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Abstract
The increasing complexity of modern engineering systems can introduce a great deal of uncer-
tainty in our knowledge of system dynamics, which can, in turn, pose a major challenge to safe
model-based control. This paper presents a learning-based stochastic model predictive control
(LB-SMPC) strategy with chance constraints for tracking. The LB-SMPC strategy systematically
handles mismatch between the actual system dynamics and a system model via a state-dependent
uncertainty term that is intended to correct model predictions at each sampling time. A chance
constraint handling method is presented to ensure state constraint satisfaction to a desired level for
the case of state-dependent model uncertainty. Closed-loop simulations demonstrate the usefulness
of LB-SMPC for control of a safety-critical plasma system for processing of (bio)materials with
hard-to-model and time-varying dynamics.
Keywords: Learning-based control, model predictive control, chance constraints.

1. Introduction

Model predictive control (MPC) is an optimal control strategy widely used for the control of multi-
variable, constrained systems (Mayne, 2014). Adequate models are critical for the success of MPC
applications, since closed-loop performance and constraint satisfaction are heavily dependent on
a sufficiently accurate system model. However, the growing complexity of modern systems ren-
ders their modeling increasingly challenging. This introduces significant uncertainties to the system
models, which are exacerbated by the time-varying nature of the dynamics as well as the presence
of exogenous disturbances during system operation. In addition, control-oriented models should
be amenable to real-time computations. Thus, adapting simple physics-based or data-driven mod-
els based on data collected during system operation can enable accounting for model uncertainties
while retaining the low computational cost necessary for online control.

Most research on learning-based MPC (LB-MPC) focuses on leveraging closed-loop data to
learn a model that describes underlying dynamics more accurately, effectively reducing the plant-
model mismatch (Hewing et al., 2019). The effectiveness of LB-MPC has been demonstrated in
various applications, such as pH neutralization processes (Kocijan et al., 2004), gas-liquid separa-
tion plants (Likar and Kocijan, 2007), and robot path tracking (Ostafew et al., 2014). The notion
of LB-MPC for uncertain systems entails decoupling safety and performance by using two mod-
els of the system: an approximate model with bounds on uncertainty and a second model that is
updated by statistical methods (Aswani et al., 2013). The main idea behind this decoupling is to
use the first model for establishing robustness guarantees offline, and the second model for improv-
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ing closed-loop performance. This idea is extended in Limon et al. (2017) using a non-parametric
machine learning technique, where learning-based robust MPC (LB-RMPC) approaches with guar-
anteed stability by design are proposed. The case of LB-RMPC under state-dependent uncertainty
has recently been considered by Soloperto et al. (2018), where Gaussian process (GP) regression is
used to correct for model uncertainty. In particular, constraints are tightened under state-dependent
uncertainty, whose worst-case realization varies over the state space, thus reducing conservatism
typically associated with robust constraint tightening methods. For a recent review on LB-MPC
with a focus on safe learning the reader is referred to Hewing et al. (2019).

This paper presents a learning-based stochastic MPC (LB-SMPC) strategy with state-dependent
uncertainty for tracking in chance-constrained stochastic systems. The goal is to learn a state-
dependent model of system uncertainty (i.e., plant-model mismatch) online in order to improve the
closed-loop performance of the controller, while guaranteeing chance constraint satisfaction. The
main contributions include: (i) a state-dependent chance-constraint tightening approach for LB-
SMPC based on learning the plant-model mismatch, thus allowing a systematic trade-off between
robustness and performance while reducing conservativeness due to the state-dependent nature of
the uncertainty; and (ii) a tracking formulation for LB-SMPC that circumvents the need for re-
designing the terminal set, which is critical to guaranteeing robust feasibility, every time the target
is changed. The effectiveness of the proposed LB-SMPC strategy is demonstrated in closed-loop
simulations of a cold atmospheric plasma system for processing of (bio)materials (Gidon et al.,
2017; Gidon et al., 2018).

2. Problem Setup

Consider the discrete-time stochastic system described by

xk+1 = Axk +Buk + w(xk, uk), (1a)

yk = Cxk +Duk, (1b)

with states x ∈ Rn, inputs u ∈ Rm, zero-mean, stochastic uncertaintyw(x, u) ∈ Rn, and controlled
variables y ∈ Rp. The uncertainty w(x, u) is bounded by a compact, state- and input-dependent
set W(x, u). This uncertainty can be due to plant-model mismatch and/or exogenous disturbances.
System description (1) provides an advantageous model structure because it offers the flexibility of
learning the general (possibly nonlinear) uncertainty description w(x, u) from data, while it incor-
porates a linear state-space model as a nominal system model. This structure enables decoupling
safety and robustness aspects of the controller design from performance. The nominal model allows
using reachability tools to provide guarantees for safety and robustness, while the additive uncer-
tainty term w(xk, uk) can be learned from data to update the model for performance optimization
(Aswani et al., 2013).

