in anticipation of consumer demand and hence be correlated with the demand shocks unobserved by the platform operator. In such settings, traditional bandit algorithms might lead to sub-optimal decisions. A common approach to correct the endogeneity bias in the offline setting is to use instrumental variables. Instruments are correlated with the endogenous variable but are otherwise not associated with the outcome variable. The method of instrumental variables uses the variation in the exogenous component of the endogenous variable induced by the variation in the instrumental variable to make inference of causal effects. Thus, to address the issues induced by endogenous features in online settings, we propose an online estimator we term BanditIV that uses instrumental variables to learn the relationship between rewards and features.

Next, literature in contextual linear bandit has also primarily focused on minimizing the expected regret of the algorithm (Auer 2002, Dani, Hayes, and Kakade 2008, Chu et al. 2011, and AbbasiYadkori, Pál, and Szepesvári 2011). However, in a variety of practical situations, one may also be interested in the inference of model parameters, and algorithms that minimize regret may not guarantee the consistency of the model parameters. Further, knowing the asymptotic distributions, one can easily test the significance of features, and offers a traditional way to select variables. For instance, in the product recommendation example, an online platform might also be interested in understanding the effect of various marketing-mix variables (like price, and promotion) on consumer demand. To this end, we propose a linear bandit algorithm that pursues both regret minimization and consistent estimation of model parameters in endogenous settings. We finally use the martingale central limit theorem to show that our estimator of model parameters is asymptotically normal.

We finally compare our method with existing online algorithms including Optimism in the Face of Uncertainty Linear bandit (OFUL) and Thompson Sampling (TS) through numerical experiments. We find significant advantages of our algorithm in both expected regret and parameter inference.
To summarize, our paper makes the following contributions -

- We study the stochastic linear bandit problem with endogenous features. We propose a new algorithm, we term BanditIV, which incorporates instrumental variables to correct for the bias induced by endogenous features and show that the total expected regret of the algorithm is upper bounded by $\tilde{\mathcal{O}}(k \sqrt{T})$.
- Next, as in many economic contexts, researchers might not only be interested in minimizing the regret over the outcomes but also in conducting inference over estimated parameters. To this end, we propose the ϵ-BanditIV algorithm with the same upper bound and establish the asymptotic consistency and normality of the estimator.
- Finally, we conduct numerical experiments of BanditIV and ϵ-BanditIV algorithms on synthetic data. We show BanditIV and ϵ-BanditIV always outperform other existing linear bandit algorithms including OFUL and TS in terms of both total expected regret and inference.

The rest of the paper is organized as follows. We review related literature in Section 2 We set up the main problem, i.e. endogeneity problem in online stochastic linear bandits in Section 3 . We formulate the BanditIV and ϵ-BanditIV algorithms in Section 4 and show regret bound in Section 4.1 We derive theoretical analysis on consistency and normality of the estimator used in the ϵ-BanditIV algorithm in Section 5. We conduct simulations of the proposed algorithms on synthetic data in Section 6

Notation. Throughout this paper, we use $\|\cdot\|_{p}$ to denote the p-norm of a vector or a matrix. We use $\|\cdot\|_{F}$ to denote the Frobenius norm for a matrix. For a vector x and positive definite matrix A, we denote $\sqrt{x^{\prime} A x}$ as $\|x\|_{A}$. We use $\langle\cdot, \cdot\rangle$ as the inner product. We denote the sequence $a_{0}, a_{1}, \cdots, a_{\infty}$ as $\left\{a_{t}\right\}_{t=0}^{\infty}$. For a matrix X, the $i^{t h}$ column is denoted as $X^{(i)}$ and the $j^{t h}$ element of the $i^{t h}$ column is denoted as $X^{(i)(j)}$.

2 Literature review

This paper focuses on Contextual Multi-Armed Bandits (CMAB) approach. Auer 2002 first introduced the contextual bandit setting through the Linear Reinforcement Learning (LinRel) algorithm with linear value functions. Subsequently, the contextual framework was improved by Dani, Hayes, and Kakade 2008 and Chu et al. 2011 through Upper Confidence Bound (UCB) type algorithms. Abbasi-Yadkori, Pál, and Szepesvári 2011 further modified the analysis of the linear bandit problem and improved the regret bound by a logarithmic factor. More recently, Bastani, Bayati, and Khosravi 2021 studied performance of exploration-free policies in contextual bandit settings and proposed the Greedy-First algorithm which only utilizes observed contexts and rewards to decide whether to follow a greedy algorithm or to explore. This literature often requires independency between contexts and the random error term, which however cannot be always satisfied in the reality. We consider a setting which allows the dependency between contexts and error term. This more general setting is well suited to real-world applications where endogeneity problems happen.

This paper contributes to the stream of literature in inference with MAB. The adaptive nature of data generation in online settings complicates the inference of unknown parameters. Nie et al. 2018 showed that estimates of arm-specific expected rewards in UCB and TS algorithms are biased downwards. This downward bias is due to that arms with random upward fluctuation are sampled more, while those arms with downward fluctuation are sampled less (Hadad et al. 2021). Bibaut et al. 2021 presented that standard estimators no longer follow normal distribution asymptotically so that classic confidence interval fail to provide correct coverage. To address the inference problem in online settings, H. Chen, Lu, and Song 2021 studied the consistency and asymptotic distribution of the online ordinary least square estimator under epsilon-greedy policy. We extend their approach to two stage least square estimation in online settings and contribute to the literature by proving the consistency and asymptotic normality of our estimator.
This paper is also closely related to the stream of literature in instrumental variable methods for endogeneity problems. Griliches 1977, Hausman 1983, Angrist and G. Imbens 1995, and X. Chen, Hong, and Tamer 2005 provided theoretical analysis of instrumental variables in linear models, while Hansen 1982, Ai and X. Chen 2003, Newey and Powell 2003 and Chernozhukov, G. W. Imbens, and Newey 2007 studied instrumental variables in nonlinear models. G. Imbens 2014 reviewed work on instrumental variable methods and discussed applications and restrictions. Different from the standard data analysis framework in offline settings, the endogeneity problem can be exacerbated during the dynamic interaction between data generation and data analysis in online settings (J. Li, Luo, and X. Zhang 2021). This paper builds on existing instrumental variable methods in offline settings and considers the dynamic interaction by utilizing the CMAB framework. For these reasons, the paper contributes to the literature by combining both CMAB models and instrumental variable methods to improve the estimation of causal effect of treatments and hence achieve better performance of decision policies.

3 Problem setting

Let T be the number of rounds and K the number of arms in each round. In each round t, the learner observes a feature vector $x_{t, a} \in \mathbb{R}^{d}, a \in\{1, \cdots, K\}$, with $\left\|x_{t, a}\right\|_{2} \leq L_{x}$, for each arm. We use the subscript a to represent the $a^{\text {th }}$ arm from the K-arm set and L_{x} to represent a constant upper bound for $\left\|x_{t, a}\right\|_{2}$. After observing the feature vectors, the learner selects an arm a_{t} and receives a reward $y_{t, a} \in \mathbb{R}$, with $\left|y_{t, a}\right| \leq L_{y}$ where L_{y} is a constant upper bound for $\left|y_{t, a}\right|$. Under linear realizability assumption, we have $\mathbb{E}\left[y_{t, a} \mid x_{t, a}\right]=x_{t, a}^{\prime} \beta_{0}$ for all t and a, where $\beta_{0} \in \mathbb{R}^{d}$ is an unknown
true coefficient vector. We specifically assume $y_{t, a}$ as the following.

$$
\begin{equation*}
y_{t, a}=\beta_{0}^{\prime} x_{t, a}+e_{t, a} \tag{1}
\end{equation*}
$$

where $e_{t, a} \in \mathbb{R}$ is a 1 -subgaussian error term, s.t. $\mathbb{E}\left[e_{t, a}\right]=0$. We denote the cumulative distribution of $e_{t, a}$ as \mathcal{P}_{e}. We have a twofold goal in this problem: (i) to learn the main coefficient of interest β_{0} (ii) to achieve the largest reward through selecting the optimal arm.

Standard Contextual Linear Bandit settings have $\mathbb{E}\left[e_{t, a} x_{t, a}\right]=0$, which implies that the error term is independent with the feature vector. However, this assumption can be violated in various cases such as when we have omitted variable in the error term, measurement error in the regressor, simultaneous equation estimation, and etc. Mathematically, when we have the following,

$$
\mathbb{E}\left[e_{t, a} x_{t, a}\right] \neq 0
$$

the endogeneity problem occurs. Ordinary Least Square (OLS) estimator for the coefficient of interest β_{0} is inconsistent in endogenous settings. Econometrics literature uses Instrumental Variable (IV) method to address the endogeneity problem. A variable $z_{t, a}$ is a valid instrumental variable if it satisfies the following three conditions (M Wooldridge 2014): (i) it is uncorrelated with the error term $e_{t, a}$, i.e. $\mathbb{E}\left[z_{t, a} e_{t, a}\right]=0$, (ii) it is correlated with the endogenous covariates $x_{t, a}$, (iii) it has no direct effect on the reward $y_{t, a}$. Consider a valid instrumental variable $z_{t, a} \in \mathbb{R}^{k}$, with $\left\|z_{t, a}\right\|_{2} \leq L_{z}$ where L_{z} is a constant upper bound for $\left\|z_{t, a}\right\|_{2}$. We assume $\mathbb{E}\left[z_{t, a} x_{t, a}^{\prime}\right] \in \mathbb{R}^{k \times d}$ has full column rank $\left.d\right|^{2}$ and the minimum eigenvalue of $\mathbb{E}\left[z_{t, a} z_{t, a}^{\prime}\right]$ is positive.

$$
\begin{equation*}
x_{t, a}=\Gamma_{0}^{\prime} z_{t, a}+u_{t, a} \tag{2}
\end{equation*}
$$

where $\Gamma_{0} \in \mathbb{R}^{k \times d}$ is an unknown true coefficient vector, $u_{t, a} \in \mathbb{R}^{d}$ is a 1 -subgaussian error term with mean zero and the independency condition $\mathbb{E}\left[z_{t, a} u_{t, a}^{\prime}\right]=0$ is satisfied by construction. Notice that by plugging the equation of $x_{t, a}$ (Equation (2)) into Equation (1), we have

$$
\begin{equation*}
y_{t, a}=\left(\Gamma_{0} \beta_{0}\right)^{\prime} z_{t, a}+v_{t, a} \tag{3}
\end{equation*}
$$

where $v_{t, a}=\beta_{0}^{\prime} u_{t, a}+e_{t, a}$. We can prove that each element of $v_{t, a}$ is $\left(\left\|\beta_{0}\right\|_{2}^{2}+1\right)$-subgaussian (we provide the proof in Appendix B). We denote $\Gamma_{0} \beta_{0}$ as δ_{0} for the simplicity of analysis.

Two-Stage Least Squares (TSLS) is an instrumental variable method commonly used in offline settings to correct estimation bias in the endogeneity problem. Consider vector $Y \in \mathbb{R}^{T}$ with $y_{t, a}$ as its elements, matrix $X \in \mathbb{R}^{T \times d}$ with $x_{t, a}^{\prime}$ as its rows, matrix $Z \in \mathbb{R}^{T \times k}$ with $z_{t, a}^{\prime}$ as its rows, where $t \in\{1, \cdots, T\}$. We briefly illustrate TSLS estimation procedure in offline settings as the following: (i) First, regress the set of feature vectors X on the set of instrumental variable vectors Z using OLS method to obtain an estimated sample features \hat{X}; (ii) Then regress Y on the estimated feature vectors \hat{X} to obtain the estimator $\hat{\beta}_{\hat{X}, Y}$ using OLS method again.
Definition 1. (Two-Stage Least Squares Estimator)

$$
\begin{array}{r}
\hat{X}=P_{Z} X, P_{Z}=Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} \\
\hat{\beta}_{\hat{X}, Y}=\left(\hat{X}^{\prime} \hat{X}\right)^{-1} \hat{X}^{\prime} Y
\end{array}
$$

To facilitate further analysis on the TSLS estimator, we also define related OLS estimators as the following, where $\hat{\delta}=\hat{\Gamma} \hat{\beta}_{\hat{X}, Y}$ (to see this equation, refer Appendix B for the proof).
Definition 2. (First Stage OLS Estimator)

$$
\hat{\Gamma}=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X
$$

Definition 3. (OLS Estimator Based on Instrumental Variable)

$$
\hat{\delta}=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} Y
$$

It is known that TSLS estimator is consistent in offline settings. In this paper, we adopt the standard two-stage least square procedure to the online setting and demonstrate how one can use instrumental variables to address the issue of endogeneity in linear contextual bandits.

[^1]We aim to design an online decision-making algorithm that learns the coefficient of main interest β_{0} so that we can maximize the total expected reward after pulling arms under the endogeneity problem. We define the total expected regret of an algorithm \mathcal{A} after T rounds as

$$
R_{T}=\sum_{t=1}^{T} \mathbb{E}\left[y_{t, a_{t}^{*}}-y_{t, a_{t}}\right]=\sum_{t=1}^{T} \mathbb{E}\left[\left\langle\Gamma_{0}^{\prime} z_{t, a_{t}^{*}}, \beta_{0}\right\rangle-\left\langle\Gamma_{0}^{\prime} z_{t, a_{t}}, \beta_{0}\right\rangle\right]
$$

where $a_{t}^{*}=\arg \max _{a}\left\langle\Gamma_{0}^{\prime} z_{t, a}, \beta_{0}\right\rangle$ is the best arm at round t according to the true coefficient vectors β_{0} and Γ_{0}, and a_{t} is the arm selected by the algorithm \mathcal{A} at round t.

