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ABSTRACT

Hopfield networks are artificial neural networks which store memory patterns on
the states of their neurons by choosing recurrent connection weights and update
rules such that the energy landscape of the network forms attractors around the
memories. How many stable, sufficiently-attracting memory patterns can we store
in such a network using N neurons? The answer depends on the choice of weights
and update rule. Inspired by setwise connectivity in biology, we extend Hopfield
networks by adding setwise connections and embedding these connections in a
simplicial complex. Simplicial complexes are higher dimensional analogues of
graphs which naturally represent collections of pairwise and setwise relationships.
We show that our simplicial Hopfield networks increase memory storage capacity.
Surprisingly, even when connections are limited to a small random subset of
equivalent size to an all-pairwise network, our networks still outperform their
pairwise counterparts. Such scenarios include non-trivial simplicial topology. We
also test analogous modern continuous Hopfield networks, offering a potentially
promising avenue for improving the attention mechanism in Transformer models.

1 INTRODUCTION

Hopfield networks (Hopfield, 1982)1 store memory patterns in the weights of connections between
neurons. In the case of pairwise connections, these weights translate to the synaptic strength between
pairs of neurons in biological neural networks. In such a Hopfield network with N neurons, there
will be

(
N
2

)
of these pairwise connections, forming a complete graph. Each edge is weighted by a

procedure which considers P memory patterns and which, based on these patterns, seeks to minimise
a defined energy function such that the network’s dynamics are attracted to and ideally exactly settles
in the memory pattern which is nearest to the current states of the neurons. The network therefore
acts as a content addressable memory – given a partial or noise-corrupted memory, the network can
update its states through recurrent dynamics to retrieve the full memory. Since its introduction, the
Hopfield network has been extended and studied widely by neuroscientists (Griniasty et al., 1993;
Schneidman et al., 2006; Sridhar et al., 2021; Burns et al., 2022), physicists (Amit et al., 1985; Agliari
et al., 2013; Leonetti et al., 2021), and computer scientists (Widrich et al., 2020; Millidge et al.,
2022). Of particular interest to the machine learning community is the recent development of modern
Hopfield networks (Krotov & Hopfield, 2016) and their close correspondence (Ramsauer et al., 2021)
to the attention mechanism of Transformers (Vaswani et al., 2017).

An early (Amit et al., 1985; McEliece et al., 1987) and ongoing (Hillar & Tran, 2018) theme in the
study of Hopfield networks has been their memory storage capacity, i.e., determining the number of
memory patterns which can be reliably stored and later recalled via the dynamics. As discussed in
Appendix A.1, this theoretical and computational exercise serves two purposes: (i) improving the
memory capacity of such models for theoretical purposes and computational applications; and (ii)
gaining an abstract understanding of neurobiological mechanisms and their implications for biological
memory systems. Traditional Hopfield networks with binary neuron states, in the limit of N → ∞
and P → ∞, maintain associative memories for up to approximately 0.14N patterns (Amit et al.,

1After the proposal of Marr (1971), many similar models of associative memory were proposed, e.g., those
of Nakano (1972), Amari (1972), Little (1974), and Stanley (1976) – all before Hopfield (1982). Nevertheless,
much of the research literature refers to and seems more proximally inspired by Hopfield (1982). Many of these
models can also be considered instances of the Lenz-Ising model (Brush, 1967) with infinite-range interactions.
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1985; McEliece et al., 1987), and fewer if the patterns are statistically or spatially correlated (Löwe,
1998). However, by a clever reformulation of the update rule based on the network energy, this
capacity can be improved to Nd−1, where d ≥ 2 (Krotov & Hopfield, 2016), and even further to 2N/2

(Demircigil et al., 2017). Networks using these types of energy-based update rules are called modern
Hopfield networks. Krotov & Hopfield (2016) (like Hopfield (1984)) also investigated neurons which
took on continuous states. Upon generalising this model by using the softmax activation function,
Ramsauer et al. (2021) showed a connection to the attention mechanism of Transformers (Vaswani
et al., 2017). However, to the best of our knowledge, these modern Hopfield networks have not been
extended further to include explicit setwise connections between neurons, as has been studied and
shown to improve memory capacity in traditional Hopfield networks (Peretto & Niez, 1986; Lee et al.,
1986; Baldi & Venkatesh, 1987; Newman, 1988). Indeed, Krotov & Hopfield (2016), who introduced
modern Hopfield networks, make a mathematical analogy between their energy-based update rule and
setwise connections given their energy-based update rule can be interpreted as allowing individual
pairs of pre- and post-synaptic neurons to make multiple synapses with each other – making pairwise
connections mathematically as strong as equivalently-ordered setwise connections2. Demircigil et al.
(2017) later proved this analogy to be accurate in terms of theoretical memory capacity. By adding
explicit setwise connections to modern Hopfield networks, we essentially allow all connections
(pairwise and higher) to increase their strength – following the same interpretation, this can be
thought of as allowing both pairwise and setwise connections between all neurons, any of which may
be precisely controlled.

Functionally, setwise connections appear in abundance in biological neural networks. What’s
more, these setwise interactions often modulate and interact with one another in highly complex
and nonlinear fashions, adding to their potential computational expressiveness. We discuss these
biological mechanisms in Appendix A.2. There are many contemporary models in deep learning
which implicitly model particular types of setwise interactions (Jayakumar et al., 2020). To explicitly
model such interactions, we have multiple options. For reasons we discuss in Appendix A.3, we
choose to model our setwise connections using a simplicial complex.

We therefore develop and study Simplicial Hopfield Networks. We weight the simplices of the
simplicial complex to store memory patterns and generalise the energy functions and update rules of
traditional and modern Hopfield networks. Our main contributions are:

• We introduce extensions of various Hopfield networks with setwise connections. In addition
to generalising Hopfield networks to include explicit, controllable setwise connections based
on an underlying simplicial structure, we also study whether the topological features of the
underlying structure influences performance.

• We prove and discuss higher memory capacity in the general case of simplicial Hopfield
networks. For the fully-connected simplicial Hopfield network, we prove a larger memory
capacity than previously shown by Newman (1988); Demircigil et al. (2017) for higher-
degree Hopfield networks.

• We empirically show improved performance under parameter constraints. By restricting
the total number of connections to that of pairwise Hopfield networks with a mixture of
pairwise and setwise connections, we show simplicial Hopfield networks retain a surprising
amount of improved performance over pairwise networks but with fewer parameters, and
are robust to topological variability.

2 SIMPLICIAL HOPFIELD NETWORKS

2.1 SIMPLICIAL COMPLEXES

Simplicial complexes are mathematical objects which naturally represent collections of setwise
relationships. Here we use the combinatorial form, called an abstract simplicial complex. Although,
to build intuition and visualise the simplicial complex, we also refer to their geometric realisations.

Definition 2.1. Let K be a subset of 2[N ]. The subset K is an abstract simplicial complex if for any
σ ∈ K, the condition ρ ⊆ σ gives ρ ∈ K, for any ρ ⊆ σ.

2Work by Horn, D. & Usher, M. (1988) study almost the same system but with an slight modification to the
traditional update rule, whereas Krotov & Hopfield (2016) use their modern, energy-based update rule.
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Figure 1: A. Comparative illustrations of connections in a pairwise Hopfield network (left) and a
simplicial Hopfield network (right) with N = 4. In a simplicial Hopfield network, σ = {i, j} is an
edge (1–simplex), σ = {i, j, k} is a triangle (2–simplex), σ = {i, j, k, l} is a tetrahedron (3–simplex),
and so on. B. Connection weight histograms of 1–, 2–, and 3–simplices in a simplicial Hopfield
network. In the binary case, the x-axis range is [−P/N,+P/N ]. Here, N = 100 and P = 10, thus
the range is [−0.1,+0.1]. Note that each dimension shows a similar, Gaussian distribution of weights
(although there are different absolute numbers of these weights; see ‘Mixed diluted networks’ in
Section 2.2). C. Illustration of the hierarchical relationship between elements in the complex, up
to 3–simplices, with arrows indicating potential sources of weight modulation or interaction, e.g.,
between (co)faces or using Hodge Laplacians within the same dimension. Such modulations and
interactions (including their biological interpretations) are discussed in Appendices A.2 and A.3.

In other words, an abstract simplicial complex K is a collection of finite sets closed under taking
subsets. A member of K is called a simplex σ. A k–dimensional simplex (or k–simplex) has
cardinality k + 1 and k + 1 faces which are (k − 1)–simplices (obtained by omitting one element
from σ). If a simplex σ is a face of another simplex τ , we say that τ is a coface of σ. We denote the
set of all k–simplices in K as Kk.