Furthermore, system (1) is subject to hard constraints on states and inputs as well as individual
chance constraints on states [

x>k , u
>
k

]>
∈ X× U = Z, (2)

P[h>i xk+1 ≤ 1] ≥ 1− εi, i = 1 . . . , nc, (3)

where X and U are the state and input constraint sets, εi is the maximum allowable probability of
constraint violation for the ith chance constraint, and nc is the total number of individual chance
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constraints. The chance constraints (3) can be reformulated into deterministic constraints by defin-
ing a new set X∗ as

X∗ =
{
x ∈ Rn : h>i x ≤ 1− γ∗i

}
, i = 1, . . . , nc, (4)

where γ∗i = min γi s.t. P[h>i wk ≤ γi] ≥ 1− εi.

We define the nominal system by neglecting the uncertainty w(xk, uk) as

x̃k+1 = Ax̃k +Buk, (5a)

ỹk = Cx̃k +Dũk. (5b)

3. Constraint Tightening for Stochastic Systems with State-Dependent Uncertainty

3.1. Characterization of Steady States

One of the control objectives in this work is to track time-varying reference targets. At steady state,
there is no dynamic evolution of nominal system (5), i.e., x̃k+1 = x̃k = x̃. Therefore, every pair
of steady states and inputs z̃s = [x̃s, ũs]> satisfies

[
A− In B

] [
x̃s ũs

]>
= 0, and thus is an

element of the null space of matrix
[
A− In B

]
(Limon et al., 2008). We assume that (A,B) is

controllable and therefore the dimension of this null space is m. Consequently, there exists a matrix
Mθ ∈ R(n+m)×m such that

z̃s = Mθθ̃ and ỹs = Nθθ̃, (6)

for any θ ∈ Rm and Nθ = [C D]Mθ. The goal of parametrization (6) is to enlarge the terminal
invariant set for tracking when compared to regulation to a fixed target (Limon et al., 2008). Hence,
the controller will exhibit a larger region of attraction (ROA), ensuring feasibility for target changes
(Paulson et al., 2019).

3.2. Dual Mode Prediction

Dual mode prediction ensures that state constraints are satisfied over an infinite prediction horizon,
while convergence properties of the controller are guaranteed. At time k, predictions of system (1)
are denoted as

xj+1|k = Axj|k +Buj|k + w(xj|k, uj|k), (7a)

yj|k = Cxj|k +Duj|k. (7b)

The idea is to define a terminal feedback controller such that it drives the system as close as possible
to a desired target uj|k = ũsk +K

(
xj|k − xsk

)
, where superscript s denotes steady-state values and

K is the controller gain, typically chosen to be the linear quadratic regulator gain. Using (6), a
control law parametrization can be devised as 1

uj|k = π(xj|k, cj|k) = Kxj|k + Lθ̃k + cj|k, (8)

1. A linear feedback parametrization is typically chosen because of its simplicity and computational tractability.
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where cj|k are the N − 1 decision variables, N is the prediction horizon, and L = [−K Im]Mθ is
a known matrix (Paulson et al., 2019). Substituting the parametrized control law (8) into (7) yields
the closed-loop dynamics

xj+1|k = AKxj|k +B
(
Lθ̃k + cj|k

)
+ w(xj|k, uj|k), (9)

where AK = A + BK with eigenvalues strictly inside the unit circle. Moreover, the nominal
closed-loop system predictions can be recovered by neglecting the uncertainty in (9)

x̃j|k = AK x̃j|k +B
(
Lθ̃k + cj|k

)
. (10)

The idea behind dual mode prediction is to switch between a receding-horizon controller and a local
linear controller, depending on whether the state is inside or outside the terminal region (Michalska
and Mayne, 1993). In mode 1, which includes steps k ∈ [0, N − 1], the decision variables cj|k
are free to vary. In mode 2, which includes k ∈ [N,∞), cj|k is set to 0, effectively switching to
a linear controller of the form uj|k = usk + K(xj|k − xsk). In mode 2, constraints are enforced by
ensuring that the system is within the terminal region Xf (Kouvaritakis et al., 2010). By definition,
the terminal set is constructed such that when the system converges to xN ∈ Xf , the closed-loop
dynamics under the terminal control law are guaranteed to stay within Xf , i.e., xk ∈ Xf ⇒ xk+1 =
AKxk +BLθ̃k + wk ∈ Xf .