We relist key assumptions in this paper as the following,
Assumption 1. $\left\|z_{t, a}\right\|_{2} \leq L_{z},\left\|x_{t, a}\right\|_{2} \leq L_{x},\left\|y_{t, a}\right\|_{2} \leq L_{y}$ for all t and a.
Assumption 2. The minimum eigenvalue of $\mathbb{E}\left[z_{t, a} z_{t, a}^{\prime}\right]$ is larger than a positive constant λ.
Assumption 1 ensures that the $\|\cdot\|_{2}$ of instrumental variables, feature vectors, and the reward are bounded by positive constants. Notice that the $\|\cdot\|_{\infty}$ of a vector is smaller than the $\|\cdot\|_{2}$ of the vector, which implies that the $\|\cdot\|_{\infty}$ of the instrumental variables, features, and the reward are also upper bounded by these constants, L_{z}, L_{x}, and L_{y} respectively. Assumption 2 guarantees that, with high probability, the sample second moment $\sum_{s=1}^{t} z_{s, a} z_{s, a}^{\prime}$ is non-singular so that the OLS estimators $\hat{\Gamma}$ and $\hat{\delta}$ exist. We need these assumptions to bound the total regret and the inference bias.
For the simplicity of notations, we omit the subscript a of $z_{t, a}, x_{t, a}$, and $y_{t, a}$ from below. By x_{t}, we mean one sample or arm chosen by the algorithm from the arm set \mathcal{X}_{t} at time $t ; z_{t}$ is the instrumental variable related to $x_{t} ; y_{t}$ is the reward generated from the arm x_{t}. By x_{t}^{*}, we mean the true optimal sample or arm from the arm set \mathcal{X}_{t} at time $t ; z_{t}^{*}$ is the instrumental variable related to x_{t}^{*}.

4 BanditIV algorithm

We propose the following BanditIV Algorithm (Algorithm 1) by extending the TSLS to the online settings. The algorithm is based on existing linear bandit algorithms, especially the OFUL algorithm proposed by Abbasi-Yadkori, Pál, and Szepesvári 2011. The BanditIV algorithm takes as input initial regularization parameters $\gamma_{z}, \gamma_{x}>0$, as well as confidence set parameters $\left\{G_{t}\right\}_{t=1}^{\infty},\left\{B_{t}\right\}_{t=1}^{\infty}$. We will specify the confidence set parameters in Section 4.1 .
Estimation: The algorithm maintains four matrices $U_{t}, V_{t}, W_{t}, Q_{t}$ to calculate estimated parameters in each round as described in the pseudo code of Algorithm 1 . If the current time t is after the first round, the algorithm utilizes past-choice-related instrumental variables Z_{t} and past choices X_{t} to estimate Γ_{0} through OLS and obtain an estimated X_{t}, which is \hat{X}_{t}. Then, based on \hat{X}_{t} and past observations of rewards Y_{t}, the algorithm estimates β_{0} by OLS again. We denote the estimator for β_{0}, which is $\hat{\beta}_{t}$, in the BanditIV algorithm as the BanditIV estimator.
Confidence Sets: Following the Optimisim in the Face of Uncertainty principle (OFU), we need maintain confidence sets for all unknown parameters in the model. As described in Section 3, we have two unknown parameters, Γ_{0} and β_{0}. Thus, we construct two confidence sets $C_{1, s}, C_{2, s}$, $s \in\{1, \cdots, T\}$ for the first and the second stage estimation respectively in each round. The idea for the confidence sets are to make the estimation optimistic with the conditions that "with high probability" the true coefficients are in the confidence sets and we can calculate the confidence sets from the past chosen arms X_{t}, related instrumental variables Z_{t}, and rewards Y_{t}.
Execution: The best arm generated by the algorithm is a sample x_{t} which is related to an instrumental variable z_{t} that can maximize the estimated reward jointly with a pair of optimistic estimates of two-stage coefficients in the confidence sets. After an arm is chosen, we observe the reward y_{t} as stated in Equation (1).
Taking the BanditIV algorithm as a special case, we further propose the ϵ-BanditIV algorithm (Algorithm 2). The ϵ-BanditIV algorithm additionally takes a sequence of non-increasing exploration parameters $\left\{\epsilon_{t}\right\}_{t=1}^{\infty}$ as input. In each round, instead of choosing the best arm, we conduct a stochastic decision with probability ϵ_{t} for choosing a random arm and probability $1-\epsilon_{t}$ for choosing the estimated best arm. Notice that when $\epsilon_{t}=0$ for $t \in\{1,2 \cdots, \infty\}$, the ϵ-BanditIV algorithm degenerates to the BanditIV.

```
Algorithm 1 BanditIV
    Input: \(\gamma_{z}, \gamma_{x},\left\{G_{t}\right\}_{t=1}^{\infty},\left\{B_{t}\right\}_{t=1}^{\infty}\)
    Set \(U_{0}=\gamma_{z} I \in \mathbb{R}^{k \times k}, V_{0}=0 \in \mathbb{R}^{k \times d}, W_{0}=\gamma_{x} I \in \mathbb{R}^{d \times d}, Q_{0}=0 \in \mathbb{R}^{d \times 1}\)
    Set \(C_{1, s}=\left\{\Gamma:\left\|\Gamma^{(i)}-\hat{\Gamma}_{s}^{(i)}\right\|_{U_{s}} \leq G_{s}\right\}, C_{2, s}=\left\{\beta:\left\|\beta-\hat{\beta}_{s}\right\|_{W_{s}} \leq B_{s}\right\}, \forall s \in\{1,2, \cdots T\}\),
    \(\forall i \in\{1,2, \cdots d\}\)
    Nature reveals \(\mathcal{Z}_{0}\). We randomly choose \(z_{0} \in \mathcal{Z}_{0}\) and set \(Z_{0}=z_{0}\)
    Nature reveals \(\mathcal{X}_{0}\). From the set \(\mathcal{X}_{0}\), we play \(x_{0}\) which is related with \(z_{0}\) and then observe the reward \(y_{0}\). We
    set \(X_{0}=x_{0}\) and \(Y_{0}=y_{0}\)
    for \(t:=1,2, \cdots, T\), do
        \(U_{t}=U_{t-1}+z_{t-1} z_{t-1}^{\prime}, V_{t}=V_{t-1}+z_{t-1} x_{t-1}^{\prime}\)
        \(\hat{\Gamma}_{t}=U_{t}^{-1} V_{t}, \hat{X}_{t-1}=Z_{t-1} \hat{\Gamma}_{t}\)
        \(W_{t}=W_{0}+\hat{X}_{t-1}^{\prime} \hat{X}_{t-1}, Q_{t}=Q_{0}+\hat{X}_{t-1}^{\prime} Y_{t-1}\)
        \(\hat{\beta}_{t}=W_{t}^{-1} Q_{t}\)
        Nature reveals \(\mathcal{Z}_{t}\). We choose \(z_{t}=\arg \max _{z \in \mathcal{Z}_{t}} \max _{\Gamma \in C_{1, t}} \max _{\beta \in C_{2, t}}\left\langle\Gamma^{\prime} z, \beta\right\rangle\) and update \(Z_{t}=\)
    \(\left[\begin{array}{ll}Z_{t-1}^{\prime} & z_{t}\end{array}\right]^{\prime}\)
        Nature reveals the set of arms \(\mathcal{X}_{t}\). We play \(x_{t}\) which is related with \(z_{t}\) and observe the reward \(y_{t}\). Update
    \(X_{t}=\left[\begin{array}{ll}X_{t-1}^{\prime} & x_{t}\end{array}\right]^{\prime}, Y_{t}=\left[\begin{array}{ll}Y_{t-1}^{\prime} & y_{t}\end{array}\right]^{\prime}\)
    end for
```

```
Algorithm \(2 \epsilon\)-BanditIV
    Input: \(\gamma_{z}, \gamma_{x},\left\{G_{t}\right\}_{t=1}^{\infty},\left\{B_{t}\right\}_{t=1}^{\infty},\left\{\epsilon_{t}\right\}_{t=1}^{\infty}\)
    Set \(U_{0}=\gamma_{z} I \in \mathbb{R}^{k \times k}, V_{0}=0 \in \mathbb{R}^{k \times d}, W_{0}=\gamma_{x} I \in \mathbb{R}^{d \times d}, Q_{0}=0 \in \mathbb{R}^{d \times 1}\)
    Set \(C_{1, s}=\left\{\Gamma:\left\|\Gamma^{(i)}-\hat{\Gamma}_{s}^{(i)}\right\|_{U_{s}} \leq G_{s}\right\}, C_{2, s}=\left\{\beta:\left\|\beta-\hat{\beta}_{s}\right\|_{W_{s}} \leq B_{s}\right\}, \forall s \in\{1,2, \cdots T\}\),
    \(\forall i \in\{1,2, \cdots d\}\)
    Nature reveals \(\mathcal{Z}_{0}\). We randomly choose \(z_{0} \in \mathcal{Z}_{0}\) and set \(Z_{0}=z_{0}\)
    Nature reveals \(\mathcal{X}_{0}\). From the set \(\mathcal{X}_{0}\), we play \(x_{0}\) which is related with \(z_{0}\) and then observe the reward \(y_{0}\). We
    set \(X_{0}=x_{0}\) and \(Y_{0}=y_{0}\)
    for \(t:=1,2, \cdots, T\), do
        \(U_{t}=U_{t-1}+z_{t-1} z_{t-1}^{\prime}, V_{t}=V_{t-1}+z_{t-1} x_{t-1}^{\prime}\)
        \(\hat{\Gamma}_{t}=U_{t}^{-1} V_{t}, \hat{X}_{t-1}=Z_{t-1} \hat{\Gamma}_{t}\)
        \(W_{t}=W_{0}+\hat{X}_{t-1}^{\prime} \hat{X}_{t-1}, Q_{t}=Q_{0}+\hat{X}_{t-1}^{\prime} Y_{t-1}\)
        \(\hat{\beta}_{t}=W_{t}^{-1} Q_{t}\)
        Nature reveals \(\mathcal{Z}_{t}\). With probability \(\epsilon_{t}\), we uniformly choose a random \(z_{t} \in \mathcal{Z}_{t}\). With probability \(1-\epsilon_{t}\),
    we choose \(z_{t}=\arg \max _{z \in \mathcal{Z}_{t}} \max _{\Gamma \in C_{1, t}} \max _{\beta \in C_{2, t}}\left\langle\Gamma^{\prime} z, \beta\right\rangle\) and update \(Z_{t}=\left[\begin{array}{ll}Z_{t-1}^{\prime} & z_{t}\end{array}\right]^{\prime}\)
        Nature reveals the set of arms \(\mathcal{X}_{t}\). We play \(x_{t}\) which is related with \(z_{t}\) and observe the reward \(y_{t}\). Update
    \(X_{t}=\left[\begin{array}{ll}X_{t-1}^{\prime} & x_{t}\end{array}\right]^{\prime}, Y_{t}=\left[\begin{array}{ll}Y_{t-1}^{\prime} & y_{t}\end{array}\right]^{\prime}\)
    end for
```


4.1 Regret analysis

In this section, we give upper bounds on the regret of the BanditIV algorithm and ϵ-BanditIV algorithm. The proofs can be found in Appendix A. We show an $\tilde{\mathcal{O}}(k \sqrt{T})$ upper bound for the total expected regret with parameters of confidence set by Theorem 1 and Corollary 2

Theorem 1. The expected cumulative regret of the ϵ-BanditIV at time T, with probability at least $1-\delta$, is upper-bounded by

$$
R_{T} \leq B_{T} \sqrt{2 T d \log \left(\frac{T+d}{d}\right)}+\left(\frac{2}{\gamma}+\left\|\beta_{0}\right\|_{2}\right) G_{T} \sqrt{2 T k \log \left(\frac{T+k}{k}\right)}+2 \epsilon_{0} T L_{y}
$$

where $B_{T}=\sqrt{\gamma}\left\|\beta_{0}\right\|_{2}+\sqrt{2 \log \left(\frac{2 T}{\delta}\right)+d \log \left(\frac{5 T L_{x}^{2}}{d}\right)}$,
$G_{T}=\sqrt{\gamma_{z}}\left\|\Gamma_{0}^{(i)}\right\|_{2}+\sqrt{2 \log \left(\frac{2 T}{\delta}\right)+k \log \left(\frac{5 T L_{y}^{2}}{k}\right)}$.
By setting $\epsilon_{t}=0$, we can derive the following corollary directly,

Corollary 2. The expected cumulative regret of the BanditIV at time T, with probability at least $1-\delta$, is upper-bounded by

$$
R_{T} \leq B_{T} \sqrt{2 T d \log \left(\frac{T+d}{d}\right)}+\left(\frac{2}{\gamma}+\left\|\beta_{0}\right\|_{2}\right) G_{T} \sqrt{2 T k \log \left(\frac{T+k}{k}\right)}
$$

where $B_{T}=\sqrt{\gamma}\left\|\beta_{0}\right\|_{2}+\sqrt{2 \log \left(\frac{2 T}{\delta}\right)+d \log \left(\frac{5 T L_{x}^{2}}{d}\right)}$,
$G_{T}=\sqrt{\gamma_{z}}\left\|\Gamma_{0}^{(i)}\right\|_{2}+\sqrt{2 \log \left(\frac{2 T}{\delta}\right)+k \log \left(\frac{5 T L_{y}^{2}}{k}\right)}$.
Remark 1. Notice that in order to guarantee an $\tilde{\mathcal{O}}(k \sqrt{T})$ upper bound for the total expected regret of the ϵ-BanditIV algorithm, we need a small enough ϵ_{t}, such as an $\epsilon_{t} \leq \frac{\sqrt{\log (t)}}{\sqrt{t}}$. The BanditIV algorithm which is a special case with $\epsilon_{t}=0$ in ϵ-BanditIV algorithm, naturally satisfies this condition.