Geometrically, for k = 0, 1, 2, and 3, a k–simplex is, respectively, a point, line segment, triangle,
and tetrahedron. Therefore, one may visualise a simplicial complex as being constructed by gluing
together simplices such that every finite set of vertices in K form the vertices of at most one simplex.
This structure makes it possible to associate every setwise relationship uniquely with a k–simplex
identified by its elements, which in our case are neurons (see Figure 1A). Simplices in K which are
contained in no higher dimensional simplices, i.e., they have no cofaces, are called the facets of K.
The dimension of K, dim(K), is the dimension of its largest facet. We call a simplicial complex K a
k–skeleton when all possible faces of dimension k exist and dim(K) = k.

2.2 MODEL

A network of N neurons is modelled by N spins. Let K be a simplicial complex on N vertices.
In the binary neuron case, S(t)

j = ±1 at time-step t. Given a set of neurons σ (which contains the

neuron i and is a unique (|σ| − 1)–simplex in K), w(σ) is the associated simplicial weight and S
(t)
σ

the product of their spins. Spin configurations correspond to patterns of neural firing, with dynamics
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governed by a defined energy. The traditional model is defined by energy and weight functions

E = −
∑
σ∈K

w(σ)S(t)
σ w(σ) =

1

N

P∑
µ=1

ξµσ , (1)

with ξµi (= ±1) static variables being the P binary memory patterns stored in the simplicial weights.
Similar for spins, ξµσ is the product of the static pattern variables for the set of neurons σ in the pattern
µ. Figure 1B shows examples of the resulting Gaussian distributions of weights at each dimension
of the simplicial complex. We use these weights to update the state of a neuron i by applying the
traditional Hopfield update rule

S
(t)
i = Θ

(∑
σ∈K

w(σ)S
(t−1)
σ\i

)
Θ(x) =

{
1 if x ≥ 0

−1 if x < 0
. (2)

When K is a 1-skeleton, this becomes the traditional pairwise Hopfield network (Hopfield, 1982). In
the modern Hopfield case, the energy function and update rule are

E = −
P∑

µ=1

∑
σ∈K

F (ξµσS
(t)
σ ) (3)

S
(t)
i = sgn

[
P∑

µ=1

(
F (1 · ξµi +

∑
σ∈K

ξµσ\iS
(t−1)
σ\i )− F (−1 · ξµi +

∑
σ∈K

ξµσ\iS
(t−1)
σ\i )

)]
, (4)

where the function F can be chosen, for example, to be of a polynomial F (x) = xn or exponential
F (x) = ex form. When K is a 1-skeleton, this becomes the modern pairwise Hopfield network
(Krotov & Hopfield, 2016).

In the continuous modern Hopfield case, spins and patterns take real values Sj , ξ
µ
j ∈ R. Patterns are

arranged in a matrix Ξ = (ξ1, ..., ξP ) and we define the log-sum-exp function (lse) for T−1 > 0 as

lse(T−1,ΞTS(t),K) = T log

(
P∑

µ=1

∑
σ∈K

exp(T−1Ξµ
σS

(t)
σ )

)
. (5)

The energy function is

E = −lse(T−1,ΞTS(t),K) +
1

2
S(t)TS(t). (6)

For each simplex σ ∈ K, we denote the submatrix of the patterns stored on that simplex as Ξσ (which
has dimensions P × σ). Using the dot product to measure the similarity between the patterns and
spins, the update rule is

S(t) = softmax

(
T
∑
σ∈K

(
ΞT
σ

−−−−→
S(t−1)
σ

))
Ξ. (7)

In practice, however, the dot product has been found to under-perform in modern continuous Hopfield
networks compared to Euclidean or Manhattan distances (Millidge et al., 2022). Transformer models
in natural language tasks have also seen performance improvements by replacing the dot product
with cosine similarity (Henry et al., 2020), again a measure with a more geometric flavour. However,
these similarity measures generalise distances between pairs of elements rather than sets of elements.

We therefore use higher-dimensional geometric similarity measures, cumulative Euclidean distance
(ced) and Cayley–Menger distance (cmd). Let dρ be the (Euclidean or Manhattan) distance between
pattern ξµρ and spins S(t)

ρ for pattern µ and spins ρ ⊂ σ. Let Kσ
1 be the subset of K such that all

elements in Kσ
1 are 1–simplex faces of σ. We define the cumulative Euclidean distance as

ced(ξµσ , S
(t)
σ ) =

√∑
ρ∈Kσ

1

(dρ)2. (8)

We define cmd(ξµσ , S
(t)
σ ) as the Cayley–Menger determinant of all ρ ∈ Kσ

1 , with distances set as dρ.
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Mixed diluted networks. A computational concern in the above models is that the number of
unique possible k–simplices is

(
N

k+1

)
, e.g., with N = 100 there are approximately 9.89 × 1028

possible 50–simplices, compared to just 4, 950 edges (1–simplices) found in a pairwise Hopfield
network. If we allow all possible simplices for a simplicial Hopfield network with N neurons, the
total number of simplices (excluding 0–simplices, i.e., autapses) will be

∑N
d=2

(
N
d

)
. Simultaneously,

there is also an open question as to how many setwise connections is biologically-realistic to model.
We also note that setwise connections can be functionally built from combinations of pairwise
connections by introducing additional hidden neurons, as shown by Krotov & Hopfield (2021).
Therefore, we might in fact be under-estimating the total number of ‘functional’ setwise connections,
which may appear via common network motifs or ‘synapsembles’ (Buzsáki, 2010).

Conservatively, we evaluate classes of simplicial Hopfield networks which are low-dimensional, i.e.,
dim(K) is small, and where the total number of weighted simplices is not greater than those normally
found in a pairwise Hopfield network, i.e., the number of non-zero weights is

(
N
2

)
. We randomly

choose weights to be non-zero, with each weight of a dimension having an equal probability and
according to Table 1. (See Appendix A.4 for a small worked example.) Such random networks have
previously been studied in the traditional pairwise case as ‘diluted networks’ (Treves & Amit, 1988;
Bovier & Gayrard, 1993a;b; Löwe & Vermet, 2011). Here we study mixed diluted networks, since
we use a mixture of connections of different degrees. We believe we are also the first to study such
networks beyond pairwise connections, as well as in modern and continuous cases.

Topology. Different collections of simplices in a simplicial complex can result in different Euler
characteristics (a homotopy invariant property). Table 1 shows this from a parameter perspective via
counting only the simplices with non-zero weights. However, even when using the same proportion
of 1– and 2–simplices, the choices of which vertices those simplices contain can be different due to
randomness. Therefore, the topologies of each network may vary (and so too may their subsequent
dynamics and performance). One well-studied and often important topological property in the
context of simplicial complexes, homology, counts the number of holes in each dimension. In the 0th
dimension, this is the number of connected components; in the 1st dimension, this is the number of
triangles formed by edges which don’t also have a 2–simplex ‘filling in’ the interior surface of that
triangle; in the 2nd dimension, this is the number of tetrahedra formed by triangles which don’t also
have a 3–simplex ‘filling in’ the interior volume of that tetrahedron; and so on. The exact number of
these holes in dimension k can be calculated by the k–th Betti number, βk (see Appendix A.5). We
calculate these for our networks to observe the relationship between homology and memory capacity.

2.3 THEORETICAL MEMORY CAPACITY

Mixed networks. Much is already known about the theoretical memory capacity of various Hopfield
networks, including those with explicit (Newman, 1988) or implicit (Demircigil et al., 2017) setwise
connectivity. However, we wish to point out a somewhat underappreciated relationship between
memory capacity and the explicit or implicit number of network connections – which, in the fully-
connected network, is determined by the degree of the connections (see Appendix A.6 for proof).

Corollary 2.2 (Memory capacity is proportional to the number of network connections). If the
connection weights in a Hopfield network are symmetric, then the order of the network’s memory
capacity is proportional to the number of its connections.

What happens when there are connections between the same neurons at multiple degrees, i.e., what
we call a mixed network? To the best of our knowledge, the theoretical memory capacity of such
networks has not been well-studied. However, we found one classical study by Dreyfus et al. (1987)
which showed, numerically, adding triplet connections to a pairwise model improved attractivity
and memory capacity. Most prior formal studies have only considered connections at single higher
degrees (Newman, 1988; Bengtsson, 1990). Although, higher order neural networks have historically
considered such mixtures of interactions on different degrees simultaneously (Zhang, 2012), but
as regular neural networks (e.g., feed-forward networks), not Hopfield networks. Higher order
Boltzmann machines (HOBMs) (Sejnowski, 1986) have also been studied with mixed connections
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(Amari et al., 1992; Leisink & Kappen, 1999)3. However, HOBMs are unlike Hopfield networks in
that they typically have hidden units, are trained differently, and have stochastic neural activations 4.
Modern Hopfield networks also include an implicit mixture of connections of different degrees5 (but
– and see Theorem 1 of Demircigil et al. (2017), which remains unproven – the mixture is unbalanced
and not particularly natural, especially for F (x) = xn when n is odd). Therefore, we include the
following result demonstrating fixed points, large basins of attraction (i.e., convergence) to those fixed
points in mixed networks, and memory capacity which is linear in the number of fully-connected
degrees of connections (a proof is provided in Appendix A.6).