3.3. State-Dependent Constraint Tightening

Figure 1: Schematic for backwards reach-
able sets.

First, we tighten the hard input constraints using existing
reachability analysis tools (Chisci et al., 2001). We de-
note the set that contains the worst-case state-dependent
error between the real states (1) and the nominal predic-
tions (10) j steps ahead as Wj(x). Then, the input con-
straints can be tightened as Uj = U	KWj(x), whereK
is the LQR gain.

The chance constraints (3) must be satisfied up to a
pre-specified probability. As shown in (4), chance con-
straints can be converted to deterministic constraints us-
ing backoff parameters γ∗i . Then, the deterministic con-
straint sets of nominal system (10), i.e., X∗ and U, are recursively tightened at each prediction time
j to generate sets Xj and Uj . Therefore, if the nominal system (10) lies within Xj ×Uj = Zj , then
the real system (9) is guaranteed to satisfy constraints X∗ and U. To obtain the tightened state con-
straint sets Xj offline, we first need to compute the initial set X1 = X∗ by determining the backoff
parameters γ∗i . These can be calculated exactly using (4) if the probability distribution of w(xk, uk)
is known. Alternatively, γ∗i can be determined using non-parametric statistical methods (Lorenzen
et al., 2017; Owen, 2001; Tempo et al., 2012). From (4) it is evident that any γ̂i 6= γ∗i will satisfy
γ̂i ≥ γ∗i . An estimate of γ̂i can be obtained from the empirical cumulative distribution function
(ECDF) of the uncertainties, as described in Santos et al. (2019).

The idea behind the proposed state-dependent constraint tightening approach is to compute
backwards reachable sets for all states x ∈ X for N time instances. These sets are denoted by
H−j . A schematic is shown in Figure 1. After computing backwards reachable sets (following
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the solid blue arrows), we can estimate the maximum possible uncertainty at every individual state
xi ∈ H−j by considering the worst-case uncertainty propagation from that state using the general
uncertainty model w(xk, uk) (following the red dotted arrows). Then, if the state-dependent worst-
case system evolution results in a state outside of the previous tightened constraint, Xj−1, xi is
discarded, thus resulting in further constraint tightening in Xj . For computational tractability, the
state space is partitioned into mutually exclusive and collectively exhaustive subsets Ai and the
algorithm is applied to all subsets, instead of all states (Soloperto et al., 2018). In addition, we
introduce the operator G(·) and the backwards reachable sets H−j(·) for system (10)

G(A) := ∪x∈AW(x), A ⊆ X, and H−j(Ai) := A−j

(
{Ai} ⊕

{
j−1∑
i=0

AiBUj−1−i

})
∩ X.

The proposed constraint-tightening approach is summarized in Algorithm 1.

Algorithm 1: Chance Constraint Tightening Under State- and Input-dependent Uncertainty

1. Define the initial set X1 = X∗ ⊆ X using (4) or the ECDF of the uncertainties.

2. Partition the set X1 into r > 0 mutually exclusive and collectively exhaustive subsets Ai, such
that X1 = ∪Ai.
Note that the uncertainty on any single subset Ai is the union of all of the uncertainties of the
states contained in Ai. That is, W(Ai) = ∪x∈Ai

W(x) = G(Ai).

3. for j = 2 : N do

4. for all Ai ⊆ Xj−1 do

5. Compute sets H−j(Ai) such that x̃j|k ∈ Ai ⇒ x̃0|k ∈ H−j(Ai).

6. The uncertainty W(x̃0|k) can be overbounded by considering the uncertainty acting on its
backwards reachable sets, i.e., G (H−j(Ai)). Therefore,
W(xk) = W(x̃0|k) ⊆ G (H−j(Ai)) =: Ŵ−j(Ai).

7. Check if Ai can be included in Xj

if Ai ⊕Aj−1
K Ŵ−j(x̃j|k) ⊆ Xj−1:

Ai ∈ Xj .
else:

Ai 6∈ Xj (discard).
end if

end for
end for

Remark 1 Note that max{w(xi, u)} ≤ max{w(x, u)}, leading to less conservative results than
assuming a constant (worst-case) uncertainty.