5 Inference

Due to the adaptive nature of multi-armed bandits, calculating confidence intervals is not straightforward as the collected data is no longer iid. In this section, we show asymptotic properties of the BanditIV estimator following H. Chen, Lu, and Song 2021 and Bastani and Bayati 2020. We first present the consistency and then the normality of the BanditIV estimator. The proofs are presented in Appendix A. Then we provide both parametric and nonparametric methods to calculate confidence intervals for estimation in Appendix C.
Proposition 1. (Tail bound for the BanditIV estimator) In the online decision-making model with ϵ-greedy policy, if the Assumptions 1 and 2 are satisfied, and ϵ_{t} is non-increasing, then for any $\eta_{1}, \eta_{2}>0, \eta_{2} \neq \frac{\lambda_{\min }\left(\Gamma_{0}\right)}{(k d)^{\frac{1}{2}}}$,

$$
P\left(\left\|\hat{\beta}_{t}-\beta_{0}\right\|_{1} \leq C_{\beta}\right) \geq p_{1} p_{2}^{d}
$$

where $C_{\beta}=\frac{\eta_{1}+\eta_{2}\left\|\beta_{0}\right\|_{1}}{\lambda_{\min }\left(\Gamma_{0}\right) d^{\frac{-1}{2}}-\eta_{2}(k)^{\frac{1}{2}}}$,
$p_{1}=1-\exp \left(-\frac{t \epsilon_{t}}{8}\right)-k \exp \left(-\frac{t \epsilon_{t} \lambda}{32 L_{z}^{2}}\right)-2 k \exp \left(-\frac{t \epsilon_{t}^{2} \lambda^{2} \eta_{1}^{2}}{128 k^{2} \sigma_{v}^{2} L_{z}^{2}}\right)+2 k^{2} \exp \left(-\frac{t \epsilon_{t}^{2} \lambda^{2} \eta_{1}^{2}+4 t \epsilon_{t} \lambda k^{2} \sigma_{v}^{2}}{128 k^{2} \sigma_{v}^{2} L_{z}^{2}}\right)$,
$p_{2}=1-\exp \left(-\frac{t \epsilon_{t}}{8}\right)-k \exp \left(-\frac{t \epsilon_{t} \lambda}{32 L_{z}^{2}}\right)-2 k \exp \left(-\frac{t \epsilon_{t}^{2} \lambda^{2} \eta_{1}^{2}}{128 k^{2} \sigma_{u}^{2} L_{z}^{2}}\right)+2 k^{2} \exp \left(-\frac{t \epsilon_{t}^{2} \lambda^{2} \eta_{1}^{2}+4 t \epsilon_{t} \lambda k^{2} \sigma_{u}^{2}}{128 k^{2} \sigma_{u}^{2} L_{z}^{2}}\right)$
Remark 2. If $t \epsilon_{t}^{2} \rightarrow \infty$ as $t \rightarrow \infty$, then the probability of $\left\|\hat{\beta}-\beta_{0}\right\| \leq C_{\beta}$ goes to 1 for any $\eta_{1}, \eta_{2}>0, \eta_{2} \neq \frac{\lambda_{\min }\left(\Gamma_{0}\right)}{(k d)^{\frac{1}{2}}}$. We need carefully choose the value for ϵ_{t} in order to guarantee both the regret bound and the tail bound. For example, an $\epsilon_{t}=\frac{\sqrt{\log (t)}}{\sqrt{t}}$ or $\epsilon_{t}=\frac{\sqrt{\log \log (t)}}{\sqrt{t}}$ satisfies both the conditions for the regret bound and the tail bound.

Following from the Propositions 1, we obtain the consistency of the BanditIV estimator easily.
Corollary 3. (Consistency of the online BanditIV estimator). If Assumptions 1 and 2 are satisfied, ϵ_{t} is non-increasing and $t \epsilon_{t}^{2} \rightarrow \infty$ as $t \rightarrow \infty$, then the online BanditIV estimator $\hat{\beta}_{t}$ is a consistent estimator for β_{0}.
Theorem 4. (Asymptotic normality of the online BanditIV estimator) If Assumptions 1 and 2 are satisfied, ϵ_{t} is non-increasing and $t \epsilon_{t}^{2} \rightarrow \infty$ as $t \rightarrow \infty$. Then

$$
\sqrt{t}\left(\hat{\beta}_{t}-\beta_{0}\right) \xrightarrow{d} \mathcal{N}_{d}(0, S)
$$

where $S=\mathbb{E}\left[v^{2}\right]\left(\Gamma_{0}^{\prime} \int z z^{\prime} d \mathcal{P}_{z} \Gamma_{0}\right)^{-1} \Gamma_{0}^{\prime} \int z z^{\prime} d \mathcal{P}_{z} \Gamma_{0}\left(\Gamma_{0}^{\prime} \int z z^{\prime} d \mathcal{P}_{z} \Gamma_{0}\right)^{-1}$

A consistent estimator for S is given by

$$
\sum_{s=1}^{t} \hat{v}_{s}^{2}\left(\hat{\Gamma}_{t}^{\prime} \sum_{s=1}^{t} z_{s} z_{s}^{\prime} \hat{\Gamma}_{t}\right)^{-1} \hat{\Gamma}_{t}^{\prime}\left(\sum_{s=1}^{t} z_{s} z_{s}^{\prime}\right) \hat{\Gamma}_{t}\left(\hat{\Gamma}_{t}^{\prime} \sum_{s=1}^{t} z_{s} z_{s}^{\prime} \hat{\Gamma}_{t}\right)^{-1}
$$

where $\hat{v}_{s}=y_{s}-\left(\hat{\Gamma}_{s} \hat{\beta}_{s}\right)^{\prime} z_{s}$.
Theorem 4 provides a theoretical guarantee that the BanditIV estimator asymptotically follows a normal distribution with mean zero and variance S. We can see that this variance depends on the expectation of the error term v_{t}, which includes the errors in both first stage and the second stage. The variance also depends on the distribution of the instrumental variable, \mathcal{P}_{z}. Notice that, although we need the assumption about ϵ_{t} to guarantee the consistency of the estimator, the asymptotic variance of the BanditIV estimator does not depend on ϵ_{t}.

6 Numerical experiments

In this section, we construct synthetic data to further validate our algorithm. Referring the simulation set up in Bakhitov and Singh 2021, we consider the model as follows, for $t=1, \cdots, T$,

$$
\begin{gathered}
Y_{t}=X_{t} \beta_{0}+e_{t} \rho+\varepsilon_{t} \\
X_{t}=Z_{t} \Gamma_{0}+e_{t}+u_{t}
\end{gathered}
$$

Suppose that all elements of the instrument $Z_{t} \in \mathbb{R}^{k \times 1}$ are uniformly distributed on the support $[-3,3]$. The error term $e_{t} \in \mathbb{R}^{n_{t} \times d}$ is the confounder, where n_{t} is the number of arms at time t and all elements of e_{t} follows $\mathbb{N}(0,1)$. The parameter $\rho \in \mathbb{R}^{d \times 1}$ measures the degree of endogeneity. A lower ρ implies a less serious endogeneity issue. As an extreme example, when $\rho=0$, endogeneity disappears, which we can see from Equation (4). The additional noise terms $u_{t} \in \mathbb{R}^{n_{t} \times d}$, and $\varepsilon_{t} \in \mathbb{R}^{n_{t} \times 1}$ are i.i.d. normally distributed. All elements of u_{t} and ε_{t} follow $\mathbb{N}(0,0.01)$ and $\mathbb{N}(0,1)$ respectively. WLOG, we set $n_{t}=50$, for $t=1, \cdots, T$ in this simulation.

$$
\begin{equation*}
\mathbb{E}\left[\left(e_{t} \rho+\varepsilon_{t}\right)^{\prime} X_{t}\right]=\mathbb{E}\left[\rho^{\prime} e_{t}^{\prime} X_{t}\right]=\mathbb{E}\left[\rho^{\prime} e_{t}^{\prime} \mathbb{E}\left[X_{t} \mid e_{t}\right]\right]=\rho^{\prime} \mathbb{E}\left[e_{t}^{\prime} e_{t}\right] \tag{4}
\end{equation*}
$$

We have two objectives in the simulation: (i) to achieve the maximum reward through selecting optimal arms (ii) to obtain an accurate estimation of the causal relation parameter β_{0}. We compare performance of our algorithm regarding the two objectives, with other existing algorithms including TS and OFUL under endogeneity. We run $T=2000$ time steps for each algorithm and observe the regret and estimation bias along the time. We use the true cumulative regret which excludes random error terms to measure the regret and $\left\|\beta_{0}-\hat{\beta}_{t}\right\|_{2}$ to measure the estimation bias. Figures 11 and 2 show the results where we consider various endogeneity degrees and dimensions of the instrumental variable. In Figure 11, we set the dimension of the instrumental variable as $k=1$ which is equal to the dimension of endogenous variable $d=1$. When $k=d$, we have the same number of instrumental variables as that of endogenous variables and β_{0} will be just identified. In Figure 2 , we set the dimension of the instrumental variable as $k=2$ which is larger then the dimension of endogenous variable $d=1$. When $k>d$, we have more instrumental variables than endogenous variables, which can cause overidentification. Across these two cases regarding the dimensions, we find quite robust results that our proposed algorithms outperform TS and OFUL both on regret and inference. This outperformance is more significant under higher endogeneity. In both Figures 1 and 2 , the first, second, third row present results when $\rho=2,1,0.5$ respectively. We can see that BanditIV and ϵ-BanditIV can achieve lower bias in inference than TS and OFUL and this difference become larger when the endogeneity degree increases. Also, BanditIV reaches lower expected regret than ϵ-BanditIV, but ϵ-BanditIV can obtain a less biased estimation.

7 Conclusion

In this paper, we study the endogeneity problem in online decision making settings where we formulate the decision making process as a Contextual Linear Bandit model. The existence of
endogeneity can lead to estimation bias and sub-optimal decision. To correct the bias and optimize the decision, we propose the BanditIV algorithm by utilizing both existing linear bandit algorithms in computer science literature and TSLS method in econometric literature. We present various theoretical properties of the algorithm. We first show that an upper bound for the total regret, and then show the consistency, asymptotic normality of the estimator in the algorithm. On the applied side, we conduct simulations on synthetic data. We find that the BanditIV algorithm outperforms several benchmark linear bandit algorithms, especially when endogeneity problem occurs.

