
Predicting generalization with degrees of freedom in neural networks

Erin Grant * 1 Yan Wu * 2

Abstract

Model complexity is fundamentally tied to pre-
dictive power in the sciences as well as in appli-
cations. However, there is a divergence between
naive measures of complexity such as parameter
count and the generalization performance of over-
parameterized machine learning models. Prior
empirical approaches to capturing intrinsic com-
plexity in a more sophisticated manner than pa-
rameter count are computationally intractable, do
not capture the implicitly regularizing effects of
the entire machine-learning pipeline, or do not
provide a quantitative fit to the double descent be-
havior of overparameterized models. In this work,
we introduce an empirical complexity measure
inspired by the classical notion of generalized
degrees of freedom in statistics. This measure
can be approximated efficiently and is a function
of the entire machine learning training pipeline.
We demonstrate that this measure correlates with
generalization performance in the double-descent
regime.

1. Introduction
What makes a machine learning model a good scientific
explanation? Classical perspectives call for trading off low
complexity and high predictive accuracy (Forster & Sober,
1994). However, deep learning approaches to scientific mod-
eling (Baraniuk et al., 2020; Bianchini et al., 2020; Raghu
& Schmidt, 2020; Hope et al., 2022) come with new chal-
lenges in navigating this trade-off due to the difficulty in
assessing both complexity and predictive accuracy. First,
many established measures of complexity do not apply to
deep learning models because they are vacuous (Dziugaite
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Figure 1. The generalization gap among neural network models
that vary by a capacity multiplier (here, kernel parameter multiplier
for convolutional neural networks) is monotonically increasing in
the complexity measure generalized degrees of freedom (Pearson’s
r(36) = .88, p = 9.9× 10−11).

& Roy, 2017), or they do not capture the non-monotonic
behavior of the evaluation error to which complexity is fun-
damentally tied (Belkin et al., 2019; Nakkiran et al., 2021).
Secondly, over-parameterized deep learning models often
obtain zero training error (Zhang et al., 2017), meaning
that model selection by predictive accuracy on the train-
ing set alone is not possible, while maintaining a test set
representative of downstream applications is challenging in
practice (Nagarajan et al., 2021). These challenges mean
that practitioners lack foundational methods for model se-
lection, hindering the reliable deployment of many machine
learning techniques (Amodei et al., 2016; D’Amour et al.,
2020; Geirhos et al., 2020) and giving rise to poorly un-
derstood pathologies such as susceptibility to adversarial
examples (Szegedy et al., 2014; Goodfellow et al., 2015).

In this work, we explore the extent to which the general-
ized degrees of freedom (GDoF) framework introduced by
Efron (1983) and Ye (1998) can respond to these challenges.
GDoF, as its name suggests, generalizes the basic notion of
degrees of freedom for non-linear models, and is equivalent
to the number of features for linear models. This correspon-
dence provides a natural measurement of the complexity of
machine learning models, including deep neural networks.
Given the fundamental connection between complexity and
generalization, we hypothesize that the GDoF predicts a
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model’s generalization performance. GDoF has been ex-
plored in various contexts, though Gao & Jojic (2016) was
the first to study this measurement for deep neural networks.
In this work, we make the following additional contribu-
tions:

• We introduce approximations that enable scalable com-
putation of the GDoF during training of deep neural
networks (Section (3)).

• We reconcile the double-descent phenomenon with the
classical trade-off between complexity and predictive
accuracy by demonstrating the monotonicity of the
generalization gap in GDoF (Fig. (1)).

• We use the online nature of the approximation to re-
veal the evolution of GDoF over training (Fig. (3) and
Fig. (5)).

• We demonstrate that controlling GDoF via subspace
training (Li et al., 2018) can improve generalization
(Fig. (4) and Fig. (5)).

