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Abstract

Piezoresponse force microscopy (PFM) is a scanning microscopy technique that
is used to evaluate the nanoscale strain response to an electric voltage applied
to the surface of a ferroelectric material. PFM is a powerful tool for imaging,
manipulation, and studying the nanoscale functional response of ferroelectric
materials, which has been extensively used as a first-pass test for ferroelectricity
in novel materials with unknown functional properties. However, low signal-to-
noise ratio observations arising from the loss of electromechanical signal during
polarization switching often result in unreliable information extraction at these
observations, hampering our understanding of the material characteristics. To
address this challenge, we propose an information recovery framework utilizing
subspace-based matrix completion to achieve improved characterization from
PFM data. It enables us to efficiently recover and extract reliable information
from the data, assisting the modeling efforts for PFM and providing insights for
characterization and experimentation practices.

1 Introduction

Piezoresponse force microscopy (PFM) is a scanning probe microscopy (SPM) technique used to
study the nanoscale electromechanical response of ferroelectric materials [7]. It is a powerful tool
for high-resolution imaging, manipulation, and spectroscopic probing of polarization dynamics [12].
PFM has been applied in a range of applications on the nanoscale, including human bones [9],
biological systems [13], and complex polymer materials [16]. Furthermore, PFM has been utilized in
the characterization of various piezoelectric materials, where further material design and discovery
can be leveraged by its capacity to evaluate material properties and derive insights [5, 22]. Machine
learning approaches have been brought into studying the material properties and evolution for PFM
[14]. PFM can indeed be used to test for ferroelectricity and assist the design of new materials [21],
acting as an efficient high-throughput material characterization platform. Thus it is a key step in
material discovery.

The resonant-frequency modes (R-PFM) of PFM capture the signal across a band of frequencies.
They are particularly useful because they minimize both direct (topographic) and indirect (cantilever)
crosstalk with the measured ferroelectric and piezoelectric properties [11]. To do so, we typically fit
the measured signal from microscopy, denoted by f(x), a function of probing frequency (denoted
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by x) with a simple harmonic oscillator (SHO) model [18]. This converts detected signals into tip-
surface interactions and material properties. The analysis is often based on this model for frequency,
amplitude, phase, and quality factor responses [17]. In this work, we utilize the model described in
Eqn. 1, which produces model parameters from the complex data directly:

f(x) =
Aeiθω2

x2 + iωx
Q − ω2

, (1)

where A refers to amplitude, θ refers to phase, ω refers to the contact resonance frequency, and
Q refers to the quality factor. The four parameters correspond to surface displacement magnitude,
polarization orientation at the material surface, viscoelastic, and energy dissipation properties of the
material, respectively.

Although PFM is effective in characterizing ferroelectric materials and interpreting their physical
properties, it is not without challenges. Fitting data points with low signal-to-noise (SNR) ratio is
often challenging, leading to poor model parameter estimates. Furthermore, these low SNR data
points usually correspond to data points where the material’s inherent polarization is expected to
vanish, for example at the coercive field during polarization switching or in proximity to domain
walls. In other words, at data points that are crucial for us to understand the material properties, PFM
measurements are ”unreliable”.

There have been a few related works approaching the noise issue. The authors of [6] use the k-
means algorithm to find local outliers and anomalies in switching spectroscopy PFM data, identifying
potential systematic issues. Principal component analysis (PCA) is applied to decompose and interpret
SPM data [10], as the principal directions and weights carry physical meanings. The work closest to
ours, [20], directly attempts to identify and eliminate the poor SHO model fits in PFM data due to
significant noise, where PCA is applied to remove the noise. However, it does not address recovering
information from low-SNR data points. Simply denoising the data cannot recover the true signals
accurately, and the problem with low-SNR data remains. Additionally, the pattern of the location of
the low-SNR cases is not considered either.

To tackle the challenges brought by low SNR data points in PFM analysis, we propose a new
information recovery approach leveraging subspace matrix completion methods. By interpolating the
estimated dominant subspaces across data points, we can reconstruct these low-SNR observations.