References

Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári (2011). "Improved algorithms for linear stochastic bandits". In: Advances in neural information processing systems 24.
Ai, Chunrong and Xiaohong Chen (2003). "Efficient estimation of models with conditional moment restrictions containing unknown functions". In: Econometrica 71.6, pp. 1795-1843.
Angrist, Joshua and Guido Imbens (1995). Identification and estimation of local average treatment effects.
Aramayo, Nicolás, Mario Schiappacasse, and Marcel Goic (2022). "A Multi-Armed Bandit Approach for House Ads Recommendations". In: Available at SSRN 4107976.
Auer, Peter (2002). "Using confidence bounds for exploitation-exploration trade-offs". In: Journal of Machine Learning Research 3.Nov, pp. 397-422.
Bakhitov, Edvard and Amandeep Singh (2021). "Causal Gradient Boosting: Boosted Instrumental Variable Regression". In: arXiv preprint arXiv:2101.06078.
Bastani, Hamsa and Mohsen Bayati (2020). "Online decision making with high-dimensional covariates". In: Operations Research 68.1, pp. 276-294.
Bastani, Hamsa, Mohsen Bayati, and Khashayar Khosravi (2021). "Mostly exploration-free algorithms for contextual bandits". In: Management Science 67.3, pp. 1329-1349.
Bibaut, Aurélien et al. (2021). "Post-contextual-bandit inference". In: Advances in Neural Information Processing Systems 34, pp. 28548-28559.
Bojinov, Iavor, David Simchi-Levi, and Jinglong Zhao (2020). "Design and analysis of switchback experiments". In: arXiv preprint arXiv:2009.00148.
Carpentier, Alexandra, Claire Vernade, and Yasin Abbasi-Yadkori (2020). "The elliptical potential lemma revisited". In: arXiv preprint arXiv:2010.10182.
Chen, Haoyu, Wenbin Lu, and Rui Song (2021). "Statistical inference for online decision making: In a contextual bandit setting". In: Journal of the American Statistical Association 116.533, pp. 240-255.
Chen, Xiaohong, Han Hong, and Elie Tamer (2005). "Measurement error models with auxiliary data". In: The Review of Economic Studies 72.2, pp. 343-366.
Chernozhukov, Victor, Guido W Imbens, and Whitney K Newey (2007). "Instrumental variable estimation of nonseparable models". In: Journal of Econometrics 139.1, pp. 4-14.
Chu, Wei et al. (2011). "Contextual bandits with linear payoff functions". In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, pp. 208-214.
Dani, Varsha, Thomas P Hayes, and Sham M Kakade (2008). "Stochastic linear optimization under bandit feedback". In.
Durand, Audrey et al. (2018). "Contextual bandits for adapting treatment in a mouse model of de novo carcinogenesis". In: Machine learning for healthcare conference. PMLR, pp. 67-82.
Farias, Vivek et al. (2022). "Synthetically Controlled Bandits". In: arXiv preprint arXiv:2202.07079.
Griliches, Zvi (1977). "Estimating the returns to schooling: Some econometric problems". In: Econometrica: Journal of the Econometric Society, pp. 1-22.
Hadad, Vitor et al. (2021). "Confidence intervals for policy evaluation in adaptive experiments". In: Proceedings of the National Academy of Sciences 118.15, e2014602118.
Hall, Peter and Christopher C Heyde (2014). Martingale limit theory and its application. Academic press.
Hansen, Lars Peter (1982). "Large sample properties of generalized method of moments estimators". In: Econometrica: Journal of the econometric society, pp. 1029-1054.
Hausman, Jerry A (1983). "Specification and estimation of simultaneous equation models". In: Handbook of econometrics 1, pp. 391-448.
Imbens, Guido (2014). Instrumental variables: an econometrician's perspective. Tech. rep. National Bureau of Economic Research.
Imbens, Guido W and Donald B Rubin (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.
Langford, John and Tong Zhang (2007). "The epoch-greedy algorithm for contextual multi-armed bandits". In: Advances in neural information processing systems 20.1, pp. 96-1.
Lattimore, Tor and Csaba Szepesvári (2020). Bandit algorithms. Cambridge University Press.
Li, Jin, Ye Luo, and Xiaowei Zhang (2021). "Causal reinforcement learning: An instrumental variable approach". In: arXiv preprint arXiv:2103.04021.
Li, Lihong et al. (2010). "A contextual-bandit approach to personalized news article recommendation". In: Proceedings of the 19th international conference on World wide web, pp. 661-670.
Liu, Bing et al. (2018). "Customized nonlinear bandits for online response selection in neural conversation models". In: Thirty-Second AAAI Conference on Artificial Intelligence.
M Wooldridge, Jeffrey (2014). Introductory econometrics.
Newey, Whitney K and James L Powell (2003). "Instrumental variable estimation of nonparametric models". In: Econometrica 71.5, pp. 1565-1578.
Nie, Xinkun et al. (2018). "Why adaptively collected data have negative bias and how to correct for it". In: International Conference on Artificial Intelligence and Statistics. PMLR, pp. 1261-1269.

Qin, Lijing, Shouyuan Chen, and Xiaoyan Zhu (2014). "Contextual combinatorial bandit and its application on diversified online recommendation". In: Proceedings of the 2014 SIAM International Conference on Data Mining. SIAM, pp. 461-469.
Tang, Liang et al. (2015). "Personalized recommendation via parameter-free contextual bandits". In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, pp. 323-332.
Wagenmaker, Andrew et al. (2021). "First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach". In: arXiv preprint arXiv:2112.03432.
Woodroofe, Michael (1979). "A one-armed bandit problem with a concomitant variable". In: Journal of the American Statistical Association 74.368, pp. 799-806.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on how to answer these questions. For each question, change the default [TODO] to [Yes], [No] , or [N/A]. You are strongly encouraged to include a justification to your answer, either by referencing the appropriate section of your paper or providing a brief inline description. For example:

- Did you include the license to the code and datasets? [Yes] See Section.
- Did you include the license to the code and datasets? [No] The code and the data are proprietary.
- Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the Checklist section does not count towards the page limit. In your paper, please delete this instructions block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [No]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [No] We don't provide the code but we do provide instructions for the data and the parameters we use in the experiments
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [No] We use normal computer resource.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] We don't use existing code, data or models.
(b) Did you mention the license of the assets? [N/A] We don't use existing code, data or models.
(c) Did you include any new assets either in the supplemental material or as a URL? [No] We don't have any new asset.
(d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A] We don't use existing code, data or models.
(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A] We don't use existing code, data or models.
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] We don't use crowdsourcing
(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] We don't use crowdsourcing
(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A] We don't use crowdsourcing

A Appendix

Appendix A. Proof of Main Results

Proof for Theorem 1

Proof. This regret can be decomposed into

$$
\begin{aligned}
R_{T} & =\sum_{t=1}^{T}\left(1-\epsilon_{t}\right) \mathbb{E}_{u_{t}}\left[\left\langle x_{t}^{*}, \beta_{0}\right\rangle-\left\langle x_{t}, \beta_{0}\right\rangle\right] \mathbf{1}\left[x_{t}=\Gamma_{0}^{\prime} z_{t}\right]+\sum_{t=1}^{T} \epsilon_{t} \mathbb{E}_{u_{t}}\left[\left\langle x_{t}^{*}, \beta_{0}\right\rangle-\left\langle x_{t}, \beta_{0}\right\rangle\right] \mathbf{1}\left[x_{t} \neq \Gamma_{0}^{\prime} z_{t}\right] \\
& \leq \sum_{t=1}^{T}\left\langle\Gamma_{0}^{\prime} z_{t}^{*}, \beta_{0}\right\rangle-\left\langle\Gamma_{0}^{\prime} z_{t}, \beta_{0}\right\rangle+2 \epsilon_{0} T L_{y}
\end{aligned}
$$

Next we will upper bound the first term. Let $\left(\tilde{\Gamma}_{t}, \tilde{\beta}_{t}\right)=\arg \max _{\Gamma \in G_{t-1}, \beta \in C_{t-1}}\left\langle\Gamma^{\prime} z_{t}, \beta\right\rangle$. By using the two-stage optimism we can decompose our regret as follows,

$$
\begin{aligned}
& \sum_{t=1}^{T}\left\langle\Gamma_{0}^{\prime} z_{t}^{*}, \beta_{0}\right\rangle-\left\langle\Gamma_{0}^{\prime} z_{t}, \beta_{0}\right\rangle \\
& \leq \sum_{t=1}^{T} \max _{\Gamma \in \mathcal{C}_{2, t-1}} \max _{\beta \in \mathcal{C}_{2, t-1}}\left\langle\Gamma^{\prime} z_{t}^{*}, \beta\right\rangle-\left\langle\Gamma_{0}^{\prime} z_{t}, \beta_{0}\right\rangle \\
& \leq \sum_{t=1}^{T}\left\langle\tilde{\Gamma}_{t}^{\prime} z_{t}, \tilde{\beta}_{t}\right\rangle-\left\langle\Gamma_{0}^{\prime} z_{t}, \beta_{0}\right\rangle \\
& =\sum_{t=1}^{T}\left\langle\left(\tilde{\Gamma}_{t}-\Gamma_{0}\right)^{\prime} z_{t},\left(\tilde{\beta}_{t}-\beta_{0}\right)+\beta_{0}\right\rangle+\left\langle\hat{x}_{t}+\left(\Gamma_{0}-\hat{\Gamma}_{t}\right)^{\prime} z_{t}, \tilde{\beta}_{t}-\beta_{0}\right\rangle \\
& \leq \sum_{t=1}^{T}\left\|\hat{x}_{t}\right\|_{W_{t-1}}^{-1}\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{W_{t-1}}+\sum_{t=1}^{T}\left\|\left(\Gamma_{0}-\hat{\Gamma}_{t}\right)^{\prime} z_{t}\right\|_{2}\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{2} \\
& \quad+\left\|\beta_{0}\right\|_{2} \sum_{t=1}^{T}\left\|\left(\tilde{\Gamma}_{t}-\Gamma_{0}\right)^{\prime} z_{t}\right\|_{2}+\sum_{t=1}^{T}\left\|\left(\tilde{\Gamma}_{t}-\Gamma_{0}\right)^{\prime} z_{t}\right\|_{2}\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{2} \\
& =\sum_{t=1}^{T}\left\|\hat{x}_{t}\right\|_{W_{t-1}}^{-1}\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{W_{t-1}}+\left\|\beta_{0}\right\|_{2} \sum_{t=1}^{T}\left\|\left(\tilde{\Gamma}_{t}-\Gamma_{0}\right)^{\prime} z_{t}\right\|_{2}+2 \sum_{t=1}^{T}\left\|\left(\Gamma_{0}-\hat{\Gamma}_{t}\right)^{\prime} z_{t}\right\|_{2}\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{2}
\end{aligned}
$$

where the first inequality comes from the Lemma 1,2 that $\Gamma_{0} \in \mathcal{C}_{2, t}, \beta_{0} \in \mathcal{C}_{1, t}$ for all t, the second inequality comes from the definition of z_{t}, the second equality comes from the definition of \hat{x}_{t} and some careful decomposition, and the last inequality comes from cauchy-swartz inequality.

Now our goal is to upper bounded these three terms, which mainly comes form the estimation error of Γ_{0} in the first stage and the estimation error of β_{0} in the second stage. For the first term, by applying Cauchy-Schwartz inequality and the standard elliptical potential lemma in Carpentier, Vernade, and Abbasi-Yadkori 2020, we have

$$
\begin{aligned}
\sum_{t=1}^{T}\left\|\hat{x}_{t}\right\|_{W_{t-1}^{-1}}\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{W_{t-1}} & \leq \max _{t}\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{W_{t-1}} \sum_{t=1}^{T}\left\|\hat{x}_{t}\right\|_{W_{t-1}^{-1}} \\
& \leq \max _{t}\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{W_{t-1}} \sqrt{2 T d \log \left(\frac{T+d}{d}\right)}
\end{aligned}
$$

For the second term, by using similar arguments, we have that

$$
\begin{aligned}
\left\|\beta_{0}\right\|_{2} \sum_{t=1}^{T}\left\|\left(\tilde{\Gamma}_{t}-\Gamma_{0}\right)^{\prime} z_{t}\right\|_{2} & \leq\left\|\beta_{0}\right\|_{2} \sum_{t=1}^{T} \sum_{i=1}^{d}\left|\left(\tilde{\Gamma}_{t}^{(i)}-\Gamma_{0}^{(i)}\right)^{\prime} z_{t}\right| \\
& \left.\leq\left\|\beta_{0}\right\|_{2} \sum_{t=1}^{T} \sum_{i=1}^{d} \| \tilde{\Gamma}_{t}^{(i)}-\Gamma_{0}^{(i)}\right)\left\|_{U_{t-1}}\right\| z_{t} \|_{U_{t-1}^{-1}} \\
& \left.\leq\left\|\beta_{0}\right\|_{2} d \max _{t \in[T], i \in[d]} \| \tilde{\Gamma}_{t}^{(i)}-\Gamma_{0}^{(i)}\right)\left\|_{U_{t-1}} \sum_{t=1}^{T}\right\| z_{t} \|_{U_{t-1}^{-1}} \\
& \left.\left.\leq\left\|\beta_{0}\right\|_{2} d \max _{t \in[T], i \in[d]} \| \tilde{\Gamma}_{t}^{(i)}-\Gamma_{0}^{(i)}\right) \|_{U_{t-1}} \sqrt{2 T k \log \left(\frac{T+k}{k}\right.}\right)
\end{aligned}
$$

where the last inequality again comes from standard ellipse potential lemma.
Finally, for the third term, by the definition of W_{t}, we have $\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{2} \leq \frac{1}{\gamma}\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{W_{t-1}}$. Therefore, by repeating the proof in the second term, we have that,

$$
\begin{aligned}
& 2 \sum_{t=1}^{T}\left\|\left(\Gamma_{0}-\hat{\Gamma}_{t}\right)^{\prime} z_{t}\right\|_{2}\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{2} \\
& \left.\leq \frac{2}{\gamma} \max _{t}\left\|\tilde{\beta}_{t}-\beta_{0}\right\|_{W_{t-1}} \max _{t \in[T], i \in[d]} \| \tilde{\Gamma}_{t}^{(i)}-\Gamma_{0}^{(i)}\right) \|_{U_{t-1}} \sqrt{2 T k \log \left(\frac{T+k}{k}\right)}
\end{aligned}
$$

Therefore, by combing these three terms and the definition of $\mathcal{C}_{1, t}, \mathcal{C}_{2, t}$, we can upper bound our regret as

$$
R_{T} \leq B_{T} \sqrt{2 T d \log \left(\frac{T+d}{d}\right)}+\left(\frac{2}{\gamma}+\left\|\beta_{0}\right\|_{2}\right) G_{T} \sqrt{2 T k \log \left(\frac{T+k}{k}\right)}
$$