2. Background
When reasoning about model complexity, we contrast
changes in the parameter dimension of a machine learning
model—measures proportional to the parameter count of a
model—with changes in the effective dimensionality, which
is indirectly controlled by various components such as the ar-
chitecture and training procedure. While trivially equivalent
re-parametrizations—for instance, replacing a connection
weight by the product of two weights, w = w1 w2—may
result in vastly different parameter dimensions, effective
dimensionality captures the intrinsic complexity as a result
of the complete system specification. According to classic
notions of complexity-fit trade-off, models with low effec-
tive dimensionality have low complexity, are less likely to
overfit and thus have lower generalization error (Schmidhu-
ber, 1997). The preference for simplicity in model selection
is also known as Occam’s Razor (MacKay, 1991).

However, the classical trade-off between complexity and pre-
dictive power, which focuses on the bias and variance trade-
off (Geman et al., 1992), has been challenged by the recently
re-discovered double descent phenomenon (Belkin et al.,
2019): While large models are traditionally understood to be
inherently more complex and thus subject to poor general-
ization as a result of overfitting, modern over-parameterized
machine learning models exhibit surprisingly good general-
ization performance (Zhang et al., 2017). While the origin of
the discrepancy between parameter dimension and effective
dimensionality is outside of the scope of this work, previous
work has shown that it may arise from implicit regularization
due to various components of the machine-learning pipeline,
including the model architecture (Golubeva et al., 2020), the
specific initialization procedure (Kubo et al., 2019; Mehta

et al., 2021), gradient-based optimization (Barrett & Dherin,
2021), and overparametrization itself (Neyshabur et al.,
2019; Advani et al., 2020).

Various attempts have been made to capture effective di-
mensionality via model complexity from the perspective
of a model’s loss landscape (Larsen et al., 2021) and, in
particular, its local curvature (Maddox et al., 2020; Loukas
et al., 2021). The statistical concept of degrees of freedom
can also be related to the loss landscape. For linear models,
the degree of freedom is equivalent to parameter count, but
Efron (1983) and Ye (1998) generalized this concept to non-
linear models from the perspectives of expected optimism
and average sensitivity as follows: For a classifier f param-
eterized by θ, the GDoF is defined from the derivatives of
the model-predicted label fn,c with respect to the data label
yn,c:

Φ :=

N∑
n=1

C∑
c=1

∂fn,c(θ)

∂yn,c
, (1)

where n ∈ {1, . . . , N} is the index of the sample in the
training set, c ∈ {1, . . . , C} is the index of the class. When
explicit dependence on the training procedure is required,
we further expand Eq. (1) and specify the algorithm A, the
initial parameter θ0, and the training step t such that the
GDoF can reflect the model complexity at any step t before
convergence as

Φ(t) :=

N∑
n=1

C∑
c=1

∂fn,c(θt = A(θ0, t))

∂yn,c
. (2)

Naively, computing these derivatives would require back-
propagating through the whole training procedure specified
by A.

The GDoF measurement Φ in Eq. (2) can be interpreted as
the sensitivity of the model f to perturbation in the training
label yn,c. Gao & Jojic (2016) introduced GDoF to neural
networks by approximating the derivatives in Eq. (2) by
a specific random perturbation and demonstrated that the
GDoF of such over-parameterized models are only a small
fraction of the total number of parameters. However, (Gao &
Jojic, 2016) computed GDoF by training a perturbed model,
as well as the original model, on the complete training
dataset until convergence, thus requiring dual training runs
for each iteration of computing the GDoF. Here we show
that the approximation of Eq. (2) can be broken up in both
space—with mini-batches—and in time—by incremental
computation. In addition, the latter incremental approxi-
mation enables us to reveal the evolution of GDoF during
training.

3. Method
In this work, we introduce additional approximations to
GDoF, defined as Φ in Eq. (2) for a more scalable estimate
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of model complexity. The first straightforward step of ap-
proximation is using a Monte-Carlo estimator based on a
subset B < N of samples from the training set:

Φ(t) ≈ Φ MC(t) :=
N

B

B∑
n=1

C∑
c=1

∂fn,c (θt = A(θ0, t))

∂yn,c
.