2 PFM Problem Setting

Information related to functional properties is extracted from multiple levels of R-PFM data. For each
data point, we obtain the tip-material response to an applied voltage pulse across the probed frequency
band in the waveform as shown in Fig. 1a. At each grid location, a series of incrementally changing
voltage pulses from the waveform is applied to the sample surface. The electromechanical strain
recorded as the result of each voltage pulse captures the local hysteresis response, from which SHO
parameters can be extracted at this location as shown in Fig. 1b. The grid usually takes several microns
in each dimension of the sample surface. The data we use is collected from the average response
across three switching cycles (an applied waveform of three triangular periods and 475 individual
applied pulses) over a 50 x 50 grid. Here, we focus on the switching response collected from a single
grid point of a solid solution of lead magnesium niobate and lead titanate relaxor-ferroelectric single
crystal. The response was excited at each pulse with an AC bias of 2V, across a frequency band of
50kHz in width, centered around 250kHz using an Olympus AC240TM-R3 (k = 2N/m) cantilever.

We utilize the SHO model to fit the complex frequency response within the range of probing frequency
(240-260kHz) at this grid point via non-linear least squares regression. For the complex response
data at each frequency, we subtract a linear background from the complex frequency response to
remove the instrumental noise [15]. As Eqn. (1) fits the complex data directly, we split them into
real and imaginary parts for analysis. We obtain the SHO model fits for each impulse bias, some of
which are plotted in Fig. 2. It is observed that in most cases, the SHO model can capture the trend
in the frequency response. However, there are some cases where the SNR is low such that the SHO
model can no longer produce a fit. This causes a failure in the fitting of model parameters. Moreover,
these cases are usually when polarization switching takes place, which bears significance in material
properties. Therefore, the loss of information here seriously undermines the efficacy of PFM. To
improve PFM data analysis, we need to find a way to recover the missing information for these low
SNR cases.
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(a) PFM polarization switching measurements on a grid
with applied voltage waveform.

(b) Functional SHO parameters extracted from data on
a single grid point (ideal scenario).

Figure 1: PFM setup with applied waveform and the extracted parameters using the SHO model.

Figure 2: SHO fits on amplitude response. The two plots on the left are fits for a high SNR case, with
real and imaginary component magnitudes. The two plots on the right are fits for a low SNR case.

3 Information Recovery

In this section, we will detail the information recovery approach to tackle the low SNR cases in PFM
data. We will split the procedure into three major steps: (i) identify missing entries in the data matrix,
(ii) estimate the subspace via BayeSMG, and (iii) recover missing information with subspace weight
interpolation.

(i) Identify: For both the real and imaginary components of the frequency response, we can con-
catenate the series of real and imaginary response across pulses together into a data matrix. The
matrix contains m1 rows corresponding to the number of pulses in the waveform and m2 columns
corresponding to the number of probed frequencies. Since SHO fits fail at the response of some
pulses as found in Section 2 due to the noise, we identify these low-SNR data points based on the
error associated with Q values fit by the SHO model. Poor fits to the SHO have previously been
detected using Q values [20]. We label the response from these identified pulses as missing entries in
the data matrix.

(ii) Estimate: Denote this data matrix with noisy measurements by Y ∈ Rm1×m2 . Denote the index
set of the observed entries (where observations are determined to be reliable) by Ω ⊆ [m1]× [m2].
Denote the underlying accurate SHO fits for all pulses by the matrix X. Since the work by [20] has
identified that there are only a few dominant eigenvectors in the PFM data, we take advantage of it to
make the assumption that when stacked together, the true matrix X is of low rank. We assume it to
be of rank R := rank(X) ≪ min(m1,m2). Then the noisy observations become:

Yi,j = Xi,j + ϵi,j , (i, j) ∈ Ω. (2)

That is, the observation at index (i, j) is denoted Yi,j , which is corrupted by a noise term ϵi,j . We
assume the noise term ϵi,j ∼ N (0, η2), which are independent and follow a zero-mean Gaussian
distribution with variance η2. Our aim is then to estimate the row space of the true matrix X given
the partial and noisy observations YΩ, leveraging the fact that the true matrix is of low rank.
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To recover missing entries in a matrix, completion is a natural option. There have been numerous
works in this area [2, 1, 3], but many look at estimating missing entries only. In our problem, each
row is the frequency response from a voltage pulse in our waveform which bears a periodic pattern.
This makes it more appealing for us to estimate the subspace of the matrix X from partial and noisy
observations, as the missing pattern of the entries is not uniform. Additionally, polarization switching
is expected to be accompanied by a change in the SHO parameters. Therefore, it is pertinent to utilize
a method where subspaces are explicitly estimated. The BayeSMG model fits our objective well
[19]. It utilizes the singular matrix-variate Gaussian (SMG) distribution to model the matrix [8],
where a random matrix X

d
= PUDPV for some projection matrices PU = UUT and PV = VVT ,

where orthogonal subspace matrices U and V span the column space and the row space of rank R,
respectively. BayeSMG then estimates the subspace matrices by conducting a Gibbs sampler on the
posterior distributions of the model parameters, including the subspace matrices.