Lemma 2.3 (Fully-connected mixed Hopfield networks). A fully-connected mixed Hopfield network
based on a D–skeleton with N neurons and P patterns has, when N → ∞ and P is finite: (i)
fixed point attractors at the memory patterns; and (ii) dynamic convergence towards the fixed
point attractors within a finite Hamming distance δ. When P → ∞ with N → ∞, the network
has capacity to store up to (

∑D
d=1 N

d)/(2 ln N) memory patterns (with small retrieval errors) or
(
∑D

d=1 N
d)/(4 ln N) (without retrieval errors).

This naturally comports with Theorem 2 from Demircigil et al. (2017), except here we show an
increased capacity in the mixed network, courtesy of Corollary 2.2.

Mixed diluted networks. As mentioned earlier, full setwise connectivity is not necessarily tractable
nor realistic. Löwe & Vermet (2011) show for pairwise diluted networks constructed as Erdös-Renyi
graphs (constructed by including each possible edge on the vertex set with probability p) that the
memory capacity is proportional to pN . Crucial for this result is that the random graph must be
asymptotically connected. This makes sense, given that if any vertex was disconnected its dynamics
could never be influenced. Empirically, it does seem that a certain threshold of mean connectivity in
pairwise random networks is crucial for attractor dynamics (Treves & Amit, 1988).
Remark 2.4. By a straightforward generalisation of Löwe & Vermet (2011)’s result, diluted networks
constructed as pure Erdös-Renyi hypergraphs may store on the order of pNd−1 memory patterns,
where d is the degree of the connections.

In the case of an unbounded number of allowable connections, Remark 2.4 would suggest picking as
many higher-degree connections as possible when choosing between connections of lower or higher
degrees in our mixed diluted networks. However, in the bounded case (our case), we are non-trivially
changing the asymptotic behaviour in terms of connectivity and dynamics when we use a mixture of
connection degrees. We also need to beware of asymmetries which may arise (Kanter, 1988). This
makes the analysis of mixed diluted networks not particularly straightforward (also see Section 4).

2.4 NUMERICAL SIMULATIONS AND PERFORMANCE METRICS

Given the large space of possible network settings, in the main text we focus primarily on conditions
listed in Table 1. Additional experiments are also shown in Appendix A.8.

Table 1: List of network condition keys (top row), their number of non-zero weights for 1– and
2–simplices (second and third rows), and their ‘functional’ Euler characteristic (χ, bottom row). N is
the number of neurons. C = (N − 1)N . For simulation, the number of simplices at each dimension
are rounded to the nearest integer.

K1 R12 R12 R12 R2

1–simplices
(
N
2

)
0.75

(
N
2

)
0.50

(
N
2

)
0.25

(
N
2

)
0

2–simplices 0 0.25
(
N
2

)
0.50

(
N
2

)
0.75

(
N
2

) (
N
2

)
χ N − (1/2)C N − 0.25C N N + 0.25C N + (1/2)C

3HOBMs also suffer the same problem as we face here, one of having many high-order parameters between
the neurons to keep a track of. Possibly a factoring trick like in Memisevic & Hinton (2010) for HOBMs could
be helpful in simplicial Hopfield networks.

4Despite this, there are equivalences (Leonelli et al., 2021; Marullo & Agliari, 2021; Smart & Zilman, 2021).
5Recall that

(∑
i ai

)b
=

∑
i a

b+1
i .
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In our numerical simulations, we perform updates synchronously until E is non-decreasing or until
a maximum number of steps is reached, whichever comes first. When a simulation concludes we
compute the overlap (for binary patterns) or mean squared error (MSE) (for continuous patterns) of
the final spin configuration with respect to all stored patterns using

mµ =

∣∣∣∣∣ 1N
N∑
i=1

S
(t)
i ξµi

∣∣∣∣∣ MSEµ =
1

N

N∑
i=1

(S
(t)
i − ξµi )

2. (9)

We say the network recalls (or attempts to recall) whichever pattern has the largest overlap (where
mµ = 1 indicates perfect recall) or smallest MSE (where MSEµ = 0 indicates perfect recall).

3 NUMERICAL SIMULATIONS

3.1 BINARY MEMORY PATTERNS

After embedding random binary patterns, we started the network in random initial states and recorded
the final overlap of the closest pattern. Table 2 shows the final overlaps for traditional simplicial
Hopfield networks (N = 100). Our simplicial Hopfield networks significantly outperform the
pairwise Hopfield networks (K1). In fact, the R12 model performs as well at 0.3N patterns as the
the pairwise network performs on 0.05N patterns, a six-fold increase in the number of patterns and
more than double the theoretical capacity of the pairwise network, ∼ 0.14N (Amit et al., 1985).
Surprisingly, Table 3 shows homology accounts for very little of the variance in network performance.

Table 2: Mean ± standard deviation of overlap distributions (n = 100) from traditional simplicial
Hopfield networks with varying numbers (top row) of random binary patterns. K1 is the traditional
pairwise Hopfield network. R12 significantly outperforms K1 at all tested levels (one-way t-tests
p < 10−11, F > 50.13). At all pattern loadings, a one-way ANOVA showed significant variance
between the networks (p < 10−20, F > 26.35). Box and whisker plots shown in Figure 6.

No. patterns 0.05N 0.1N 0.15N 0.2N 0.3N

K1 0.87± 0.18 0.81± 0.16 0.66± 0.10 0.65± 0.10 0.59± 0.08

R12 0.96± 0.10 0.94± 0.14 0.82± 0.20 0.71± 0.17 0.64± 0.13

R12 0.98± 0.10 0.99 ± 0.03 0.97± 0.10 0.91± 0.15 0.76± 0.16

R12 1 ± 0 0.99 ± 0.04 0.99 ± 0.05 0.98 ± 0.08 0.87 ± 0.16

R2 1 ± 0 0.99 ± 0.18 0.94± 0.18 0.74± 0.29 0.53± 0.23

3.2 CONTINUOUS MEMORY PATTERNS

Energy landscape. Using Equation 3 and given a set of patterns, a simplicial complex K, and an
inverse temperature T−1, we may calculate the energy of network states. To inspect changes in the
energy landscapes of different network conditions, we set N = 10 and P = 10 random patterns. We
performed principle component analysis (PCA) to create a low dimensional projection of the patterns.
Then, we generated network states evenly spaced in a 10 × 10 grid which spanned the projected
memory patterns in the first two dimensions of PCA space. We calculated each state’s energy by
transforming these points from PCA space back into the N–dimensional space, across the network
conditions at T−1 = 1, 2, 10 (Figure 7). At T−1 = 1, differences between the network conditions’
energy landscapes are very subtle. However, at T−1 = 2 and T−1 = 10, we see a clear change: those
with more 2–simplices possess more sophisticated, pattern-separating landscapes.

Recall as a function of memory loading. We tested the performance of our simplicial Hopfield
networks by embedding data from the MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky & Hinton,
2009), and Tiny ImageNet (Le & Yang, 2015) datasets as memories. We followed the protocol of
Millidge et al. (2022) to test recall under increasing memory load as an indication of the networks’
memory capacities. To embed the memories, we normalise the pixel values between 0 and 1, and
treat them as continuous-valued neurons, e.g., for MNIST we have N = 28 × 28 = 784 neurons.

7



Published as a conference paper at ICLR 2023

We initialise S as one of the memory patterns corrupted by Gaussian noise with variance 0.5. After
allowing the network to settle in an energy minima, we measured the performance as the fraction of
correctly recalled memories (over all tested memories) of the uncorrupted patterns, where ‘correct
recall’ was defined as a sum of the squared difference being < 50. In all tests, we used T−1 = 100.
Also see Appendix A.7 for further simulation details.