(3)

The second is to remove the requirement of training the per-
turbed model to convergence by exploiting the sequential
updating of model parameters θ during gradient-based train-
ing. The following proposition shows that, given the GDoF
of a model trained from initialization to time t, the GDoF at
step t′ > t can be approximated by simply adding the addi-
tional sensitivity brought by the increment ∆θ = θt′ − θt
as long as ∆θ is small.

Proposition 1. The GDoF at step t′ is related to the GDoF
at t < t′ via:

Φ(t′) ≈ Φ(t) + ∆Φ(t, t′) , (4)

where

∆Φ(t, t′) =

N∑
n=1

C∑
c=1

∂fn,c(θt′ = A(θt, t
′ − t))

∂yn,c
(5)

measures the increment of sensitivity after training f with
A to step t′ from θt at step t.

Proof. We first use the following shorthand to represent the
instance- and class-wise contributions to Φ:

φn,c(t, t
′) :=

∂fn,c(θt′ = A(θt, t
′ − t))

∂yn,c
. (6)

With this, Eq. (2) can be written as

Φ(t) =

N∑
n=1

C∑
c=1

φn,c(0, t) . (7)

For additional brevity, we drop the example subscript i
and the class subscript c when they are irrelevant to the
derivation, giving

φ(0, t′) =
∂f(θt′)

∂y
. (8)

We then construct a Taylor expansion of f(θ) near θ = θt:

f(θ) = f(θt) + (θ − θt)T
∂f(θ)

∂θ

∣∣∣∣
θ=θt

+O(‖θ − θt‖2) ,

(9)

which gives, when ∆θ = θt′ − θt is small,

f(θt′) ≈ f(θt) + (∆θ)
T ∂f(θ)

∂θ

∣∣∣∣
θ=θt

. (10)

Plugging in the approximation Eq. (10) into Eq. (8) gives

φ(0, t′) ≈ ∂f(θt)

∂y
+

(
∂∆θ

∂y

)T
∂f(θ)

∂θ

∣∣∣∣
θ=θt

+ (∆θ)
T ∂

2f(θ)

∂y ∂θ

∣∣∣∣
θ=θt

≈ φ(0, t) +

(
∂∆θ

∂y

)T
∂f(θ)

∂θ

∣∣∣∣
θ=θt

. (11)

Here the approximation comes from dropping the second
order term, which is negligible when the update ∆θ or the
second derivative ∂2f(θ)

∂y ∂θ

∣∣
θ=θt

is small.

Moreover, since φ(t, t′) depends on y only through the up-
date ∆θ, we can employ the chain rule to give

φ(t, t′) =
∂f(θt′ = A(θt, t

′ − t))
∂y

=

(
∂∆θ

∂y

)T
∂f(θt + ∆)

∂∆

∣∣∣∣
∆=∆θ

=

(
∂∆θ

∂y

)T
∂f(θ)

∂θ

∣∣∣∣
θ=θt′

(12)

≈
(
∂∆θ

∂y

)T
∂f(θ)

∂θ

∣∣∣∣
θ=θt

, (13)

where the last line of approximation comes from using the
derivatives of ∂f(θ)

∂θ at θt for θt′ . In Eq. (12), we used the
definition of the derivative, while changing the variable
θ = θt + ∆:

∂f(θt + ∆)

∂∆
= lim
δ→0

f(θt + ∆ + δ)− f(θt + ∆)

δ

= lim
δ→0

f(θ + δ)− f(θ)

δ

=
∂f(θ)

∂θ
.

(14)

Combining Eq. (13) with Eq. (11), we have

φ(0, t′) ≈ φ(0, t) + φ(t, t′) . (15)

We can now obtain Proposition (1) from the definitions of φ
and Φ.