(iii) Recover: Since the frequency response by the pulse is stacked by row, we elect to interpolate on
the row space V to recover the missing information. The data on each row can be represented as:

X[i, :] =

R∑
k=1

αkV̂[k, :], (3)

for i = 1, 2, . . . ,m1, and αk is the weight for the kth dimension. For the rows with good SHO fits,
we can calculate {αk}Rk=1 directly since the row space is already estimated. For low SNR rows
where SHO fails, we use some interpolation methods for each of the linear weights αk between rows
to estimate the weights α̂k′ where entries are missing, then use them to reconstruct the particular
rows of data. We use either piecewise linear interpolation or cubic spline interpolation to find the
weight parameters. By doing this, we can successfully recover the information which is lost to
low-SNR PFM measurements. This method enables us to better fit the SHO models and further our
understanding of the polarization switching of the material.

4 Results & discussions

Applying the information recovery framework to our PFM experiment, we obtain the SHO parameters
across all pulses and use them to draw the hysteresis response plots. Out of the 949 pulses, we find
approx. 7.2% of them are low SNR and need to be recovered. This is carried out by utilizing the SHO
fitting error, denoted by σQ, which is directly associated with the Q value. We identify the unreliable
data points using the following rule:

σQ

Q
> h, (4)

where h is the threshold set to 50% here. Most of the identified low SNR cases are clustered around
polarization switching, which is where key information regarding material properties is located. We
verify the data matrix constructed using the PFM measurements are indeed of low rank, containing 10
significant singular values. Therefore, we set R = 10 for the matrix completion process. To evaluate
the performance of our proposed approach, we compare them to two other methods. One is a simple
linear interpolation across each of the four SHO parameters to fill in those which fall under the low
SNR category as judged by the Q factor. That means values recovered by interpolation in the A curves
are unrelated to those recovered in the θ, ω & Q curves. The second method is a third-order spline
interpolation across the individual SHO parameters instead. For our proposed method, we use linear
and spline interpolations on the subspace weights αk respectively. In total, there are two baseline
methods and two from the proposed framework with different subspace interpolation options.

We plot the extracted SHO parameters and the calculated piezoresponse values from our BayeSMG
and the two interpolation methods in Fig. 3. We focus on the polarization-switching part of the plots,
which usually contains the most useful information.

From the plots, we observe our proposed recovery method predicts reasonable A values in proximity
to switching bias (at low amplitude) without artificial plateaus as the comparison methods do since
this plateauing behavior attributes to the original SHO parameters deemed unreliable. Similar ’notch’
features have previously been associated with ferroelastic switching events, which are deemed
problematic [4]. For the reconstructions from our proposed methods, there are clear minima found
for both triangle curves, suggesting missing information at switching has been recovered. The
corresponding piezoresponse (PR) curves also show improved and more continuous patterns at
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Figure 3: Extracted A, θ, ω,Q, and calculated piezoresponse (PR) values recovered by BayeSMG
using linear interpolation (dark blue triangles), BayeSMG using spline interpolation (light blue
triangles), linear interpolation (red squares), and third-order spline interpolation (golden diamonds)
respectively. Gray markers denote reliable values of the SHO fitting.

switching. This is in contrast to the plateaus and then steep jumps in the PR curves by the linear and
spline interpolation methods, which are less reasonable. For both A and PR value curves, we have
observed the proposed methods are able to recover missing values better than the comparison ones.
This can be because there are consecutive missing values to fit, simply carrying out interpolation on
individual parameters cannot product good quality estimates. Interpolation on the subspace weights,
on the other hand, is able to alleviate the issue. Additionally, the ω curve shows polarization switching
is accompanied by slight hardening. Such behavior is not identified from the results of the other two
methods, and may entail some unknown factors which call for further investigation.

To conclude, the proposed information recovery approach utilizing the BayeSMG model enables us
to consistently detect and recover unreliable information from PFM data. It is a reliable methodology
to extract SHO model parameters from low SNR points. The simultaneous extraction of SHO
model parameters facilitated by BayeSMG in our approach suggests a potential route for robust
and consistent extraction of piezoresponse values from low SNR data points. Currently, we have
only demonstrated qualitative results and improvements found from experiments, but there is clear
potential in further developing it into an efficient automated characterization tool for ferroelectric
materials.
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