Figure 2 compares a pairwise architecture, K1, with a higher-order architecture, R12. The perfor-
mance of the K1 networks is comparable to that shown in Millidge et al. (2022), however, R12
significantly outperforms K1 across all datasets. Since the MNIST dataset is relatively simple and K1
already performs well, the performance improvement is small, albeit significant. In the CIFAR-10
and Tiny ImageNet datasets, the performance improvements are more noticeable, with most distance
functions seeing improvements of ≥ 10% in the fraction of correctly retrieved memories.
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Figure 2: Recall (mean ± S.D. over 10 trials) as a function of memory loading using the MNIST,
CIFAR-10, and Tiny ImageNet datasets, using different distance functions (see legend). Here we
compare the performance of modern continuous pairwise networks (top row) and modern continuous
simplicial networks (bottom row). The simplicial networks are R12 networks (see Table 1 for
information). R12 significantly outperforms the pairwise network (K1) at all tested levels where
there was not already perfect recall (one-way t-tests p < 10−9, F > 16.01). At all memory loadings,
a one-way ANOVA showed significant variance between the networks (p < 10−5, F > 11.95).
Tabulated results are shown in Tables 6, 7, and 8.

Also noticeable in the results for CIFAR-10 and Tiny ImageNet (see Figure 2) is the relatively high
performance of the ced and cmd distance measures. Indeed, cmd performs as well or better than
the Manhattan distance in our experiments. And both ced and cmd (along with the Euclidean and
Manhattan distances) outperform the dot product in CIFAR-10 and Tiny ImageNet at high memory
loadings. This further supports the intuition and results of Millidge et al. (2022), that more ‘geometric’
distances perform better as similarity measures in modern Hopfield networks.

4 DISCUSSION

We have introduced a new class of Hopfield networks which generalises and extends traditional,
modern, and continuous Hopfield networks. Our main finding is that mixed diluted networks can
improve performance in terms of memory recall, even when there is no increase in the number of
parameters. This improvement therefore comes from the topology rather than additional information
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in the form of parameters. We also show how distance measures of a more ‘geometric flavour’
can further improve performance in these networks. This simplicial framework (in diluted or
undiluted forms) now opens up new avenues for researchers in neuroscience and machine learning. In
neuroscience, we can now model how setwise connections, such as those provided by astrocytes and
dendrites, may improve memory function and may interact to form important topological structures
to guide memory dynamics. In machine learning, such topological structures may now be utilised in
improved attention mechanisms or Transformer models, such as in Ramsauer et al. (2021). At the
intersection of these fields, we may now further study how the topology of networks in neuroscience
and machine learning systems may correspond to one another and share functional characteristics,
such as how the activity of ‘pairwise’ Transformer models have shown similarities to activities in
auditory cortex (Millet et al., 2022). Could ‘setwise’ Transformer models correspond more closely?
Or to a more diverse range of cell types? These and related questions are now open for exploration,
and may lead to improved performance in applications (Clift et al., 2020).

Convolution operations and higher-order neural networks. From the perspective of modern
deep learning, considering higher order correlations between downstream inputs to a neuron is
quite classical. For example, convolutional neural networks have incorporated specialised setwise
operations since their inception (Fukushima, 1980; Lecun et al., 1998), and more general setwise
relationships have also been introduced in higher-order neural networks (Pineda, 1987; Reid et al.,
1989; Ghosh & Shun, 1992; Zhang, 2012). Although our setwise connections are not explicitly
convolutional, they are in one notable sense conceptually similar: they collect information from a
particular subset of neurons and only become active when those particular neurons are active in the
right way. One of the main differences, however, is that – unlike typical convolution operations – we
don’t restrict the connection locations to some particular locations or arrangements within the input
space. Our results therefore suggest that, in some cases, replacing regular feedforward connections
with random convolutions may offer improved performance in some circumstances.

Improvements and extensions. Our study focusses on random choices of weighted simplices.
What if we choose more carefully? Indeed, it seems quite likely biological setwise connections are
not random, and are almost certainly not randomly chosen to replace random pairwise connections.

It now seems natural to study how online weight modulations (e.g., based on spectral theories)
could generate new connections between Hopfield networks and, e.g., geometric deep learning.
Such modulations may have novel biological interpretations, e.g., spatial and anti-Hebbian memory
structures may be modelled by strategically inserting inhibitory interactions (Haga & Fukai, 2019;
Burns et al., 2022) between higher simplices (and may also model disinhibition).

Further analytic studies. Our numerical results suggest diluted mixed networks have larger
memory capacities than pairwise networks. In a fairly intuitive sense, this is not particularly surprising
– we are adding degrees of freedom to the energy landscape, within which we may build more stable
and nicely-behaved attractors. However, we have not yet proven this increased capacity analytically
for the diluted case, only given some theoretical indications as to why this occurs and proven the
undiluted case. We hypothesise it is possible to do so using generalised methods from replica-
symmetric theory (Amit et al., 1985) or self-consistent signal-to-noise analysis (Shiino & Fukai,
1993), in combination with methods from structural Ramsey theory. The capacity for modern
simplicial networks may be on the order of a double-exponential in the number of neurons (since, in
the limit of N → ∞, there is an exponential relationship in the number of multispin interactions on
top of an exponential relationship in the number of intra-multispin interactions, i.e., both pair-spins
and multi-spins can have higher degrees of attraction). This capacity, however, will likely scale
nonlinearly with the choice of (random) dilution, e.g., there may be a steep drop in performance
around a critical dilution range, likely where some important dynamical guarantees are lost due to an
intolerably small number of connections of a particular order.

Even higher orders and diluted mixtures of setwise connections may also be studied. Such networks,
per Lemma 2.3, will likely improve their performance as higher-degree connections are added (as
shown in Appendix A.8). However, and as implied in Section 2.3, the number and distribution of
these connections may need to be careful chosen in highly diluted settings.
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REPRODUCIBILITY STATEMENT

To reproduce our results in the main text and appendices, we provide our Python code as supplemen-
tary material at https://github.com/tfburns/simplicial-hopfield-networks.
We have also provided a small worked example in Appendix A.4 to help clarify computational steps
in the model construction. Assumptions made in our theoretical results are stated in Section 2.3 and
Appendix A.6.
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A APPENDIX

A.1 PURPOSE OF STUDYING AND EXTENDING HOPFIELD NETWORKS

In the context of memory more broadly, associative memory is a form of long-term memory, memory
which can potentially last a lifetime. However, memory also exists on at least two shorter and
functionally distinct time-scales: short-term memory and sensory memory. Short-term or working
memory stores information for on the order of tens of seconds, and performs as a limited, passive
temporary memory reservoir with which to manipulate and use information (Milner, 1955; Mongillo
et al., 2008). Sensory memory operates on even shorter timescales than short-term memory, typically
on the order of only seconds. It is where visual (Sperling, 1963; Vogel et al., 2001), auditory (Darwin
et al., 1972; Winkler & Cowan, 2005), and other sensory information (Gordon et al., 1993; Lederman
& Klatzky, 2009) is first actively ‘remembered’ – all other information is either immediate sensory
information or recalled information. A general schema for forming a long-term memory is therefore to:
(1) receive external sensory information; (2) store the features of that sensory information in sensory
memory; (3) manage and store one or more features of the sensory information (and/or combine it
with other sensory information) in short-term memory; and then (4) consolidate this information into
long-term memory. Understanding these processes from a theoretical and computational perspective
has several real-world implications, including: (i) it may allow us to create more intelligent machines,
by gaining inspiration and insight from biological strategies to store, retrieve, and use long-term
associative memories; and (ii) it may help us understand the neurobiological mechanisms (and their
implications) for biological memory systems, helping to not only understand related psychological
and biological phenomena, but to potentially help identify therapeutic targets for related dysfunction.

Psychological abilities attributed to associative memory in humans and non-human animals are
typically said to be any form of long-term memorisation which involves ‘pairing’ or ‘associating’
distinct stimuli such that when presented with one stimuli, the subject can recall the other stimuli.
Classical examples of this type of associative memory include pairings: name-face pairs (Sperling
et al., 2003), object-sound pairs (Preziosi & Coane, 2017), and object-place pairs (Gilbert & Kesner,
2004). These types of associative memories are part of explicit or declarative memory (Ullman, 2004),
i.e., long-term memory that can be explicitly or voluntarily stated or declared. This is in contrast to
associative memories which are part of implicit or non-declarative memory, i.e., long-term memory
recalled or used unconsciously or unintentionally. Examples of this type of associative memory
are generated by classical conditioning (Maren, 2001; Christian & Thompson, 2003) and operant
conditioning (Mackintosh, 1983; McSweeney & Murphy, 2014).

Computational accounts of implicit associative memory have a long and successful history starting
from examples like the Rescorla–Wagner model (Rescorla & Wagner, 1972). Today, this research has
grown into the computational field of reinforcement learning (Daw & Doya, 2006). In comparison to
implicit associative memory, explicit associative memory seems more computationally sophisticated,
as suggested by its complex biological bases (Chaudhuri & Fiete, 2016; Clopath et al., 2017; Mau
et al., 2020).