Although several steps of the approximation require ‖∆θ‖2
to be small, in our experiments we found the resulting es-
timator of GDoF predictive of generalization even when
∆θ represents a change of up to 1000 update steps. In ad-
dition, we found performing multiple update steps while
re-sampling mini-batches (K in Algorithm (1)) improves
the estimate of GDoF, as in our experiments in Section (4).
We leave detailed analysis of the approximations, such as the
error accumulated through the trajectory, for future work.
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The next section empirically demonstrates the predictive
power of the measurement Eq. (2) and the two approxima-
tions we make in Eq. (3) and Eq. (4) for neural networks.
Algorithm (1) summarizes the algorithm for computing the
GDoF from a series of checkpoints saved during training.
Notice that taking T = 0, and K = ∞ (i.e., training the
original and perturbed model from initialization until con-
vergence) recovers the algorithm of Gao & Jojic (2016).

Algorithm 1 Algorithm for computing GDoF

Require: saved checkpoints C1, C2, . . . CT , the number of
update steps K, mini-batch size B, perturbation step ε
Φ← 0
for t = 1, . . . T do

Load model f(θt) from checkpoint Ct
for k = 1, . . .K do

Sample a mini-batch of data {xb, yb}Bb=1

Sample perturbation {zb}Bb=1 ∼ N (0, 1)
Update f(θt+1) using {xb, yb}Bb=1

Update f ′(θt+1) using {xb, yb + ε · zb}Bb=1

end for
Approximate

∆Φ(t, t+ 1)←
N
B

∑B
b=1

∑C
c=1 zb(c)

f ′
b,c(θt+1)−fb,c(θt+1)

ε
Accumulate Φ(t+ 1)← Φ(t) + ∆Φ(t, t+ 1)

end for

4. Experiments
We demonstrate results measuring the GDoF of a convo-
lutional neural network (CNN) trained on the CIFAR-10
dataset. The CNNs follow the architecture from Nakki-
ran et al. (2021) with three convolutional layers. We
vary their capacities via a capacity multiplier, the mul-
tiple of the number of filter channels. We thus have
a batch of models whose first layer has filter sizes
{1, 2, 4, 8, 12, 16, 20, 24, 32, 40, 48, 64}. All models are
trained with a batch size of 128 for 3×105 training iterations.
In Fig. (2) we plot the training error and the evaluation error
alongside their difference—the generalization gap—and the
approximated GDoF for models with different capacity mul-
tipliers. The double descent curve (Belkin et al., 2019) can
be observed in the evaluation error curve, and the measured
GDoF closely tracks the generalization gap.

To further investigate the correlation between the GDoF
and the generalization gap, we represent the same data in a
scatter plot in Fig. (1), which reveals that the generalization
gap increased monotonically with the GDoF, as predicted
by classical notions of program complexity (Schmidhuber,
1997). To quantify the correlation and verify our obser-
vation, we compute Spearman’s rank correlation, giving
r(36) = .99, p = 2.5 × 10−11, and Pearson’s correlation
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Figure 2. Training and evaluation error (top), the generalization
gap, (middle), and GDoF (bottom) vs. capacity multiplier (here,
kernel parameter multiplier) for 3 CNNs trained on the CIFAR-10
dataset for 300 thousand iterations. The evaluation error exhibits
the double-descent phenomenon, while the GDoF tracks the gener-
alization gap.

coefficient, giving r(36) = .88, p = 9.9× 10−11.

For each capacity multiplier, we also expand the whole
training curves into Fig. (3) to depict the evolution of the
measured quantities over training. We again observe an
increase and then decrease in the final generalization gap
as the model size increases (curve color darkens), and this
trend is reflected in the GDoF: An intermediate capacity
multiplier has highest final generalization gap and highest
GDoF. Further, the dynamics of the generalization gap and
GDoF match over the course of training: For example, the
full model (darkest curve) increases in generalization gap
as well as GDoF most quickly, but plateaus at intermediate
values.