Lemma 1 (Optimistic estimation of β_{0}). With high prob $1-\delta / 2$, for all $t \in[T]$,

$$
\left\|\hat{\beta}_{t}-\beta_{0}\right\|_{W_{t}} \leq B_{t}
$$

where $B_{t}=\sqrt{\gamma}\left\|\beta_{0}\right\|_{2}+\sqrt{2 \log \left(\frac{2 T}{\delta}\right)+d \log \left(\frac{5 T L_{x}^{2}}{d}\right)}$,
Proof. At any fixed time t, we denote $\hat{x}_{s}^{t}=\Gamma_{t}^{\prime} z_{s}$ for all $s \leq t$, so the \hat{X}_{t} defined in the algorithm is a collection of all $\left\{\hat{x}_{s}^{t}\right\}_{s \leq t}$. For convenience, we drop the superscript t here. We also denote $\mathbf{e}_{t} \in \mathbb{R}^{t}$ as a collection of $\left\{e_{s}\right\}_{s \leq t}$. Now we get the closed-form for $\hat{\beta}_{t}$ by ridge TSLS estimator as follows,

$$
\begin{aligned}
\hat{\beta}_{t} & =W_{t}^{-1} Q_{t} \\
& =W_{t}^{-1} \hat{X}_{t}^{\prime}\left(X_{t} \beta_{0}+\mathbf{e}_{t}\right) \\
& =\left(X_{t}^{\prime} P_{Z_{t}} X_{t}+\gamma I\right)^{-1} X_{t}^{\prime} P_{Z_{t}} X_{t} \beta_{0}+W_{t}^{-1} \hat{X}_{t}^{\prime} \mathbf{e}_{t} \\
& =\beta_{0}-\gamma W_{t}^{-1} \beta_{0}+W_{t}^{-1} \hat{X}_{t}^{\prime} \mathbf{e}_{t}
\end{aligned}
$$

where we denote $Z_{t}\left(Z_{t}^{\prime} Z_{t}\right)^{-1} Z_{t}$ as $P_{Z_{t}}$. The third equality comes from the definition of \hat{W}_{t} and the upper bound of \hat{X}_{t} in Lemma 8 Therefore, we can write the estimation error of $\hat{\beta}$ compared to β_{0} as

$$
\begin{aligned}
\left\|\hat{\beta}_{t}-\beta_{0}\right\|_{W_{t}} & =\left\|W_{t}^{-1} \hat{X}_{t}^{\prime} \mathbf{e}_{t}-\gamma W_{t}^{-1} \beta_{0}\right\|_{W_{t}} \\
& =\left\|\hat{X}_{t}^{\prime} \mathbf{e}_{t}-\gamma \beta_{0}\right\|_{W_{t}^{-1}} \\
& \leq\left\|\hat{X}_{t}^{\prime} \mathbf{e}_{t}\right\|_{W_{t}^{-1}}+\gamma\left\|\beta_{0}\right\|_{W_{t}^{-1}} \\
& \leq\left\|\hat{X}_{t}^{\prime} \mathbf{e}_{t}\right\|_{W_{t}^{-1}}+\gamma\left\|\beta_{0}\right\|_{(\gamma I)^{-1}} \\
& =\left\|\hat{X}_{t}^{\prime} \mathbf{e}_{t}\right\|_{W_{t}^{-1}}+\sqrt{\gamma}\left\|\beta_{0}\right\|_{2}
\end{aligned}
$$

Finally, by noticing that \mathbf{e}_{t} is 1-subgaussian and the that $\exp \left(\left\langle q, \hat{X}_{t}^{\prime} \mathbf{e}_{t}\right\rangle-\frac{\|q\|_{\hat{X}_{t}^{\prime} \hat{X}_{t}^{\prime}}^{2}}{2}\right)$ for all $q \in \mathbb{R}^{d}$ is a supermartingale, according to the Section 20.1 in Lattimore and Szepesvári 2020, we have that, with probability $1-\delta / 2 T$,

$$
\left.\left\|\hat{X}_{t}^{\prime} \mathbf{e}_{t}\right\|_{W_{t}^{-1}} \leq \sqrt{2 \log \left(\frac{2 T}{\delta}\right)+\log \left(\frac{\operatorname{det}\left(W_{t}\right)}{\gamma^{d}}\right)}\right) \leq B_{t}
$$

where the last inequality comes from the explicit calculation of W_{t} detailed in Lemma 8 .
Lemma 2 (Optimistic estimation of Γ_{0}). With high prob $1-\delta / 2$, for all $t \in[T]$ and all $i \in[d]$,

$$
\left\|\hat{\Gamma}_{t}^{(i)}-\Gamma_{0}^{(i)}\right\|_{U_{t}} \leq G_{t}
$$

where $G_{t}=\sqrt{\gamma_{z}}\left\|\Gamma_{0}^{(i)}\right\|_{2}+\sqrt{2 \log \left(\frac{2 T}{\delta}\right)+k \log \left(\frac{5 T L_{y}^{2}}{k}\right)}$.
Proof. The proof steps are similar to the previous lemma. At any fixed time t and dimension $i \in[d]$, we denote $\mathbf{u}_{t}^{i} \in \mathbb{R}^{t}$ as a collection of $\left\{e_{s}\right\}_{s \leq t}$. We again get the closed-form of $\hat{\Gamma}_{t}$ as

$$
\hat{\Gamma}_{t}=U_{t}^{-1} V_{t}=U_{t}^{-1}\left(U_{t}-\gamma_{z} I\right) \Gamma_{0}+U_{t}^{-1} Z_{t}^{\prime} \mathbf{u}_{t}^{i}=\Gamma_{0}-\gamma_{z} U_{t}^{-1} \Gamma_{0}+U_{t}^{-1} Z_{t}^{\prime} \mathbf{u}_{t}^{i}
$$

And therefore, $\left\|\hat{\Gamma}_{t}^{(i)}-\Gamma_{0}^{(i)}\right\|_{U_{t}} \leq\left\|Z_{t}^{\prime} \mathbf{u}_{t}^{i}\right\|_{U_{t}^{-1}}+\sqrt{\gamma_{z}}\left\|\Gamma_{0}^{(i)}\right\|_{2}$.
Finally, again by noticing that \mathbf{u}_{t}^{i} is 1-subgaussian and the that $\exp \left(\left\langle q, \hat{X}_{t}^{\prime} \mathbf{u}_{t}^{i}\right\rangle-\frac{\|q\|_{\hat{X}_{t}^{\prime} \hat{x}_{t}^{\prime}}^{2}}{2}\right)$ for all $q \in \mathbb{R}^{d}$ is a supermartingale, we have that, with probability $1-\delta / 2 T$,

$$
\left\|\hat{\Gamma}_{t}^{(i)}-\Gamma_{0}^{(i)}\right\|_{U_{t}} \leq \sqrt{\gamma_{z}}\left\|\Gamma_{0}^{(i)}\right\|_{2}+\sqrt{2 \log \left(\frac{2 T}{\delta}\right)+\log \left(\frac{\operatorname{det}\left(U_{t}\right)}{\gamma_{z}^{k}}\right)} \leq G_{t}
$$

where the last inequality comes from the explicit calculation of U_{t} detailed in Lemma 8 and the union bound over all $t \in[T]$.

Lemma 3. Suppose $\left\{\mathcal{F}_{t}: t=1, \cdots, T\right\}$ is an increasing filtration of σ-fields. Let $\left\{W_{t}: t=\right.$ $1, \cdots, T\}$ be a sequence of variables such that W_{t} is \mathcal{F}_{t-1} measurable and $\left|W_{t}\right| \leq L_{w}$ almost surely for all t. Let $\left\{v_{t}: t=1, \cdots, T\right\}$ be independent σ_{v}-subgaussian, and $v_{t} \perp \mathcal{F}_{t-1}$ for all t. Let $\mathcal{S}=\left\{s_{1}, \cdots, s_{|\mathcal{S}|}\right\} \subseteq\{1, \cdots, T\}$ be an index set where $|\mathcal{S}|$ is the number of elements in \mathcal{S}. Then for $\kappa>0$,

$$
P\left(\sum_{s \in \mathcal{S}} W_{s} v_{s} \geq \kappa\right) \leq \exp \left\{-\frac{\kappa^{2}}{2|\mathcal{S}| \sigma_{v}^{2} L_{w}^{2}}\right\}
$$

The proof of this lemma is provided in Lemma 1 of H. Chen, Lu, and Song 2021 ,
Lemma 4. (Dependent OLS Tail Inequality). For the online decision making model, if all realizations of z_{t} satisfy $\left\|z_{t}\right\|_{\infty} \leq L_{z}$ for all t, and $\hat{\Sigma}=\frac{1}{t} \sum_{s=1}^{t} z_{s} z_{s}^{\prime}$ has minimum eigenvalue $\lambda_{\min }(\hat{\Sigma})>\lambda$ for some $\lambda>0$ almost surely. Then for any $\eta>0$,

$$
P\left(\left\|\hat{\delta}_{t}-\delta_{0}\right\|_{1} \leq \eta\right) \geq 1-2 k \exp \left(-\frac{t \lambda^{2} \eta^{2}}{2 k^{2} \sigma_{v}^{2} L_{z}^{2}}\right)
$$

Proof. Based on the proofs provided by H. Chen, Lu, and Song 2021 and Bastani and Bayati 2020 we make some minor changes. The relation between eigenvalue and l_{2} norm of symmetric matrix gives $\left\|\hat{\Sigma}^{-1}\right\|_{2}=\lambda_{\max }\left(\hat{\Sigma}^{-1}\right)=\left(\lambda_{\min }(\hat{\Sigma})\right)^{-1}$. Therefore,

$$
\left\|\hat{\delta}_{t}-\delta_{0}\right\|_{2}=\left\|\hat{\Sigma}^{-1}\left(\frac{1}{t} \sum_{s=1}^{t} z_{s} v_{s}\right)\right\|_{2} \leq \frac{1}{t}\left\|\hat{\Sigma}^{-1}\right\|_{2}\left\|\sum_{s=1}^{t} z_{s} v_{s}\right\|_{2} \leq \frac{1}{t \lambda}\left\|\sum_{s=1}^{t} z_{s} v_{s}\right\|_{2}
$$

Hence, we have

$$
\begin{aligned}
P\left(\left\|\hat{\delta}_{t}-\delta_{0}\right\|_{2} \leq \eta\right) & \geq P\left(\left\|\sum_{s=1}^{t} z_{s} v_{s}\right\|_{2} \leq t \lambda \eta\right) \\
& \geq P\left(\left|\sum_{s=1}^{t} Z_{j, s} v_{s}\right| \leq \frac{t \lambda \eta}{\sqrt{k}}, \cdots,\left|\sum_{s=1}^{t} Z_{k, s} v_{s}\right| \leq \frac{t \lambda \eta}{\sqrt{k}}\right) \\
& =1-P\left(\bigcup_{j=1}^{k}\left\{\left|\sum_{s=1}^{t} Z_{j, s} v_{s}\right|>\frac{t \lambda \eta}{\sqrt{k}}\right\}\right) \\
& \geq 1-\sum_{j=1}^{k} P\left(\left|\sum_{s=1}^{t} Z_{j, s} v_{s}\right|>\frac{t \lambda \eta}{\sqrt{k}}\right)
\end{aligned}
$$

Because we know that v_{s} in the above inequality are i.i.d. subgaussian and $v_{s} \perp z_{s}$, we can apply Lemma 3 and have the following

$$
P\left(\left|\sum_{s=1}^{t} Z_{j, s} v_{s}\right|>\frac{t \lambda \eta}{\sqrt{k}}\right) \leq 2 \exp \left\{-\frac{t \lambda^{2} \eta^{2}}{2 k \sigma_{v}^{2} L_{z}^{2}}\right\}
$$

Thus,

$$
P\left(\left\|\hat{\delta}_{t}-\delta_{0}\right\|_{1} \leq \eta\right) \geq P\left(\left\|\hat{\delta}_{t}-\delta_{0}\right\|_{2} \leq \frac{\eta}{\sqrt{k}}\right) \geq 1-2 k \exp \left\{-\frac{t \lambda^{2} \eta^{2}}{2 k^{2} \sigma_{v}^{2} L_{z}^{2}}\right\}
$$

Lemma 5. Let $\left\{z_{t}: t=1, \cdots, T\right\}$ be a sequence of i.i.d. k-dimension random vectors such that all realizations of z_{t} satisfy $\left\|z_{t}\right\|_{\infty} \leq L_{z}$ for all t. Denote $\hat{\Sigma}=\frac{1}{T} \sum_{t=1}^{T} z_{t} z_{t}^{\prime}$. If $\Sigma=\mathbb{E}\left[z_{t} z_{t}^{\prime}\right]$ has minimum eigenvalue $\lambda_{\min }(\Sigma)>\lambda$ for some $\lambda>0$, then

$$
P\left(\lambda_{\min }(\hat{\Sigma}) \leq \frac{\lambda}{2}\right) \leq k \exp \left\{-\frac{T \lambda}{8 L_{z}^{2}}\right\}
$$

Proof. This proof is based on the proof of Lemma 3 in H. Chen, Lu, and Song 2021 with minor changes. First, we have

$$
\begin{aligned}
& \lambda_{\max }\left(\frac{z_{t} z_{t}^{\prime}}{T}\right)=\max _{\|a\|_{2}=1} a^{\prime}\left(\frac{z_{t} z_{t}^{\prime}}{T}\right) a=\frac{1}{T} \max _{\|a\|_{2}=1}\left(a^{\prime} z_{t}\right)^{2} \leq \frac{L_{z}^{2}}{T} \\
& \mu_{\min } \equiv \lambda_{\min }(\mathbb{E} \hat{\Sigma})=\lambda_{\min }\left(\frac{1}{T} \sum_{t=1}^{t} \mathbb{E}\left[z_{t} z_{t}^{\prime}\right]\right)=\lambda_{\min }(\Sigma)>\lambda
\end{aligned}
$$

Then, using the Matrix Chernoff bound,

$$
P\left(\lambda_{\min }(\hat{\Sigma}) \leq \frac{\lambda}{2}\right) \leq P\left(\lambda_{\min }(\hat{\Sigma}) \leq \frac{\mu_{\min }}{2}\right) \leq k \exp \left\{-\frac{T \mu_{\min }}{8 L_{z}^{2}}\right\} \leq k \exp \left\{-\frac{T \lambda}{8 L_{z}^{2}}\right\}
$$

Lemma 6.

$$
\left\|\hat{\Gamma}\left(\hat{\beta}-\beta_{0}\right)\right\|_{1} \geq \frac{\lambda_{\min }(\hat{\Gamma})}{\sqrt{d}}\left\|\hat{\beta}-\beta_{0}\right\|_{1}
$$

where $\lambda_{\min }(\hat{\Gamma})$ is the smallest magnitude of a singular value of this matrix.