Soon after the proposal of Marr (1971), one of the first and most influential computational models of
(explicit) associative memory was the Hopfield model (Hopfield, 1982), which we study and extend
here. A nice feature of this model is that in the basic case of embedding a single memory, it is
easy to see there exists a choice of threshold for every neuron whereby any partial activation of the
memory will lead to activation of all its other members. This therefore generates an attractor dynamic
around the fixed point of the stored memory, which is comparable to the neuronal assembly attractor
dynamics seen in the hippocampus (Wills et al., 2005; Pfeiffer & Foster, 2015; Rebola et al., 2017).

Hippocampus is probably the foremost brain structure involved in memory. It, together with the
surrounding entorhinal, perirhinal, and parahippocampal cortices, is especially important for explicit
memory (Scoville & Milner, 1957; Milner, 1966; Squire, 1992). It is a necessary structure for the
initial formation and learning of explicit memory, acting as a short-term memory for later long-term
consolidation, thought to occur in cortex (Squire et al., 1989; Sutherland & Rudy, 1989). Classically,
we think these capacities are mainly achieved via Hebbian learning and long-term potentiation (Bliss
& Gardner-Medwin, 1973; Gustafsson & Wigström, 1988). However, there is now an increasing
literature which shows how other mechanisms may help to achieve these memory functions (see
Appendix A.2 for examples).
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As a complete computational account of long-term memory storage, the classical Hopfield model
encounters challenges. As discussed in Section 1 of the main text, the memory capacity of the
classical Hopfield network is linear in the number of neurons N , specifically: approximately 0.14N
patterns may be stored before spurious attractors overwhelm workable levels of memory recall (Amit
et al., 1985; McEliece et al., 1987; Bruck & Roychowdhury, 1990), and this capacity diminishes
further when the patterns are statistically or spatially correlated (Löwe, 1998), in sparse connectivity
regimes (Treves & Amit, 1988; Löwe & Vermet, 2011), and in combination (Burns et al., 2022).
Biological networks typically have very sparse connectivity (Minai & Levy, 1993; Lansner, 2009;
Barth & Poulet, 2012) and everyday memory items typical share many statistical features, may have
sophisticated inter-relations, and are spatially or semantically correlated in non-trivial structures
(Constantinescu et al., 2016; Aronov et al., 2017; Bellmund et al., 2018; Bao et al., 2019; Park et al.,
2021; Griesbauer et al., 2022). Despite this, humans can remember very high-fidelity information
of thousands of statistically similar images (Standing, 1973; Brady et al., 2008) and human faces
(Jenkins et al., 2018), tens of thousands of linguistic items (Brysbaert et al., 2016), and more than
100,000 digits of the number π (Bellos, 2015) – all, seemingly, without dramatically sacrificing or
over-writing other memories.

Although modern Hopfield networks have substantially increased theoretical memory capacity
(Krotov & Hopfield, 2016; Demircigil et al., 2017), the combined biological and psychological
evidence mentioned above, along with the finite (if large) number of brain cells (Herculano-Houzel,
2009) and energetic demands of maintaining them and their inter-connections (Bordone et al., 2019),
suggest there may be more to the neurophysiological and computational story. Furthermore, even if
we find that the theoretical memory capacity should still be high according to a Hopfield interpretation,
capacity can be considered as a measure of undesired interferences between memories, and thus may
be maximised for cognitive convenience or speed and accuracy of memory recall.

Nevertheless, problems and criticisms don’t detract from the usefulness and importance of the
Hopfield model or its modern variations in the study of memory systems (Sathasivam & Wan
Abdullah, 2008; Rizzuto & Kahana, 2001; Weber et al., 2017), usefulness in machine learning
applications (Widrich et al., 2020; Seidl et al., 2022), contribution to more general machine learning
(Sharma et al., 2022; Hoover et al., 2022), or connection between biology and machine learning
(Chaudhuri & Fiete, 2019; Tyulmankov et al., 2021; Kozachkov et al., 2022). There are even more
opportunities to build upon this substantial foundation to create more sophisticated computational
models of associative memory. Notably, much work has improved the efficiency and capacity of
the Hopfield network (Storkey, 1997; Hopfieid, 2008; Krotov & Hopfield, 2016; Gripon & Berrou,
2011; Mofrad & Parker, 2017). Other work has focused on achieving sparse representations (Kim
et al., 2017; Hoffmann, 2019) or including other forms of biological realism (Watson et al., 2011a;b;
Woodward et al., 2015; Burns et al., 2022). The current work contributes to developments in sparsity,
biological realism, and memory capacity.

A.2 SETWISE CONNECTIONS AND MODULATIONS ARE BOUNTIFUL IN BIOLOGY

Setwise connections are not limited to the case, as one might expect, of multiple synaptic contacts
between pairs or sets of cells (Jones & Powell, 1969; Sorra & Harris, 1993; Geinisman et al., 2001;
Lee et al., 2013; Rigby et al., 2022), which may result in multiplicative interactions (Poleg-Polsky
& Diamond, 2016; Reuveni et al., 2017; Groschner et al., 2022) or form of functional synaptic
clusters (Kavalali et al., 1999; Bloss et al., 2018; Pulikkottil et al., 2021; Hedrick et al., 2022). Other
examples (some of which are illustrated in Figure 3) include the wide spatial dispersion of certain
neurotransmitters (Rusakov & Kullmann, 1998; Arbuthnott & Wickens, 2007; Kato et al., 2022),
dendro-dendritic synapses (Pinault et al., 1997; Didier et al., 2001; Brombas et al., 2017), persistently-
connected neuronal assembly structures or ‘synapsembles’ (Buzsáki, 2010; Papadimitriou et al.,
2020), distributed persistent activity during activities such as motor planning and working memory
(Guo et al., 2017; Hart & Huk, 2020), neuroglial modulations of neurotransmitter release probabilities
across multiple neurons or synapses (Min et al., 2012; Covelo & Araque, 2018; Chipman et al., 2021),
‘tripartite’ astrocyte–neuron synapses (Araque et al., 1999; Perea et al., 2009), astrocytic coding
(Doron et al., 2022), and during dendritic integration at the level of individual neurons (Golding
et al., 2002; Etherington et al., 2010). Modulations of and interactions between such connections are
illustrated in Figure 4.
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It is also possible to ‘functionally’ construct setwise connections through only pairwise synapses,
as shown in Krotov & Hopfield (2021). In one sense, this kind of pairwise-based reconstruction of
setwise connections could also be thought of as similar to results from Poirazi et al. (2003), who
showed how multi-layer artificial neural networks can approximate more biologically-sophisticated
model neurons with dendrites. Indeed, many of the known and suggested computational features
of dendritic integration (Poirazi & Papoutsi, 2020; Chavlis & Poirazi, 2021) may be considered as
highly specialised and sophisticated forms of convolutions or setwise interactions.
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Figure 3: A. Multi-synaptic bouton. B. Dendritic integration. C. Extra-synaptic neurotransmitter
diffusion. D. Functional connections between neural assemblies.
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Figure 4: A. Neurotransmitter depletion at a synapse. B. NMDA-spikes and unequal synaptic
strengths in dendritic integration. C. Transmission speed plasticity using myelination (top) and
axon diameter (bottom) to affect ‘temporal’/functional setwise influence in a post-synaptic cell. D.
Astrocytic messaging, between both neurons and astrocytes.
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A.3 OPTIONS FOR MODELLING SETWISE CONNECTIVITY IN NEURAL NETWORKS AND WHY
WE CHOOSE SIMPLICIAL COMPLEXES

In geometric and topological artificial intelligence and machine learning, recent advances have been
realised by utilising higher dimensional analogues of graphs such as simplicial complexes (Ebli et al.,
2020; Roddenberry et al., 2021), cube complexes (Burns & Tang, 2022), cell complexes (Hajij et al.,
2020; Bodnar et al., 2021), and hypergraphs (Feng et al., 2019; Xu et al., 2022). Unlike graphs, these
structures can naturally represent higher-degree, setwise relationships. However, not all structures are
appropriate for all systems (Spivak, 2009; Rosas et al., 2022).