We also explore how the GDoF reacts when model complex-
ity is explicitly controlled. We measure GDoF of the same
set of models as in Fig. (2), here trained with the subspace
method of Li et al. (2018), which was originally proposed
as an ingredient of another method to approximate the in-
trinsic dimensionality of a model. In particular, following
Li et al. (2018), we randomly project model parameters to a
random, lower-dimensional subspace θS = Rθ, where R is
a random matrix fixed at the start of training, and optimize
the lower-dimensional vector θS instead of θ to train the
model. Intuitively, the model complexity is constrained by
the coupling introduced by the random projection.

We choose as the base model the CNN with the highest ca-
pacity (first layer filter size 64, ≈ 1.55 million parameters).
We then train this base mode using subspace dimensions of
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Figure 3. Training and evaluation error (top two), the generaliza-
tion gap, (middle), and GDoF (bottom) vs. training iteration for
different values of the capacity multiplier (here, kernel parame-
ter multiplier) for 3 CNNs trained on the CIFAR-10 dataset for
300 thousand iterations. The GDoF captures the evolution of the
generalization gap over training for the various capacity settings.

{1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 90} × 104. Fig. (4) demon-
strates that the GDoF still tracks the generalization gap
when complexity is controlled with subspace optimization,
and Fig. (5) and Fig. (6) further shows that a suitable space
dimension can improve performance by reducing the gener-
alization gap; that is, intermediate subspace dimensions can
lower the final evaluation error below that of the full model.

5. Related Work
Whence generalization? Generalization properties of
deep neural networks have received renewed interest from
both theoretical and empirical perspectives (Jiang et al.,
2021). However, it seems that many properties that corre-
late with generalization performance are neither necessary
nor sufficient to ensure it; for example, sharpness of the loss
surface around a minimum (Dinh et al., 2017), or monotonic
linear interpolation (Lucas et al., 2021).

Jiang et al. (2021) discuss the results of a recent commu-
nity competition that targeted complexity measures that
reliably capture generalization performance; however, they
do not investigate the trend of these complexity measures
as the parameter dimension is manipulated. Maddox et al.
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Figure 4. Training and evaluation error (top), the generalization
gap, (middle), and GDoF (bottom) vs capacity multiplier (here,
subspace dimension in the algorithm of Li et al. (2018)) for 3 CNNs
trained with subspace optimization on the CIFAR-10 dataset for
300 thousand iterations. In contrast to Fig. (2), the evaluation error
is monotonically decreasing. The GDoF still tracks the generaliza-
tion gap.

(2020) resolve the double descent paradox with the introduc-
tion of a capacity estimate inspired by posterior contraction
in Bayesian learning that renders evaluation performance
monotonically increasing.

Capturing complexity. Proposals to measure effective di-
mensionality have taken many forms, from more classical
parameter and representation norms (Bartlett et al., 2017)
and sharpness measures (Keskar et al., 2017), to measures
motivated specifically by modern deep learning systems,
such as measures of gradient noise (Smith & Le, 2018)
and optimization speed (Hardt et al., 2016); see Jiang et al.
(2020) for a thorough overview and an empirical compar-
ison. The common idea behind all such approaches is to
quantify variability and thus complexity in the function rep-
resented by a neural network. This functional complexity
may result from the interaction of the particular parameteri-
zation or architecture in addition to all other aspects of the
machine learning pipeline, including the optimization algo-
rithm and other hyper-parameters. Crucially, however, the
exact relationship between neural network design decisions
and functional complexity is unknown, prompting the study
of implicit regularization in deep learning (Neyshabur et al.,
2015; Neyshabur, 2017; Dherin et al., 2021).