Proof. By doing Singular Value Decomposition for $\hat{\Gamma}$, we have the following, where the second equality is due to that U is orthonormal.

$$
\left\|\hat{\Gamma}\left(\hat{\beta}-\beta_{0}\right)\right\|_{2}=\left\|U \Sigma V^{\prime}\left(\hat{\beta}-\beta_{0}\right)\right\|_{2}=\left\|\Sigma V^{\prime}\left(\hat{\beta}-\beta_{0}\right)\right\|_{2}
$$

We assume $\operatorname{rank}(\hat{\Gamma})=\min \{k, d\}=d$. Using matrix form, we have

$$
\begin{aligned}
\Sigma V^{\prime}\left(\hat{\beta}-\beta_{0}\right) & =\left[\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \sigma_{d} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{cccc}
V^{(1)(1)} & V^{(2)(1)} & \cdots & V^{(d)(1)} \\
V^{(1)(2)} & V^{(2)(2)} & \cdots & V^{(d)(2)} \\
\vdots & \vdots & \vdots & \vdots \\
V^{(1)(d)} & V^{(2)(d)} & \cdots & V^{(d)(d)}
\end{array}\right]\left[\begin{array}{c}
\hat{\beta}^{(1)}-\beta_{0}^{(1)} \\
\hat{\beta}^{(2)}-\beta_{0}^{(2)} \\
\vdots \\
\hat{\beta}^{(d)}-\beta_{0}^{(d)}
\end{array}\right] \\
& =\left[\begin{array}{c}
\sigma_{1} \sum_{i=1}^{d} V^{(i)(1)}\left(\hat{\beta}^{(i)}-\beta_{0}^{(i)}\right) \\
\sigma_{2} \sum_{i=1}^{d} V^{(i)(2)}\left(\hat{\beta}^{(i)}-\beta_{0}^{(i)}\right) \\
\vdots \\
\left.\sigma_{d} \sum_{i=1}^{d} \begin{array}{c}
V^{(i)(d)}\left(\hat{\beta}^{(i)}-\beta_{0}^{(i)}\right) \\
0 \\
\vdots \\
0
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

Hence,

$$
\begin{align*}
\left\|\Sigma V^{\prime}\left(\hat{\beta}-\beta_{0}\right)\right\|_{1} \geq\left\|\Sigma V^{\prime}\left(\hat{\beta}-\beta_{0}\right)\right\|_{2} & =\sqrt{\sum_{j=1}^{d}\left|\sigma_{j} \sum_{i=1}^{d} V^{(i)(j)}\left(\hat{\beta}^{(i)}-\beta_{0}^{(i)}\right)\right|^{2}} \\
& \geq \lambda_{\min }(\hat{\Gamma}) \sqrt{\sum_{j=1}^{d}\left|\sum_{i=1}^{d} V^{(i)(j)}\left(\hat{\beta}^{(i)}-\beta_{0}^{(i)}\right)\right|^{2}} \\
& =\lambda_{\min }(\hat{\Gamma})\left\|V^{\prime}\left(\hat{\beta}-\beta_{0}\right)\right\|_{2} \\
& =\lambda_{\min }(\hat{\Gamma})\left\|\left(\hat{\beta}-\beta_{0}\right)\right\|_{2} \tag{5}
\end{align*}
$$

where the last equality is due to that V is orthonormal.
Applying Cauchy-Schwarz inequality, we obtain

$$
\begin{equation*}
\left\|\left(\hat{\beta}-\beta_{0}\right)\right\|_{2} \geq \frac{1}{\sqrt{d}}\left\|\left(\hat{\beta}-\beta_{0}\right)\right\|_{1} \tag{6}
\end{equation*}
$$

Combing inequalities (5) and (6), we complete the proof.

Lemma 7.

$$
\begin{equation*}
\lambda_{\min }(\hat{\Gamma}) \geq \lambda_{\min }\left(\Gamma_{0}\right)-\eta_{2}(k d)^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

Proof. On the event that $\left\|\hat{\Gamma}-\Gamma_{0}\right\| \leq \eta_{2}$, we can rewrite the equation for each element in $\hat{\Gamma}$ using a newly defined matrix $A \in \mathbb{R}^{k \times d}:\left|A^{(i)(l)}\right| \leq 1, \forall i \in i \in\{1,2, \cdots, d\}, \forall l \in\{1,2, \cdots, k\}$.

$$
\begin{equation*}
\hat{\Gamma}^{(i)(l)}=\Gamma_{0}^{(i)(l)}+\eta_{2} A^{(i)(l)} \tag{8}
\end{equation*}
$$

We know that all singular values are non-negative. Here, we assume the singular values of Γ_{0} are strictly positive. We can write the singular values of Γ_{0} and $\hat{\Gamma}$ as two increasing sequences, $0<\sigma_{\Gamma}^{(1)} \leq \sigma_{\Gamma}^{(2)} \leq \cdots \leq \sigma_{\Gamma}^{(d)}$ and $\sigma^{(1)} \leq \sigma^{(2)} \leq \cdots \leq \sigma^{(d)}$, respectively.

Using the min-max principle for singular values, we have

$$
\sigma_{\Gamma}^{(1)}=\min _{S: \operatorname{dim}(S)=1} \max _{\substack{a \in S \\\|a\|_{2}=1}}\left\|\Gamma_{0} a\right\|_{2}=\min _{\substack{a \in \mathbb{R}^{d} \\\|a\|_{2}=1}}\left\|\Gamma_{0} a\right\|_{2}
$$

where the first equality is directly derived by applying the min-max theorem. The second equality is from the two facts. First, a should be of an order $d \times 1$ to fit the order of Γ_{0}. Second, there are only two unique vectors fitting the constraint $\|a\|_{2}=1$ in the given space S and they generate the same objective values $\left\|\Gamma_{0} a\right\|_{2}$.

Similarly, we can rewrite the smallest singular value of $\hat{\Gamma}$ as the following

$$
\begin{gather*}
\sigma^{(1)}=\min _{\substack{a \in \mathbb{R}^{d} \\
\|a a\|_{2}=1}}\|\hat{\Gamma} a\|_{2} \tag{9}\\
\min _{\substack{a \in \mathbb{R}^{d} \\
\|a\|_{2}=1}}\|\hat{\Gamma} a\|_{2} \geq \min _{\substack{a \in \mathbb{R}^{d} \\
\|a\|_{2}=1}}\left\|\Gamma_{0} a\right\|_{2}-\eta_{2}\|A a\|_{2} \\
\geq \min _{\substack{a \in \mathbb{R}^{d} \\
\|a \mid\|_{2}=1}}\left\|\Gamma_{0} a\right\|_{2}-\eta_{2}\|A\|_{2}\|a\|_{2} \\
=\min _{\substack{a \in \mathbb{R}^{d} \\
\|a\|_{2}=1}}\left\|\Gamma_{0} a\right\|_{2}-\eta_{2}\|A\|_{2} \\
\geq \min _{\substack{a \in \mathbb{R}^{d} \\
\|a\|_{2}=1}}\left\|\Gamma_{0} a\right\|_{2}-\eta_{2}(k d)^{\frac{1}{2}} \\
\\
=\sigma_{\Gamma}^{(1)}-\eta_{2}(k d)^{\frac{1}{2}}
\end{gather*}
$$

where the first inequality is derived from the equation (8) and triangle inequality. The third equality is from the constraint that $\|a\|_{2}=1$. The fourth inequality is from the property of Frobenius norm, which we illustrate as the following

$$
\|A\|_{2} \leq\|A\|_{F}=\left(\sum_{i=1}^{d} \sum_{l=1}^{k}\left|A^{(i)(l)}\right|^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{i=1}^{d} \sum_{l=1}^{k} 1\right)^{\frac{1}{2}}=(k d)^{\frac{1}{2}}
$$

Proposition 2. (Tail bounds for the online OLS estimators). In the online decision making model with the ϵ-greedy policy, if Assumptions 1 and 2 are satisfied, and ϵ_{t} is non-increasing, then for any $\eta_{1}, \eta_{2}>0$, any $i \in\{1, \cdots, d\}$,

$$
\begin{aligned}
& P\left(\left\|\hat{\delta}_{t}-\delta_{0}\right\|_{1} \leq \eta_{1}\right) \geq 1-\exp \left\{-\frac{t \epsilon_{t}}{8}\right\}-k \exp \left\{-\frac{t \epsilon_{t} \lambda}{32 L_{z}^{2}}\right\}-2 k \exp \left\{-\frac{t \epsilon_{t}^{2} \lambda^{2} \eta_{1}^{2}}{128 k^{2} \sigma_{v}^{2} L_{z}^{2}}\right\} \\
&+2 k^{2} \exp \left\{-\frac{t \epsilon_{t}^{2} \lambda^{2} \eta_{1}^{2}+4 t \epsilon_{t} \lambda k^{2} \sigma_{v}^{2}}{128 k^{2} \sigma_{v}^{2} L_{z}^{2}}\right\} \\
& P\left(\left\|\hat{\Gamma}_{t}^{(i)}-\Gamma_{0}^{(i)}\right\|_{1} \leq \eta_{2}\right) \geq 1-\exp \left\{-\frac{t \epsilon_{t}}{8}\right\}-k \exp \left\{-\frac{t \epsilon_{t} \lambda}{32 L_{z}^{2}}\right\}-2 k \exp \left\{-\frac{t \epsilon_{t}^{2} \lambda^{2} \eta_{2}^{2}}{128 k^{2} \sigma_{u}^{2} L_{z}^{2}}\right\} \\
&+2 k^{2} \exp \left\{-\frac{t \epsilon_{t}^{2} \lambda^{2} \eta_{2}^{2}+4 t \epsilon_{t} \lambda k^{2} \sigma_{u}^{2}}{128 k^{2} \sigma_{u}^{2} L_{z}^{2}}\right\}
\end{aligned}
$$

Proof. Following the proof of Proposition 3.1 in H. Chen, Lu, and Song 2021, we provide this proof adapting to our setting. Denote $\mathcal{S}_{t}=\{1, \cdots, t\}$ and define $\hat{\Sigma}(\mathcal{I})=|\mathcal{I}|^{-1} \sum_{s \in \mathcal{I}} z_{s} z_{s}^{\prime}$ for any $\mathcal{I} \subseteq \mathcal{S}_{t}$, where $|\mathcal{I}|$ is the number of element in the set \mathcal{I} and $\left|\mathcal{S}_{t}\right|=t$. We have

$$
\hat{\delta}_{t}-\delta_{0}=\left(\frac{1}{t} \sum_{s=1}^{t} z_{s} z_{s}^{\prime}\right)^{-1} \frac{1}{t} \sum_{s=1}^{t} z_{s} v_{s}=\left\{\hat{\Sigma}\left(\mathcal{S}_{t}\right)\right\}^{-1} \frac{1}{t} \sum_{s=1}^{t} z_{s} v_{s}
$$

Under ϵ-greedy policy, we pull the estimated optimal arm with probability ϵ_{s} at each time point s. We denote the collection of time points up to time t when the estimated optimal arm is chosen as \mathcal{R}_{t}. We will first bound the minimum eigenvalue of $\hat{\Sigma}\left(\mathcal{R}_{t}\right)$ and then use it to infer the bound of the minimum eigenvalue of $\hat{\Sigma}\left(\mathcal{S}_{t}\right)$.