Why do we choose to model our collections of setwise connections as weighted simplicial complexes
and not use general cell complexes or hypergraphs? There are three main reasons:

1. Simplicial complexes allow all possible setwise relations to exist. Simplices, by construction,
may span any number of vertices. This means any possible combination of neurons may
share a common, setwise weight. This is also possible in hypergraphs, but not possible in
all complexes, e.g., cube complexes may not include triangles. The ‘natural’ complex for
modelling all possible setwise relationships is therefore a simplicial one. Since we also wish
for our setwise weights to be symmetrical (i.e., have the same value when updating the spin
with respect to each constituent neuron), it is unnecessary to include any more than one
unique object per setwise relationship. This also makes the choice of a simplex suitable,
since there can only be one unique simplex for a given set of vertices – which is also the
case for edges in undirected hypergraphs (but we find these are less suitable).

2. The sub-edge problem of hypergraphs makes them less suitable. Hypergraphs are graphs
where edges may contain any number of unique vertices from the vertex set. In a sense, these
are a more general structure than simplicial complexes and lack downward closure, e.g., if
the edge {1, 2, 3} exists, edges such as {2, 3} or {1} do not necessarily exist, whereas if
{1, 2, 3} was a simplex in a simplicial complex, simplices {2, 3} and {1} exist. However,
hypergraphs do not have well-defined ‘sub-edges’ (described as the ‘sub-edge problem’ in
Remark 3.5 of Spivak (2009)). This has the consequence of defining interactions between
‘levels’ of hyperedges (setwise relationships) in hypergraphs slightly awkward. In contrast,
simplicial complexes have a well-defined hierarchy of setwise relationships, partly due to
the downward closure condition.

3. Downward closure of setwise connections is biologically plausible. Another benefit of
downward closure in simplicial complexes is that it currently seems better supported from
the perspective of biological plausibility (also see Appendix A.2). For example, although
it can happen that a setwise connection (anatomical or functional) between neurons could
exist without any underlying pairwise connections, the typical machinery used to create
such setwise connections is sufficiently local to assume that, because of the functional local
modularity of connections in the brain (Kaiser & Hilgetag, 2006; Chen et al., 2013; Müller
et al., 2020; Ercsey-Ravasz et al., 2013), there is a high probability of these neurons having
a pairwise connection simply due to proximity.

As an additional practical benefit, simplicial complexes are currently more well-studied than structures
such as hypergraphs (at least in some areas, e.g., spectral theories or (co)homology, which are of
natural interest here), meaning that we can also take advantage of the relative maturity of the field in
those areas – admittedly, we use very few advanced methods or properties in an essential way in this
study, although we hope to do so in future studies, having now introduced an initial interpretation
of simplicial Hopfield networks and begun exploring some of their potential benefits. However, it
will also be interesting to see what differences can be found between hypergraphic and simplicial
Hopfield networks, and perhaps which provides a closer approximation to biology or which shows
improved performance on certain tasks.

Among other possibilities, the weight of a simplex w(σ) could be modulated by the local energy
of its spins Sσ, its coface’s spins, or of those of simplices in the same dimension as σ which are
‘neighbouring’ (in the Hodge Laplacian sense (Lim, 2020; Schaub et al., 2020)). These interactions
could take many different mathematical forms (Petri & Barrat, 2018; Ebli et al., 2020; Roddenberry
et al., 2021; Rosas et al., 2022; Santoro et al., 2022). Neurobiologically, these interactions could
represent neural–glia interactions, glia–glia interactions, nonlinear dendritic integration (especially
dendritic spikes and shunting), neurotransmitter–neuromodulator interactions, or hierarchical as-
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sembly operations and dynamics, to name a few (see Appendix A.2 for illustrations and further
information).

The downward closure of simplicial complexes could be seen as a disadvantage. For example, when
including simplices of high dimension, we are also forced to limit our choices of simplices if we
wish to maintain the simplicial structure. Again, whenever a k–simplex exists in K, all its faces must
also exist, e.g., if a triangle exists, so must its surrounding edges and their surrounding vertices. If
any constituent simplex is missing, the structure of the simplicial complex is broken and in our case
would become an undirected, weighted hypergraph. Instead, in our simulations, we prefer to interpret
‘missing simplices’ as merely functionally ‘missing-in-action’ by setting their weights to zero if we
do not wish to include them in the model. This has the consequence of having no mathematical effect
on our update rules while retaining the convenience of a simplicial structure.

A.4 A SMALL WORKED EXAMPLE

Consider a small example of just P = 3 memory patterns embedded in a simplicial Hopfield network
on N = 6 neurons. First, let’s consider a 3–skeleton, i.e., a network without any ‘dilution’ or ‘missing
weights’ up to D = 3. Such a network will have functional connections totalling

D+1∑
d=2

(
N

d

)
=

(
6

2

)
+

(
6

3

)
+

(
6

4

)
= 15 + 20 + 15 = 50. (10)

We typically do not include functional self-connections (autapses) – although Hopfield networks
with such networks have been studied (Folli et al., 2017; Rocchi et al., 2017; Gosti et al., 2019). In
simplicial Hopfield networks, such self-connections correspond to 0–simplices, i.e., vertices. While
these vertices do exist in the underlying simplicial complex K, we set their associated weights to 0.

Given N = 6, the 3–skeleton in this example is

K0 ={{1}, {2}, {3}, {4}, {5}, {6}},
K1 ={{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5},

{3, 6}, {4, 5}, {4, 6}, {5, 6}},
K2 ={{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6},

{1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6},
{3, 5, 6}, {4, 5, 6}},

K3 ={{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5},
{1, 3, 4, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6},
{3, 4, 5, 6}},

K =∅ ∪K0 ∪K1 ∪K2 ∪K3.
(11)

Set three patterns as

ξ1 =(−1,+1,−1,+1,−1,+1),

ξ2 =(+1,−1,+1,−1,−1,+1),

ξ3 =(−1,−1,−1,+1,+1,+1).

(12)

For all σ ∈ K0, we set w(σ) = 0. For all higher dimensions, we set

w(σ) =
1

N

P∑
µ=1

ξµσ . (13)

For example,

w({1, 3}) =1/6 · ((−1 ·+1) + (+1 ·+1) + (−1 · −1)) = 1/6,

w({3, 5, 6}) =1/6 · ((−1 · −1 ·+1) + (+1 · −1 ·+1) + (−1 ·+1 ·+1)) = −1/6,

w({2, 4, 5, 6}) =1/6 · ((+1 ·+1 · −1 ·+1) + (−1 · −1 · −1 ·+1) + (−1 ·+1 ·+1 ·+1))

=− 1/2.

(14)
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Given a set of spins S(t) at a time-step t, the network will evolve according to Equation 2, minimising
the energy shown in Equation 1. The energy function consists of a sum of products of the weights
with the product of their respective spins, e.g., if S(t) = (+1,+1,−1,+1,−1,−1),

E = −
(
· · ·+ w({1, 3}) · S(t)

{1,3} + · · ·+ w({3, 5, 6}) · S(t)
{3,5,6} + · · ·+ w({2, 4, 5, 6}) · S(t)

{2,4,5,6} + . . .
)

= − (· · ·+ 1/6 · −1 + . . .−1/6 · −1 + . . .+1/2 · 1 + . . . ) .
(15)

In this 3–skeleton case, then, the network’s energy function can also be written as

E = −
[
1

2

∑
i,j

(
1

N

P∑
µ=1

ξµi ξ
µ
j

)
S
(t)
i S

(t)
j

+
1

3

∑
i,j,k

(
1

N

P∑
µ=1

ξµi ξ
µ
j ξ

µ
k

)
S
(t)
i S

(t)
j S

(t)
k

+
1

4

∑
i,j,k,l

(
1

N

P∑
µ=1

ξµi ξ
µ
j ξ

µ
k ξ

µ
l

)
S
(t)
i S

(t)
j S

(t)
k S

(t)
l

]
.

(16)

Essentially, the energy function is similar to a sum of the energy functions of Krotov & Hopfield
(2016) with all possible k–neuron connections, but where the weights of those connections are
independent of each other for each level of interaction, making each connection and each level more
controllable. The memory capacity of this type of simiplicial Hopfield network is discussed in Section
2.3 and Appendix A.6. However, one of our main contributions is the findings related to the ‘diluted’
case, i.e., where more than just the 0–simplices have their weights set to 0. Indeed, these are the cases
we mainly evaluate in Section 2.4.

Following on with the same example as above, we can create a diluted simplicial Hopfield network
based on K. For example, if we chose to limit ourselves to

(
6
2

)
= 15 parameters, we could choose to

apportion one third of these parameters to each dimension, i.e., set weights only for a subset K ′ ⊂ K,
e.g.,

K ′
1 ={{1, 2}, {1, 6}, {2, 3}, {2, 4}, {5, 6}},

K ′
2 ={{1, 2, 3}, {1, 2, 6}, {1, 3, 4}, {3, 4, 5}, {3, 4, 6}},

K ′
3 ={{1, 3, 5, 6}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}},

K ′ =K ′
1 ∪K ′

2 ∪K ′
3.