Remark 2 The sets X∗j resulting from Algorithm 1 may not be convex, even if the starting partitions
Ai are chosen to be convex. To circumvent this, an inner approximation of X∗j may be constructed
and used in the place of X∗j .

Remark 3 For continuous state and input domains, partitioning X1 into subsets Ai depends on the
desired tradeoff between computational complexity and accuracy in the uncertainty characteriza-
tion. The offline computational complexity of the constraint tightening scales as O(n1n2 · · · ·nN ),
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where ni is the number of partitions in the ith dimension of xk. Thus, as the number of partitions
increases, the state dependence of the uncertainty is captured more accurately, but the offline com-
putational complexity also increases. However, note that the constraint tightening is carried out
offline, so the online computational complexity remains similar to that of nominal MPC.

4. Learning-based SMPC for Tracking

We use the constraint tightening approach described in Algorithm 1 to formulate the tracking LB-
SMPC problem for system (1) with state-dependent uncertainty. The steady-state parametrization
(6) results in an enlargement of the terminal set, which circumvents the need to redesign the terminal
set every time the reference is changed. Furthermore, since the expensive constraint set computa-
tions are performed offline, this constraint-tightening approach features an online computational
complexity similar to that of nominal MPC.

To steer the system to a desired target, we define the following cost function

VN (ck, θ̃k, xk, y
t
k) =

N−1∑
j=0

||yj|k − ỹsk||2Q + ||ũj|k − ũsk||2R + y>NPyN + Vo
(
ỹsk − ỹtk

)
,

where (x̃sk, ũ
s
k) = Mθθ̃k and ỹsk = Nθθ̃k are defined in (6), ytk is the desired target, and Q,R, P are

suitably chosen weight matrices. To ensure convergence toward ytk, an offset cost Vo(·) is added to
the cost function. This serves the purpose of penalizing deviations between the artificial reference
and the desired target. Given a measured state xk at sampling time k, the tracking LB-SMPC
problem can be formulated as

V ∗N (xk) = min
ck,θ̃k

VN (ck, θ̃k, xk, y
t
k) (11a)

s.t. x̃0|k = xk, x0|k = xk (11b)

x̃j+1|k = Ax̃j|k +Bũj|k, (11c)

xj+1|k = Axj|k +Bũj|k + w(xj−l:j , ũj−l:j), (11d)

ũj|k = Kxj|k + Lθ̃k + cj|k, (11e)

yj|k = Cxj|k +Dũj|k (11f)[
x̃>j|k, ũ

>
j|k

]>
∈ Xj × Uj , j = 1, . . . , N − 1, (11g)[

x̃>N |k, θ̃
>
k

]>
∈ Ωa

t , (11h)

where ck = {c0|k, ..., cN−1|k} and Ωa
t is the augmented terminal set, which can be computed as

described in Paulson et al. (2019). Two models are used to formulate the OCP (11). Constraints
(11g) are enforced with respect to the nominal dynamics (11c), while the objective function is min-
imized with respect to the predictions corrected by the learned model (11d). The optimal solution
to (11) is denoted by c∗k = {c∗0|k, ..., c

∗
N−1|k}. At each sampling time k, the control law (8) takes the

form uj|k = Kxk + Lθ̃∗k + c∗0|k due to the receding-horizon implementation. Recursive feasibility,
stability, and convergence properties of the proposed tracking LB-SMPC strategy are discussed in
Bonzanini et al. (2020).
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5. Case Study: Predictive Control of a Safety-Critical Plasma Jet

The proposed tracking LB-SMPC strategy is demonstrated in a simulation case study of an atmo-
spheric pressure plasma jet (APPJ) with applications in processing of (bio)materials. The APPJ
under consideration is a multivariable process with two inputs and two outputs; see Gidon et al.
(2018) for a detailed description of the APPJ. The inputs are He flowrate (q) and applied power
(P ); and the outputs are surface temperature (T ) and plasma intensity (I). The deviation output
and input variables are defined as y = [T − T s, 0.1(I − Is)]> and u = [q − qs, P − P s]>,
respectively, where the superscript s denotes steady state.