We denote the following event,

$$
E:=\left\{\lambda_{\min }\left(\hat{\Sigma}\left(\mathcal{R}_{t}\right)\right)>\frac{\lambda}{4}\right\}
$$

Applying Lemma 5, if $\lambda_{\min }(\Sigma)>\lambda$, then we have

$$
P(E) \geq 1-k \exp \left\{-\frac{\left|\mathcal{R}_{t}\right| \lambda}{16 L_{z}^{2}}\right\}
$$

Meanwhile, we know that

$$
\hat{\Sigma}\left(\mathcal{S}_{t}\right)=\frac{\left|\mathcal{R}_{t}\right|}{\left|\mathcal{S}_{t}\right|} \hat{\Sigma}\left(\mathcal{R}_{t}\right)+\frac{\left|\mathcal{S}_{t}\right|-\left|\mathcal{R}_{t}\right|}{\left|\mathcal{S}_{t}\right|} \hat{\Sigma}\left(\mathcal{S}_{t} \backslash \mathcal{R}_{t}\right)
$$

By Weyl's inequality, on event E,

$$
\lambda_{\min }\left(\hat{\Sigma}\left(\mathcal{S}_{t}\right)\right) \geq \lambda_{\min }\left(\frac{\left|\mathcal{R}_{t}\right|}{\left|\mathcal{S}_{t}\right|} \hat{\Sigma}\left(\mathcal{R}_{t}\right)\right)+\lambda_{\min }\left(\frac{\left|\mathcal{S}_{t}\right|-\left|\mathcal{R}_{t}\right|}{\left|\mathcal{S}_{t}\right|} \hat{\Sigma}\left(\mathcal{S}_{t} \backslash \mathcal{R}_{t}\right)\right) \geq \frac{\left|\mathcal{R}_{t}\right|}{\left|\mathcal{S}_{t}\right|} \lambda_{\min }\left(\hat{\Sigma}\left(\mathcal{R}_{t}\right)\right) \geq \frac{\lambda\left|\mathcal{R}_{t}\right|}{4 t}
$$

Applying Lemma 4, we have

$$
P\left(\left\|\hat{\delta}_{t}-\delta_{0}\right\|_{1} \leq \eta \mid E\right) \geq 1-2 k \exp \left(-\frac{\left|\mathcal{R}_{t}\right|^{2} \lambda^{2} \eta^{2}}{32 t k^{2} \sigma_{v}^{2} L_{z}^{2}}\right)
$$

Hence,

$$
\begin{aligned}
P\left(\left\|\hat{\delta}_{t}-\delta_{0}\right\|_{1} \leq \eta\right) & \geq P\left(\left\|\hat{\delta}_{t}-\delta_{0}\right\|_{1} \leq \eta \mid E\right) P(E) \\
& \geq 1-2 k \exp \left(-\frac{\left|\mathcal{R}_{t}\right|^{2} \lambda^{2} \eta^{2}}{32 t k^{2} \sigma_{v}^{2} L_{z}^{2}}\right)-k \exp \left\{-\frac{\left|\mathcal{R}_{t}\right| \lambda}{16 L_{z}^{2}}\right\}+2 k^{2} \exp \left\{-\frac{\left|\mathcal{R}_{t}\right| \lambda}{16 L_{z}^{2}}-\frac{\left|\mathcal{R}_{t}\right|^{2} \lambda^{2} \eta^{2}}{32 t k^{2} \sigma_{v}^{2} L_{z}^{2}}\right\}
\end{aligned}
$$

The checking step for that $\left|\mathcal{R}_{t}\right|$ is large enough is exactly the same as that in H. Chen, Lu, and Song 2021. We complete the proof by combining all the results above,

$$
\begin{aligned}
P\left(\left\|\hat{\delta}_{t}-\delta_{0}\right\|_{1} \leq \eta\right) & \geq 1-\exp \left\{-\frac{t \epsilon_{t}}{8}\right\}-k \exp \left\{-\frac{t \epsilon_{t} \lambda}{32 L_{z}^{2}}\right\}-2 k \exp \left\{-\frac{t \epsilon_{t}^{2} \lambda^{2} \eta^{2}}{128 k^{2} \sigma_{v}^{2} L_{z}^{2}}\right\} \\
& +2 k^{2} \exp \left\{-\frac{t \epsilon_{t}^{2} \lambda^{2} \eta^{2}+4 t \epsilon_{t} \lambda k^{2} \sigma_{v}^{2}}{128 k^{2} \sigma_{v}^{2} L_{z}^{2}}\right\}
\end{aligned}
$$

We can prove the inequality for $P\left(\left\|\hat{\Gamma}_{t}^{(i)}-\Gamma_{0}^{(i)}\right\|_{1} \leq \eta_{2}\right)$ by similar steps.

Proposition 1

Proof. By Proposition 2, we have $\left\|\hat{\Gamma}-\Gamma_{0}\right\|_{1}=\max _{1 \leq i \leq d}\left\|\hat{\Gamma}^{(i)}-\Gamma_{0}^{(i)}\right\|_{1} \leq \eta_{2}$ with a probability larger than p_{2}^{d} and $\left\|\hat{\delta}-\delta_{0}\right\|_{1} \leq \eta_{1}$ with a probability larger than p_{1}. On the events that $\left\|\hat{\Gamma}-\Gamma_{0}\right\|_{1} \leq \eta_{2}$ and $\left\|\hat{\delta}-\delta_{0}\right\|_{1} \leq \eta_{1}$, we can prove the upper bound of $\left\|\hat{\beta}-\beta_{0}\right\|_{1}$ as the following by utilizing triangle inequalities.

$$
\left\|\hat{\Gamma}\left(\hat{\beta}-\beta_{0}\right)\right\|_{1}-\left\|\left(\hat{\Gamma}-\Gamma_{0}\right) \beta_{0}\right\|_{1} \leq\left\|\hat{\Gamma}\left(\hat{\beta}-\beta_{0}\right)+\left(\hat{\Gamma}-\Gamma_{0}\right) \beta_{0}\right\|_{1}=\left\|\hat{\Gamma} \hat{\beta}-\Gamma_{0} \beta_{0}\right\|_{1}=\left\|\hat{\delta}-\delta_{0}\right\|_{1} \leq \eta_{1}
$$

Hence,

$$
\begin{equation*}
\left\|\hat{\Gamma}\left(\hat{\beta}-\beta_{0}\right)\right\|_{1} \leq \eta_{1}+\left\|\left(\hat{\Gamma}-\Gamma_{0}\right) \beta_{0}\right\|_{1} \leq \eta_{1}+\left\|\hat{\Gamma}-\Gamma_{0}\right\|_{1}\left\|\beta_{0}\right\|_{1} \leq \eta_{1}+\eta_{2}\left\|\beta_{0}\right\|_{1} \tag{10}
\end{equation*}
$$

Combining inequality (10), Lemma 6 and Lemma 7, we complete the proof.

Theorem 5. (Aymptotic normality of the online OLS estimator) If Assumptions 1 and 2 are satisfied, then

$$
\sqrt{t}\left(\hat{\delta}_{t}-\delta_{0}\right) \xrightarrow{d} \mathcal{N}_{k}\left(0, \mathbb{E}\left[v_{t}^{2}\right]\left(\int z z^{\prime} d \mathcal{P}_{z}\right)^{-1}\right)
$$

Proof. In this proof, we mainly use martingale central limit theorem.
By definition of the OLS estimator $\hat{\delta}_{t}$, we have

$$
\sqrt{t}\left(\hat{\delta}_{t}-\delta_{0}\right)=\left(\frac{1}{t} \sum_{s=1}^{t} z_{s} z_{s}^{\prime}\right)^{-1}\left(\frac{1}{\sqrt{t}} \sum_{s=1}^{t} z_{s} v_{s}\right)
$$

We define for $1 \leq j \leq t, t \geq 1$, and any $q \in \mathbb{R}^{k}$, the σ-field $\mathcal{F}_{t j}$ as \mathcal{F}_{j},

$$
H_{t j}=\frac{1}{\sqrt{t}} \sum_{s=1}^{j} q^{\prime} z_{s} v_{s}
$$

We have $\mathbb{E}\left[q^{\prime} z_{s} v_{s} \mid \mathcal{F}_{s-1}\right]=0$. We also notice that $\left\{H_{t j}, \mathcal{F}_{t j}, 1 \leq j \leq t, t \geq 1\right\}$ is a martingale array. Hence we are going to prove the convergence of $H_{t t}$.
We first check the Linderberg condition as follows, for each fixed $\zeta>0$,

$$
\begin{aligned}
& \sum_{s=1}^{t} \mathbb{E}\left[\left.\frac{1}{t}\left(q^{\prime} z_{s}\right)^{2} v_{s}^{2} I\left\{\left|q^{\prime} z_{s} v_{s}\right|>\zeta \sqrt{t}\right\} \right\rvert\, \mathcal{F}_{t, s-1}\right] \\
& \leq \frac{\|q\|_{2}^{2} L_{z}^{2}}{t} \sum_{s=1}^{t} \mathbb{E}\left[\left.v_{s}^{2} I\left\{v_{s}^{2}>\frac{\zeta^{2} t}{\|q\|_{2}^{2} L_{z}^{2}}\right\} \right\rvert\, \mathcal{F}_{s-1}\right] \\
& \leq\|q\|_{2}^{2} L_{z}^{2} \mathbb{E}\left[v_{1}^{2} I\left\{v_{1}^{2}>\frac{\zeta^{2} t}{\|q\|_{2}^{2} L_{z}^{2}}\right\}\right]
\end{aligned}
$$

where $v_{s}, s=1, \cdots, t$ are i.i.d. from \mathcal{P}_{v}. Notice that $v_{1}^{2} I\left\{v_{1}^{2}>\frac{\zeta^{2} t}{\|q\|_{2}^{2} L_{z}^{2}}\right\}$ is dominated by v_{1}^{2} with $\mathbb{E}\left[v_{1}^{2}\right] \leq\left\|\beta_{0}\right\|_{2}^{2}+1$. Also, $v_{1}^{2} I\left\{v_{1}^{2}>\frac{\zeta^{2} t}{\|q\|_{2}^{2} L_{z}^{2}}\right\}$ converges to 0 almost surely when $t \rightarrow \infty$. Thus, applying dominated convergence theorem, we can get, as $t \rightarrow \infty$,

$$
\sum_{s=1}^{t} \mathbb{E}\left[\left.\frac{1}{t}\left(q^{\prime} z_{s}\right)^{2} v_{s}^{2} I\left\{\left|q^{\prime} z_{s} v_{s}\right|>\zeta \sqrt{t}\right\} \right\rvert\, \mathcal{F}_{t, s-1}\right] \rightarrow 0
$$

Then we are to find the limit of the conditional variance for $H_{t t}$. Notice that

$$
\mathbb{E}\left[\left(q^{\prime} z_{s}\right)^{2} \mid \mathcal{F}_{s-1}\right]=\int q^{\prime} z_{s} z_{s}^{\prime} q d \mathcal{P}_{z}
$$

and $q^{\prime} \mathbb{E}\left[z_{s} z_{s}^{\prime}\right] q \leq\|q\|_{2}^{2} L_{z}^{2}$. Therefore,

$$
\begin{align*}
& \sum_{s=1}^{t} \mathbb{E}\left[\left.\frac{1}{t}\left(q^{\prime} z_{s}\right)^{2} v_{s}^{2} \right\rvert\, \mathcal{F}_{t, s-1}\right] \\
& =\frac{\mathbb{E}\left[v_{1}^{2}\right]}{t} \sum_{s=1}^{t} \mathbb{E}\left[\left(q^{\prime} z_{s}\right)^{2} \mid \mathcal{F}_{s-1}\right] \\
& \xrightarrow{p} \mathbb{E}\left[v_{1}^{2}\right] q^{\prime}\left(\int z_{s} z_{s}^{\prime} d \mathcal{P}_{z}\right) q \tag{11}
\end{align*}
$$

Applying Martingale Limit Theorem, we have

$$
\begin{equation*}
\frac{1}{\sqrt{t}} \sum_{s=1}^{t} z_{s} v_{s} \xrightarrow{d} \mathcal{N}_{k}\left(0, \mathbb{E}\left[v_{1}^{2}\right] \int z_{s} z_{s}^{\prime} d \mathcal{P}_{z}\right) \tag{12}
\end{equation*}
$$

Now we are to find the limit of $\frac{1}{t} \sum_{s=1}^{t} q^{\prime} z_{s} z_{s}^{\prime} q$ for any $q \in \mathbb{R}^{k}$. We know that $q^{\prime} z_{s} z_{s}^{\prime} q$ is $\mathcal{F}_{s^{-}}$ measurable for each s and $\mathbb{E}\left[q^{\prime} z_{s} z_{s}^{\prime} q\right] \leq q^{\prime} \mathbf{1 1}^{\prime} q L_{z}^{2}<\infty$. Thus, by Theorem 2.19 in Hall and Heyde 2014, we have

$$
\begin{equation*}
\frac{1}{t} \sum_{s=1}^{t}\left(q^{\prime} z_{s} z_{s}^{\prime} q-\mathbb{E}\left[q^{\prime} z_{s} z_{s}^{\prime} q \mid \mathcal{F}_{s-1}\right]\right) \xrightarrow{p} 0 \tag{13}
\end{equation*}
$$

From the result in 11 and 13), we have $\frac{1}{t} \sum_{s=1}^{t} q^{\prime} z_{s} z_{s}^{\prime} q \xrightarrow{p} q^{\prime}\left(\int z_{s} z_{s}^{\prime} d \mathcal{P}_{z}\right) q$. Applying Lemma 6 in H. Chen, Lu, and Song 2021 and Continuous Mapping Theorem, we obtain

$$
\begin{equation*}
\left(\frac{1}{t} \sum_{s=1}^{t} z_{s} z_{s}^{\prime}\right)^{-1} \xrightarrow{p}\left(\int z_{s} z_{s}^{\prime} d \mathcal{P}_{z}\right)^{-1} \tag{14}
\end{equation*}
$$

Combining the results in $\sqrt[12]{ }$ and (14), we complete the proof.