(17)

In our numerical simulations, the choice of which connections to keep is entirely random. By
analogy, we can think of this dilution procedure as a naïve solution to the following (fairly contrived)
communications problem: Imagine we are tasked with increasing the speed at which a deliberative
body of people, e.g., a very large committee, comes to its decisions. Currently, each committee
member has individual channels of communication with every other member. This is good for
high-fidelity, accurate, and nuanced conversations between members, but not so good for efficiency or
speed of decision-making. For example, if a certain block of members consistently vote similarly, it
would perhaps be quicker for those members to communicate as a group to check what their majority
opinion is rather than all members individually communicating with every other member one at a
time. Conversely, when two members consistently vote differently or are active members within
distinct voting blocks (and especially if their votes are often tie-breakers), perhaps those two members
ought to regularly discuss matters privately and in detail. Our naïve solution is to randomly replace
some individual channels of communication with small group communication channels. Possibly
by performing a survey of members or observing patterns in their voting or communications, we
could come up with a better strategy. However, in this analogy, it appears the naïve solution works
reasonably well (see results in Section 3 of the main text). We think a deserving next step will be
determine better strategies, perhaps based on or accounting for the overall memory structure and
correlations between memory items.
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A.5 SIMPLICIAL HOMOLOGY

Simplicial homology allows us to precisely count the number of ‘holes’ in each dimension of
a simplicial complex by calculating the k–dimensional Betti number, βk. A related topological
property which is particularly useful when studying low-dimensional objects (e.g., classification of
surfaces) is the Euler characteristic, which for a simplicial complex can be calculated by χ(K) =∑∞

i=0(−1)k|Kk|, i.e., it is an alternating sum which ‘balances’ out the number of holes in odd and
even dimensions. It is related to the Betti numbers insofar as the Euler characteristic is also given by
χ(K) =

∑∞
i=0(−1)kβk. Note, however, that |Kk| ̸= βk. As such, although the Euler characteristic

can be used for comparing the topologies of two simplicial complexes, it is not as informative (with
respect to holes) as homology (although the latter is more costly to compute, as we will now see).

k-chains and boundaries. The group of k-chains is a free Abelian group with the basis of Kk,

Ck = Ck(K) := ZKk :=

{ ∑
σ∈Kk

ασσ | ασ ∈ Z

}
.

The boundary (difference between the ‘end points’) of a face σ in dimension k is

∂k(σ) :=
∑
j∈σ

sign(j, σ)(σ\j).

where sign(j, σ) = (−1)i−1, where j is the i-th element of σ (ordered) and σ\j := σ\{j}.

Example 1. Consider the simplicial complex

K = {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}, ∅}. (18)

For k = 2, we have K2 = {{1, 2, 3}} and C2 = {{1 · {1, 2, 3}}}. Let us calculate the boundary of
σ = {1, 2, 3}. First, we calculate the respective sign functions:

sign(1, σ) = (−1)i−1 = (−1)1−1 = (−1)0 = 1

sign(2, σ) = (−1)i−1 = (−1)2−1 = (−1)1 = −1

sign(3, σ) = (−1)i−1 = (−1)3−1 = (−1)2 = 1.

Using these values, we may calculate the boundary by

∂2(σ) = sign(1, σ)(σ\1) + sign(2, σ)(σ\2) + sign(3, σ)(σ\3)
= (1)(σ\1) + (−1)(σ\2) + (1)(σ\3)
= (1)({2, 3}) + (−1)({1, 3}) + (1)({1, 2})
= {2, 3} − {1, 3} + {1, 2}.

The boundary of {1, 2, 3} is {2, 3} − {1, 3}+ {1, 2}. Notice, this is a cycle.

1 2

3
−(3 > 1)

+(2 > 1)

+(3 > 2)

Figure 5: Geometric realisation of the simplicial complex in equation 18 and the boundary of
{1, 2, 3}.
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Chain complex. The k-th boundary mapping, ∂k, is the map Ck(K) → Ck−1(K). If k > m− 1
or k < −1, then Ck(K) := 0 and ∂k := 0, where m is the number of 0–simplices. Based on this, the
chain complex of K is

0 → Cn−1(K)
∂n−1

−−→ . . .
∂2

→ C1(K)
∂1

→ C0(K)
∂0

→ C−1(K) → 0.

We define ∂2 := ∂ ◦ ∂ = 0. For example, ∂i−1 ◦ ∂i = 0. This has the consequence of making the
boundary of, say, a solid tetrahedron (3–simplex) a set of oriented triangles (2–simplices) with a ‘net
flow’ of 0 (similar to Stokes’ curl theorem in calculus).
Example 2. Consider the following simplicial complex and its chain complex:

K = {{1, 2}, {1}, {2}, {3}, {4}, ∅},

0 → C1(K)
∂1

→ C0(K)
∂0

→ C−1(K) = 0.

The boundary map ∂1 is {1, 2} 7→ {2} − {1} and all faces in K0 are mapped to the empty set by ∂0.

Homology. We can now see that our k-cycles are Zk = ker ∂k (k-chains α where ∂k(α) = 0).
Whereas, the k-boundaries are Bk = im ∂k+1 (k-chains in the image of ∂k+1). Notice, Bk ⊂ Zk.

The (reduced) k-homology of K is the Abelian group

H̃k(K) := Zk/Bk,

and we define H̃m−1(K) := ker ∂m−1 for k > m− 1 and H̃k(K) := 0 for k < 0.

The k-th Betti number (number of topological holes) is

βk = dim
(
H̃k

)
= dim (Zk)− dim (Bk)

= nullity (∂k)− rank (∂k+1) .

Note, nullity ∂0 = dim (C0).
Example 3. Consider the simplicial complex

K = {{1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}, ∅},

which is the same as that depicted in Figure 5 but without the filled-in triangle. The chain complex is

0 → Z3

{1,2} {1,3} {2,3}
{1} −1 −1 0
{2} 1 0 −1
{3} 0 1 1

∂1

// Z3
(0 map)

∂0

// 0.

We may compute its Betti numbers by

β0 = nullity (∂0)− rank (∂0+1)

= 3− 2 = 1

β1 = nullity (∂1)− rank (∂1+1)

= 1− 0 = 1,

and, by definition, β>1 = 0 in this example.

A.6 PROOFS

The following are our proofs for statements in the main text.
Corollary A.1 (Memory capacity is proportional to the number of network connections). If the
connection weights in a Hopfield network are symmetric, then the order of the network’s memory
capacity is proportional to the number of its connections.
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Proof. Let d be the degree of connections in a Hopfield network with N neurons. The explicit or
implicit number of connections in such a network is Nd. By a simple counting argument, the number
of repeated connections between any set of d neurons is interpreted as d!. By Newman (1988);
Demircigil et al. (2017), the order of such a network’s memory capacity is Nd−1. So the following
relationship holds:

Nd−1

Nd/d!
· N
d!

=
d!

N
· N
d!

= 1.

Lemma A.2 (Fully-connected mixed Hopfield networks). A fully-connected mixed Hopfield network
based on a D–skeleton with N neurons and P patterns has, when N → ∞ and P is finite: fixed
point attractors at the memory patterns and dynamic convergence towards the fixed point attractors
within a finite Hamming distance δ. When P → ∞ with N → ∞, the network has capacity to store
up to (

∑D
d=1 N

d)/(2 ln N) memory patterns (with small retrieval errors) or (
∑D

d=1 N
d)/(4 ln N)

(without retrieval errors).

Proof. Let K be a D–skeleton. Let S(t)
i be the spin of neuron i at time-step t, and let the spin

correspond to a stored pattern, S(t)
i = ξ1i . To be in a fixed point, the local field hi applied to i must

satisfy the inequality S
(t)
i hi > 0, meaning the local field being applied to the neuron must be of the

same sign as the present spin.

In the case of the mixed network, based on the simplicial Hopfield Equations 1–2, the local field is

hi{S(t)} =
1

|K1|

|K1|∑
σ∈K1

P∑
µ=1

ξµi ξ
µ
σ\iS

(t−1)
σ\i +

1

|K2|

|K2|∑
σ∈K2

P∑
µ=1

ξµi ξ
µ
σ\iS

(t−1)
σ\i + . . .

=

D∑
d=1

 1

|Kd|

|Kd|∑
σ∈Kd

P∑
µ=1

ξµi ξ
µ
σ\iS

(t−1)
σ\i

 .