Finding neural networks with minimal complexity.
One class of methods directly searches models as programs
with low Kolmogorov complexity. For example, Schmid-
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Figure 5. Training and evaluation error (top two), the generaliza-
tion gap, (middle), and GDoF (bottom) vs. training iteration for
different values of the capacity multiplier (here, subspace dimen-
sion in the algorithm of Li et al. (2018)) for 3 CNNs trained on the
CIFAR-10 dataset for 300 thousand iterations. The GDoF captures
the evolution of the generalization gap over training for the various
capacity settings.

huber (1997) proposes a probabilistic search algorithm to
discover neural networks with low Kolmogorov complexity,
although it has only been demonstrated with toy problems
that can be solved with relatively short programs consisting
of limited primitives. Another class of methods encourages
optimizers to find simpler neural networks by penalizing de-
viation from a specified prior over the weights. The simplest
example is “weight-decay” (Hinton, 1987), which can be
interpreted as finding the maximum a posteriori (MAP) solu-
tion given an isotropic Gaussian prior over weights. Nowlan
& Hinton (1992) elaborate this idea by introducing a mix-
ture of Gaussians prior over the weights, but still assume
that all weights are quantized with the same noise tolerance.
Hinton & Van Camp (1993) remove this assumption by em-
ploying a variational method to approximate the posterior
distribution of noisy weights with different precisions.

Bayesian model selection and Occam’s Razor. MacKay
(1992a) reviews how model selection or comparison can be
achieved in a Bayesian context by comparing the evidence
for each model. In particular, given a parameterized model
family H that specifies a prior distribution over parame-
ters w, P (w | H) and a predictive distribution over data
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Figure 6. Partial reproduction of Fig. (5), for emphasis. Training
(top) and validation error (bottom) vs. training iteration for the full
model as compared to a subspace model of intermediate subspace
dimension (here, 105). Controlling the complexity via subspace
optimization in an intermediate subspace dimension results in a
lower final validation error in the absence of early stopping.

D, P (D | w,H), the evidence is P (D | H) =
∫
P (D |

w,H)P (w | H) dw. As a rule of thumb, greater entropy
in the prior term P (w | H), corresponding to a more flex-
ible hypothesis class, results in a lesser value for the evi-
dence, a regularizing effect known as Occam’s Razor. It
should be noted that the behavior of Occam’s Razor—in
particular, what notion of flexibility is penalized—implicitly
relies on the model parameterization and is therefore not
an a priori effect (Wolpert, 1995); for instance, MacKay
(1992a) discuss Occam’s Razor and Bayesian model com-
parison for models that admit Gaussian approximation and
quadratic regularizers, and MacKay (1992b) study such
approximations in the context of neural networks. Never-
theless, Bayesian model selection allows coherent compar-
ison of appropriately related prior distributions (Jefferys
& Berger, 1992), and robustness with respect to the se-
lection of the prior distribution can be ensured in some
situations (Berger et al., 1994).

Implicit biases in model design. Lineages of machine
learning models are often the result of selection on the ba-
sis of performance on standardized benchmarks (Dehghani
et al., 2021). As a result, such lineages implicitly depend on
the types of data to which they have been applied—in partic-
ular, such models are likely to have implicit biases that aid
performance on such datasets. Analogously, prior selection
in Bayesian analysis often implicitly relies on data (Gelman
et al., 2017). From a Bayesian perspective, the impact of
prior information can be quantified using sensitivity analy-
sis (e.g., Müller 2012) or with measures of prior-data and
prior-likelihood conflict (Bousquet, 2008; Nott et al., 2020;
Reimherr et al., 2021).
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6. Conclusion
In this work, we investigated a complexity measure inspired
by the classical notion of degrees of freedom in statistics.
the variant of this measure that we propose is scalable and
is a function of the entire machine learning training pipeline.
We demonstrated that this measure strongly correlates with
generalization performance in the double-descent regime,
and that, when model complexity is controlled via subspace
training, the resulting improvement in the generalization
gap is tracked by this measure.
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