The control objective is to track a time-varying setpoint for surface temperature and plasma
intensity, as well as to satisfy a safety-critical constraint on surface temperature, while the dynamics
of plasma-surface interactions undergo unmodeled variations. This mimics a scenario in which a
medical professional operates the plasma device on a tissue with spatially varying properties, while
ensuring that safety-critical system constraints are not violated such that no harm is inflicted to the
patient. A linear state-space model is identified via sub-space identification (Gidon et al., 2018)
augmented with an additive state-dependent uncertainty, which is learned from the closed-loop data
using Gaussian Process (GP) regression (Rasmussen and Williams, 2006).

Figure 2 shows the plasma operation begins by tracking the setpoint [T s, Is]> = [40 ◦C, 110 a.u.]>

on the insulating surface, which is the nominal operating surface. At time t = 115 s, the plant model
is switched to treating a conductive surface, which represents a significant change in the system dy-
namics. To examine whether the controller can guarantee state constraint satisfaction, a setpoint
change to [T s, Is]> = [42.5 ◦C, 110 a.u.]> is introduced at t = 260 s to drive surface temperature
close to its upper constraint 43 ◦C.
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Figure 2: Closed-loop profiles of surface tempera-
ture and plasma intensity for the LB-SMPC strategy
with ε = 0 and ε = 0.2 in comparison with nom-
inal MPC with no learning. The surface dynamics
undergo a significant change at time 115 s.

Figure 3: Phase plot of closed-loop surface tem-
perature and plasma intensity for the mean of 100
closed-loop runs of the LB-SMPC strategy with ε =
0.2. Initial constraints (X0) are shown in dashed
lines, region of attraction (ROA) in light gray, and
terminal set (Xf) in darker gray.
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We present the performance of the proposed LB-SMPC strategy under two different levels of al-
lowed constraint violation (i.e., ε = 0 and ε = 0.2), and compare its performance to that of nominal
MPC. 100 closed-loop simulations are run with different uncertainty realizations, and one sample
closed-loop profile from each case is shown in Figure 2. On the insulating surface, LB-SMPC
performs slightly better than nominal MPC due to learning of the uncertainty. This performance
difference becomes more evident once the surface is changed at t = 115 s. The performance of
nominal MPC worsens, since the plant-model mismatch becomes larger. On the other hand, the
LB-SMPC controller is effective in predicting the plant-model mismatch, leading to better control
performance. Furthermore, up until t = 260 s, the closed-loop profiles are far enough from the
constraint such that constraint tightening does not affect them, leading to similar performance be-
tween the controllers with ε = 0 and ε = 0.2. However, when the setpoint is changed from 40 ◦C
to 42.5 ◦C (at t = 260 s), the two controllers perform differently. When ε = 0, the controller un-
dershoots the setpoint but does not violate the temperature constraint. The 100 simulations of the
closed-loop system indicate that this is the case for various uncertainty realizations, with very few
exceptions that occur because 99% confidence intervals are used as the uncertainty bounds derived
from the Gaussian process model. As expected, increasing the value of ε to 0.2 results in a better
tracking performance, on average, at the expense of violating the constraint. From the 100 closed-
loop simulations, we observe the constraint is violated 19.1% of the time, which is very close to the
specified upper bound, suggesting that the proposed chance constraint tightening approach for the
case of state-dependent uncertainty is not conservative.

Furthermore, to investigate the effect of changing ε on the region of attraction (ROA) of the
controller, we run 100 closed-loop simulations starting from a point outside the original constraint
set. Figure 3 illustrates that the proposed tracking LB-SMPC strategy can smoothly handle setpoint
changes while also enlarging the ROA. This is due to two main reasons. Firstly, since the chance-
constrained formulation of SMPC allows for some constraint violation, the controller can start from
a point outside the original constraints and still steer the system to the terminal set while staying
below the constraint violation threshold. In contrast, this is not allowed in robust MPC with hard
constraints, where any starting point outside the original constraint set is by definition considered
infeasible. And secondly, the enlarged terminal set for tracking compared to that for regulation
allows further increase in the size of the ROA, since there are more allowable points to which the
controller has to drive the system to at the end of the prediction horizon.

6. Conclusions and Future Work

This paper presents a learning-based MPC strategy for chance-constrained stochastic systems with
state-dependent model uncertainty. It is shown that online adaptation of the state-dependent model
uncertainty can improve control performance, while ensuring constraint satisfaction to a desired
probability level. In addition, the enlarged terminal region for tracking will allow for expanding the
work space of the controller. Future work will investigate how to fully leverage the learning of the
state-dependent uncertainty for online adaptation of the tightened constraint sets.
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