(19)

Because K is a D–skeleton, each dimension Kd will have
(
N
d

)
elements. Using Stirling’s Approx-

imation for the binomial coefficient,
(
N
d

)
≈ Nd/d! (for N ≫ d, which holds if dim(K) is small,

which we argue it should normally be for both computational and biological reasons), we can simplify
Equation 19 slightly

hi{S(t)} =

D∑
d=1

(
d!

Nd

∑
σ∈Kd

P∑
µ=1

ξµi ξ
µ
σ\iS

(t−1)
σ\i

)
. (20)

To analyse the stability of a pattern, we set S(t)
i = ξ1i , where the choice of 1 is arbitrary (since the

weights are symmetric). Substituting ξ1 for S and Equation 20 for h, the inequality we must satisfy
for i = 1 becomes

ξ11h1 =

D∑
d=1

(
d!
∏d

m(N −m)

Nd
+

d!

Nd

∑
σ∈Kd

P∑
µ=2

ξ11ξ
µ
1 ξ

µ
σ\iξ

1
σ\i

)
> 0. (21)

Notice in Equation 21 we decomposed the summation over patterns into signal terms (for the pattern
we are analysing) and noise terms (for the contribution of all other patterns). In the limit of N → ∞,
the signal terms are fixed numbers (of order 1) and, by the Central Limit Theorem, since the noise
terms are sums of random numbers (essentially, random walks), they will have means of 0 and
standard deviations of

d!

Nd

√√√√(P − 1)

d∏
m

(N −m), (22)

31



Published as a conference paper at ICLR 2023

which we can approximate as
√
P/Nd. We can see that as d increases, the noise terms reduce in

variance. However, if P remains fixed and N is sufficiently large, the noise terms become negligible
compared to the signal terms. This therefore guarantees that every pattern will be a fixed point.

Furthermore, these fixed points will remain highly stable against random noise. Suppose we randomly
flip a finite number δ of spins away from a pattern ξ = S (a fixed point). The signal terms’ strengths
are reduced by 2δ but still of order 1, whereas the noise terms remain of order N−1/2. Therefore,
states within Hamming distance δ away from ξ will converge to the fixed point.

Now let P → ∞ with N . The total variance of the noise terms is

v =

D∑
d=1

√
P/Nd. (23)

The probability of stability of neuron i in Equation 21 is the probability that the noise terms are larger
than −1; at ≤ −1 they will overcome the signal terms. This probability is

Pr(ξ11h1 > 0) =
1√
2πv2

∫ ∞

−1

dx exp
(
− x2

2v2

)
=

1

2

[
1 + erf

(√
1

2v2

)]
, (24)

where

erf(x) =
2√
π

∫ x

0

dte−t2 . (25)

For small v (which this is, especially as d increases and relative to the signal), the value of the error
function in Equation 24 will be large and can therefore be approximated (Gradshteyn & Ryzhik,
2007) as

erf(x) ≈ 1− 1√
πx

e−x2

. (26)

We can now approximate Equation 24 as

Pr(ξ11h1 > 0) ≈ 1−
√

z

2π
exp

(
− 1

2z

)
, (27)

where

z =

D∑
d=1

P/Nd. (28)

We can now calculate the probability of a stable pattern, i.e., that the inequality ξ1i hi > 0 is satisfied
for all i, with

Pr(stable pattern) ≈
[
1−

√
z

2π
exp

(
− 1

2z

)]N
≈ 1−N

√
z

2π
exp

(
− 1

2z

)
.

(29)

Since N → ∞, Equation 29 will be close to 1 as the second term will be negligible. This will always
be true if
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z =
1

2lnN
. (30)

Therefore, since we have N neurons with
∑D

d=1 N
d connections between them, the maximum

number of patterns we may store (while accepting small errors) is

pc =

∑D
d=1 N

d

2 ln N
. (31)

Or, if we cannot accept errors,

pc =

∑D
d=1 N

d

4 ln N
. (32)

An additional informal perspective to consider regarding memory capacity is to notice that if P scales
with N , the ratio between the signal and noise terms will be constant. And, since P ∝ Nd, the
theoretical memory capacity scales polynomially with N and linearly with D, and so the theoretical
capacity is approximately

∑D
d=1 cd ·Nd, where cd is a constant which depends on d.

A.7 NUMERICAL IMPLEMENTATION OF SIMILARITY MEASURES

As in Millidge et al. (2022), in order to fairly compare similarity functions, we: (i) normalised simi-
larity scores (separately for each similarity function) so their sum would be equal to 1 (since different
measures had intrinsically different scales); and (ii) for distance measures, used the normalised
reciprocal (since distance measures return low values for similar inputs, but the model relies on high
values being returned for similar inputs, as in the dot product).

A.8 SUPPLEMENTARY FIGURES AND TABLES

Table 3: Pearson correlation coefficients (r) between overlap and β1 for mixed diluted networks
from Table 2. Bolded values are significant at α = 0.05 (without multiple comparisons adjustment).
With multiple comparisons adjustment, there are no significant correlations. Given their construction,
all networks have β0 = 1, and although there is a small chance of 2–dimensional holes in some
networks, we found that β≥2 = 0 for all simulated networks.

No. patterns 0.05N 0.1N 0.15N 0.2N 0.3N

R12 0.02 0.09 0.21 −0.15 −0.01

R12 N/A −0.05 −0.1 0.01 −0.08

Table 4: Extended list of network condition keys (top row), their number of non-zero weights for 1–,
2–, and 3–simplices (second, third, and fourth rows). N is the number of neurons. For simulation,
the number of simplices at each dimension are rounded to the nearest integer.
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Figure 6: Box and whisker plots of final overlap distributions from traditional simplicial Hopfield
networks with varying numbers of embedded patterns. Orange lines indicate the median. The red
dashed line indicates an overlap of 0.5, chance.

Table 5: Mean ± standard deviation of overlap distributions (n = 100) from traditional simplicial
Hopfield networks with varying numbers (top row) of random binary patterns. Keys per Table
4. At all pattern loadings, a one-way ANOVA showed significant variance between the networks
(p < 10−12, F > 13.25).

No. patterns 0.05N 0.1N 0.15N 0.2N 0.3N

R123 1 ± 0 0.99± 0.08 0.97± 0.17 0.93± 0.22 0.89± 0.15

R123 1 ± 0 1 ± 0 0.98± 0.05 0.95± 0.17 0.91± 0.18

R123 1 ± 0 1 ± 0 1 ± 0 0.96± 13 0.93± 0.13

R123 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

R3 0.94± 0.06 0.78± 0.14 0.52± 0.15 0.51± 0.13 0.51± 0.14

Table 6: Mean ± standard deviation (n = 10) of fraction of correctly recalled MNIST memory pat-
terns in simplicial Hopfield networks at a memory loading of 1000 memories. Network performance
varied significantly.

K1 R12 R12 R123

Euclidean 1± 0 1± 0 1± 0 1 ± 0

Manhattan 1± 0 1± 0 1± 0 1 ± 0

Dot Product 0.93± 0.03 0.93± 0.02 0.94± 0.02 1 ± 0

ced - 0.90± 0.02 0.91± 0.03 1 ± 0

cmd - 0.95± 0.03 0.97± 0.03 1 ± 0
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Figure 7: Relative energies of continuous modern networks in a 10× 10 grid plane of the first two
dimensions of PCA space, as computed using the memory patterns. Each network has N = 10 and
the same P = 10 memory patterns are embedded. Network conditions vary by row and inverse
temperatures vary by column. Black dots are projections of the 10 embedded patterns in the PCA
space. The combined explained variance of the first two principle components is 59.3% of the
memory patterns.
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Table 7: Same as Table 6 but for CIFAR-10.
K1 R12 R12 R123

Euclidean 0.31± 0.08 0.39± 0.08 0.51± 0.07 0.64 ± 0.08

Manhattan 0.70± 0.06 0.77± 0.06 0.90± 0.05 0.97 ± 0.04

Dot Product 0.50± 0.07 0.56± 0.07 0.68± 0.06 0.72 ± 0.08

ced - 0.61± 0.06 0.74± 0.06 0.81 ± 0.07

cmd - 0.65± 0.07 0.91± 0.06 0.99 ± 0.02

Table 8: Same as Table 6 but for Tiny ImageNet.
K1 R12 R12 R123

Euclidean 0.31± 0.15 0.34± 0.14 0.55± 0.12 0.61 ± 0.15

Manhattan 0.63± 0.10 0.70± 0.08 0.84± 0.08 0.91 ± 0.09

Dot Product 0± 0 0± 0 0± 0 0± 0

ced - 0.51± 0.14 0.65± 0.13 0.70 ± 0.11

cmd - 0.71± 0.08 0.92± 0.06 0.95 ± 0.06
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