Appendix B. Auxiliary Lemmas

Lemma 8. For each t, we can explicitly upper bound the following terms,

$$
\begin{aligned}
& W_{t} \leq X_{t}^{\prime} Z_{t}^{\prime}\left(Z_{t}^{\prime} Z_{t}\right)^{-1} Z_{t} X_{t}, \quad \log \left(\operatorname{det}\left(W_{t}\right)\right) \leq d \log \left(\frac{5 T L_{x}^{2}}{d}\right) \\
& U_{t} \leq Z_{t}^{\prime} Z_{t}+\gamma_{z} I, \quad \log \left(\operatorname{det}\left(U_{t}\right)\right) \leq k \log \left(\frac{5 T L_{y}^{2}}{k}\right) \\
& \hat{X}_{t} \leq P_{Z_{t}} X_{t}
\end{aligned}
$$

Proof. For the first inequality,

$$
\hat{X}_{t}=Z_{t} \hat{\Gamma}_{t}=Z_{t}\left(Z_{t}^{\prime} Z_{t}+\gamma_{z} I\right)^{-1} Z_{t}^{\prime} X_{t} \leq Z_{t}\left(Z_{t}^{\prime} Z_{t}\right)^{-1} Z_{t}^{\prime} X_{t}
$$

Then for the second inequality,

$$
\begin{aligned}
W_{t} & =\hat{X}_{t}^{\prime} \hat{X}_{t} \\
& =\left(Z_{t} \hat{\Gamma}_{t}\right)^{\prime}\left(Z_{t} \hat{\Gamma}_{t}\right) \\
& =\left(Z_{t}\left(Z_{t}^{\prime} Z_{t}+\gamma_{z} I\right)^{-1} Z_{t}^{\prime} X_{t}\right)^{\prime}\left(Z_{t}\left(Z_{t}^{\prime} Z_{t}+\gamma_{z} I\right)^{-1} Z_{t}^{\prime} X_{t}\right) \\
& =X_{t}^{\prime} Z_{t}\left(Z_{t}^{\prime} Z_{t}+\gamma_{z} I\right)^{-1} Z_{t}^{\prime} Z_{t}\left(Z_{t}^{\prime} Z_{t}+\gamma_{z} I\right)^{-1} Z_{t}^{\prime} X_{t} \\
& \leq X_{t}^{\prime} Z_{t}\left(Z_{t}^{\prime} Z_{t}\right)^{-1} Z_{t}^{\prime} X_{t}
\end{aligned}
$$

Recall that $P_{Z_{t}}=Z_{t}^{\prime}\left(Z_{t}^{\prime} Z_{t}\right)^{-1} Z_{t}$, we finish the upper bound of W_{t}. Then we have

$$
\begin{aligned}
\log \left(\operatorname{det}\left(W_{t}\right)\right) & \leq d \log \left(\frac{1}{d} \operatorname{trace}\left(W_{t}\right)\right) \\
& \leq d \log \left(\frac{1}{d} \operatorname{trace}\left(\left(Z_{t}^{\prime} Z_{t}\right)^{-1} Z_{t}^{\prime} X_{t} X_{t}^{\prime} Z_{t}\right)\right) \\
& =d \log \left(\frac{1}{d} \operatorname{trace}\left(\left(Z_{t}^{\prime} Z_{t}\right)^{-1} Z_{t}^{\prime}\left(Z_{t} \Gamma_{0}+\boldsymbol{u}_{t}\right)\left(Z_{t} \Gamma_{0}+\boldsymbol{u}_{t}\right)^{\prime} Z_{t}\right)\right) \\
& =d \log \left(\frac{1}{d}\left(\operatorname{trace}\left(\Gamma_{0} \Gamma_{0}^{\prime} Z_{t}^{\prime} Z_{t}\right)+\operatorname{trace}\left(\Gamma_{0} \Gamma_{0}^{\prime} Z_{t}^{\prime} \boldsymbol{u}_{t} \boldsymbol{u}_{t}^{\prime} Z_{t}\right)+2 \operatorname{trace}\left(Z_{t}^{\prime} \boldsymbol{u} \Gamma_{0}^{\prime}\right)\right)\right)
\end{aligned}
$$

Now because u_{t} is 1-subgaussian, then we have with high probability, $\boldsymbol{u}_{t} \boldsymbol{u}_{t}^{\prime}<2 I$. Then the above is upper bounded by

$$
d \log \left(\frac{1}{d}\left(3\left\|Z_{t} \Gamma_{0}\right\|_{F}^{2}+2\left\|Z_{t} \Gamma_{0}\right\|_{F}\left\|\boldsymbol{u}_{t}\right\|_{F}\right)\right) \leq d \log \left(\frac{5 T L_{x}^{2}}{d}\right)
$$

and similarly

$$
\log \left(\operatorname{det}\left(U_{t}\right)\right) \leq k \log \left(\frac{5 T L_{y}^{2}}{k}\right)
$$

Lemma 9. Consider a sequence of vectors $\left(x_{t}\right)_{t=1}^{T}, x_{t} \in \mathbb{R}^{d}$, and assume that $\left\|x_{t}\right\|_{2} \leq$ a for all t. Let $V_{t}=\lambda I+\sum_{s=1}^{t} x_{s} x_{s}^{\prime}$ for some $\lambda>0$. Then, we will have that $\left\|x_{t}\right\|_{V_{t-1}^{-1}}>b$ at most

$$
d \log \left(1+a^{2} T / \lambda\right) / \log (1+b)
$$

times.
Lemma 9 is directly from lemma 6.2 in Wagenmaker et al. 2021.
Lemma 10. $a_{1}, a_{2}, \cdots \in \mathbb{R}^{d}$ is \mathcal{F}_{t} adapted and $\mathbb{E}\left[a_{t} \mid \mathcal{F}_{t-1}\right]=0$ and let $L_{t} \in \mathbb{R}^{d \times d}$ be a predictable sequence such that for any $\lambda \in \mathbb{R}^{d}$,

$$
\mathbb{E}\left[\exp \left(\left\langle\lambda, a_{t}\right\rangle\right) \mid \mathcal{F}_{t-1}\right] \leq \exp \left(\|\lambda\|_{L_{t}}^{2} / 2\right)
$$

Let $H_{t}=\sum_{s=1}^{t} a_{s}, J_{t}=\sum_{s=1}^{t} L_{t}$.

$$
K_{t}(\lambda)=\exp \left(\left\langle\lambda, H_{t}\right\rangle-\|\lambda\|_{J_{t}}^{2} / 2\right)
$$

is a super martingale. Moreover, we have that

$$
\mathbb{P}\left(\exists t:\left\|H_{t}\right\|_{\left(J_{t}+\gamma I\right)^{-1}} \geq \sqrt{2 \log (1 / \delta)+\log \left(\frac{\operatorname{det}\left(J_{t}+\gamma I\right)}{\gamma^{d}}\right)}\right) \leq \delta
$$

Lemma 10 is from Theorem 2 in Abbasi-Yadkori, Pál, and Szepesvári 2011
Proof for " $v^{(i)}$ is $\left(\left\|\beta_{0}\right\|_{2}^{2}+1\right)$-subgaussian"
Proof.

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda v^{(i)}\right)\right] & =\mathbb{E}\left[\exp \left(\lambda\left(\sum_{l=1}^{d} u^{(i)(l)} \beta_{0}^{(l)}+e^{(i)}\right)\right)\right] \\
& =\prod_{l=1}^{d} \mathbb{E}\left[\exp \left(\lambda u^{(i)(l)} \beta_{0}^{(l)}\right)\right] \mathbb{E}\left[\exp \left(\lambda e^{(i)}\right)\right] \\
& \leq \prod_{l=1}^{d} \mathbb{E}\left[\exp \left(\frac{\lambda^{2} \beta_{0}^{(l)^{2}}}{2}\right)\right] \mathbb{E}\left[\exp \left(\frac{\lambda^{2}}{2}\right)\right] \\
& =\exp \left(\frac{\lambda^{2}}{2}\left(\sum_{l=1}^{d} \beta_{0}^{(l)^{2}}+1\right)\right) \\
& =\exp \left(\frac{\lambda^{2}}{2}\left(\left\|\beta_{0}\right\|_{2}^{2}+1\right)\right)
\end{aligned}
$$

where the second equality is due to the independency of distributions of $u^{(i)(l)}$ and $e^{(i)}$. The third inequality is because that $u^{(i)(l)}$ and $e^{(i)}$ are 1-subgaussian with mean zero.

Proof for ${ }^{\prime \prime} \hat{\delta}=\hat{\Gamma} \hat{\beta}_{X, Y}$ "
Proof. We want to prove the following equation

$$
\begin{equation*}
\hat{\Gamma} \hat{\beta}_{X, Y}=\hat{\delta} \tag{15}
\end{equation*}
$$

Multiplying $\left((Z \hat{\Gamma})^{\prime} Z \hat{\Gamma}\right)^{-1}(Z \hat{\Gamma})^{\prime} Z$ to both sides of equation 15 , we can obtain the exact form of TSLS estimator which we defined before. Therefore, we can complete the proof.

Appendix C. Confidence intervals

To compute confidence intervals of our estimate of β_{0} post running our bandits, we provide two ways as the following. As the first way, we use directly Theorem 4. The data set is constructed as illustrated in Section 6. We set all elements in Γ_{0} and β_{0} as 1 . We run 1000 trials in total. In each trial, we take the final estimation $\hat{\beta}$ from a pre-run ϵ-BanditIV with 1000 rounds as the mean of the confidence interval and calculate the estimated standard deviation as the theorem provides to construct one confidence interval. Among the 1000 trials, for 95% confidence intervals, we get 94.4% coverage when we set $k=2, d=1$ and 94.6% coverage when we set $k=1, d=1$, which are very close to the ideal.
As the second way, we use a re-randomization test similar to that of Bojinov, Simchi-Levi, and Zhao 2020 and Farias et al. 2022. For the estimate $\hat{\beta}$, we test the sharp null hypothesis that the $\beta_{0}=\tau$ for all t. The sharp null hypothesis implies that the new outcome is $y_{t}+\tau^{\prime}\left(x_{t}^{H}-x_{t}\right)$ where x_{t}^{H} is a newly pulled arm and x_{t} is a pulled arm by our bandit algorithm.

We conduct exact tests by using the known assignment mechanism to simulate new assignment paths. Algorithm 3 provides the details of how to implement it. In particular, we propose τ by a downward search method based on the estimate from the bandit algorithm. Under the sharp null hypothesis of $\beta_{0}=\tau$, a new arm assignment path $1: T$ leads to a sequence of observed outcomes $y_{t}+\tau^{\prime}\left(x_{t}^{H}-x_{t}\right)$ for $t \in\{1, \cdots, T\}$. To obtain a confidence interval, we invert a sequence of exact hypothesis tests to identify the region outside where the null hypothesis is violated at the prespecified significance level (Bojinov, Simchi-Levi, and Zhao 2020; G. W. Imbens and Rubin 2015).

```
Algorithm 3 Sharp Null Hypothesis Test
Require: Fix \(N_{H}\), total number of samples drawn; Given \(\hat{\Gamma}, X\), and \(Y\) from the bandit algorithm;
    Given a prespecified significance level \(\alpha\)
    for \(i\) in \(1: N_{H}\) do
        Sample a new assignment path, \(x_{t}^{H}\), for \(t \in\{1, \cdots, T\}\) according to the assignment mechanism
    under the null hypothesis \(\beta_{0}=\tau\)
        Change the sequence of original outcomes \(y_{t}\) to \(y_{t}+\left\langle\tau,\left(x_{t}^{H}-x_{t}\right)\right\rangle\) for \(t \in\{1, \cdots, T\}\)
        Compute \(\hat{\tau}^{[i]}\) as the original algorithm does, i.e.
\[
\begin{gathered}
\hat{X}^{H}=Z^{H} \hat{\Gamma} \\
\hat{\tau}^{[i]}=\gamma I+\left(\left(\hat{X}^{H}\right)^{\prime} \hat{X}^{H}\right)^{-1}\left(\hat{X}^{H}\right)^{\prime} Y^{H}
\end{gathered}
\]
end for
Compute \(\hat{p}=N_{H}^{-1} \sum_{i=1}^{N_{H}} \mathbf{1}\left\{\left|\hat{\tau}^{[\mathrm{i}]}\right|>|\hat{\beta}|\right\}\)
Reject the null hypothesis if \(\hat{p}<\alpha\)
```

All of these experiments are run on synthetic data constructed as in Section 6 . We set $k=5$ and $d=3$ and run 50 trials in total. In each trial, we propose 20 hypotheses for β_{0} based on the estimated coefficient of our main interest, $\hat{\beta}$ from a pre-run ϵ-BanditIV and construct confidence intervals for all dimensions of β_{0}. For each hypothesis of β_{0}, we run the sharp null hypothesis test where we set N_{H} as 200 . We choose the significance level to be $\alpha=0.05$. Under BanditIV, the coverage of the test for each dimension of the estimate is listed as follows: $94 \%, 96 \%, 96 \%$; Under ϵ-greedy BanditIV, the coverage of the test for each dimension of the estimate is listed as follows: $96 \%, 92 \%, 94 \%$. We can see that, given the significance level as 0.05 , the coverage of the test is close to ideal across both BanditIV and ϵ-BanditIV. Thus, the re-randomization tests and corresponding confidence intervals reported here are adequate for inference of the main treatment effect.

Appendix D. Figures

Figure 1: Simulation results on synthetic data with endogeneity when $k=1, d=1$
The x -axis shows the number of time steps and the y -axis shows the performance indicator which is either estimation bias or the regret. Subfigures (a)-(b) present results when $\rho=2$, (c)-(d) present results when when $\rho=1$, (e)-(f) present results when when $\rho=0.5$

Figure 2: Simulation results on synthetic data with endogeneity when $k=2, d=1$
The x -axis shows the number of time steps and the y -axis shows the performance indicator which is either estimation bias or the regret. Subfigures (a)-(b) present results when $\rho=2$, (c)-(d) present results when when $\rho=1$, (e)-(f) present results when when $\rho=0.5$

[^0]: ${ }^{1}$ where k is the dimension of the instrumental variable and T is the number of rounds in the algorithm.

[^1]: ${ }^{2}$ The assumption $\mathbb{E}\left[z_{t, a} x_{t, a}^{\prime}\right] \in \mathbb{R}^{k \times d}$ has full column rank d implies that $k \geq d$.

