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Abstract

Even when a black-box model makes accurate predictions (e.g., whether it will
rain tomorrow), it is difficult to extract principles from the model that improve hu-
man understanding (e.g., what set of atmospheric conditions best predict rainfall).
The field of model explainability approaches this problem by identifying salient
aspects of the model, such as data features to which the model is most sensitive.
However, these methods can be unstable and inconsistent, leading to unreliable
insights. Specifically, when there are many near-optimal models, there is no guar-
antee that a single explanation for a best-fitted model will agree with “true expla-
nation”: the explanation from the (unknown) true model that generated the data.
In this work, we aim to construct an uncertainty set that is guaranteed to include
the true explanation with high probability. We develop methods to compute such a
set in both frequentist and Bayesian settings. Through synthetic experiments, we
demonstrate that our uncertainty sets have high fidelity to the explanations of the
true model. Real-world experiments confirm the effectiveness of our approach.

1 Introduction

Data is now collected at a much faster rate than can be processed directly by humans. Thus, ma-
chine learning has been used to synthesize complex datasets into predictive models. For example,
models can predict the 3D structure of proteins from their amino acid sequences [1] and forecast
supply chain demand [2, 3]. However, modern models are often black-box in nature, meaning that
even when they make accurate predictions, it is difficult to extract interpretable principles or intu-
itions. Whereas human experts can communicate their reasoning, predictive models typically lack
the ability to communicate principles.

In response to this challenge, there has been growing interest in model explanations: human-
interpretable descriptions of model predictions [4–7]. The explanations highlight aspects of the
model that are particularly relevant for some downstream goal, such as calibrating trust in a model
or identifying patterns in complex data. Popular explanations include SHAP [8], LIME [9], inte-
grated gradients [10], TCAV [11], and counterfactual explanations [12].

Use cases for model explanations can be organized around two goals: model auditing and scientific
inquiry. In model auditing, the goal is to validate or debug the predictions of a trained model. For
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Figure 1: Top: The standard explainability pipeline. A single “best-fitting” model is trained and a
single explanation is generated from this model. Bottom: An instantiation of our proposed explain-
ability pipeline. We explore the set of explanations associated with near-optimal models to construct
a confidence set for the explanation of the true model.

example, we might ask “In what way does this climate model for global surface temperature depend
on CO2 emissions?”. In contrast, in scientific inquiry the object of interest is the data generating
distribution itself. An analogous question for scientific inquiry would be “In what way is the global
surface temperature explained by CO2 emissions?” Explanations used for model audit give insights
about the model, while explanations for scientific inquiry give insights about the world. See Section
7 for further discussion.

Explanations are already being used for scientific inquiry in many domains, such as materials discov-
ery [13], genomics [14, 15], motor vehicle collisions [16], environmental science [17], and finance
[18, 19]. Usually, a practitioner chooses a single “best-fitting” model and treats explanations of
that model as representative of the data generating distribution. However, model explanations are
known to be unstable (i.e., sensitive to small perturbations in the data) [20–25] and inconsistent
(i.e., random variations in training algorithms can lead models trained on the same data to give
different explanations) [26]. The problem is worsened by the phenomenon of model multiplicity:
the existence of distinct models with comparable performance [27–29]. If there exist competing
models—each of which provides a different explanation of the data-generating distribution [30]—
how can we tell which explanation is correct? These issues threaten the applicability of existing
explainability procedures for scientific inquiry. Given that explanations are known to vary widely
among even near-optimal models [31], we cannot assume an explanation from a model with good
performance is representative of the data generating distribution.

In this work, we aim to develop simple and broadly-applicable procedures to use explanations for
valid scientific inquiry. Instead of computing the explanation for a single best-fitting model, we wish
to infer the explanations of the “true model”, or “data generating distribution”, of the conditional
distribution of the target given the input. To that end, we provide an uncertainty set containing
plausible explanations for the (unknown) data generating distribution. See Figure 1 for the high-
level idea. For a simple illustration in Figure 2, a naive explanation from multiple trained model
(or any single explanation within that interval) consistently disagree with the true explanation of a
well-specified linear model. In contrast, our principled uncertainty sets include the true explanation.

Our main contributions include:

• We present a framework for explaining the data generating distribution, as opposed to a
trained model. We give a simple example where existing explainability procedures fail to
recover the true explanation in this framework.

• We propose three simple yet rigorous methods to construct uncertainty sets for true ex-
planations: one for a frequentist setting, and two for a Bayesian setting under different
assumptions. We provide finite-sample coverage guarantees for the uncertainty sets given
by each method.

• Through simulations, we demonstrate the effectiveness of our method in terms of the cov-
erage, i.e., how often the uncertainty set includes the true explanation, and the size of the
uncertainty set. We also apply our methods to real datasets to infer feature importance.

The rest of the paper is organized as follows. After reviewing related works (Section 2), we intro-
duce a framework for quantifying uncertainty in model explanations (Section 3). We then develop
frequentist and Bayesian approaches to construct principled uncertainty sets (Sections 4 and 5, re-
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Figure 2: A comparison of methods for computing uncertainty sets for explanations. The explana-
tion is the mean absolute Shapley value, a measure of feature importance. In each panel, the feature
importance for the true model that generated the data is marked by a red star. The three features
follow a multivariate Gaussian distribution and the first two features are highly correlated. The true
labels were sampled from the linear model y(i) = [1, 0, 0] · x(i) + ϵ(i), where ϵ(i) iid∼ N (0, 1). In the
top left panel, we subsample the dataset 100 times and explain a best-fitting linear model for each
dataset. Note that the best-fitting model consistently underestimates the importance of Feature 1. In
the other three panels, we display confidence intervals generated by the three methods we propose.
The frequentist intervals come with strong guarantees, but tend to be wider. The conformal and
Bayesian approaches take advantage of additional information (e.g., prior and posterior distribution)
to get tighter intervals.

spectively). Finally, we conduct an experimental study on both synthetic and real-world datasets
(Section 6), followed by a final discussion (Section 7).

2 Related Work

Explainable AI. Explainable AI (XAI) aims to present model behavior in a way that humans
can easily understand. Some models are inherently more interpretable, such as generalized linear
models (GLMs) [32] and tree-based models [33]. For less interpretable models, post-hoc explana-
tions can still provide insights. Popular methods include Shapley-value based approaches [8, 34–
36], perturbation-based approaches [37], local approximations [9], tree-based methods [38], and
DeepLIFT [39]. Recently, there have been attention to improving the robustness of explanations to
distribution shifts [25, 40]. Separately, for probabilistic models, several studies explain uncertainty
estimates [41, 42] and their effects [43].

Causal Inference for Explanation. In parallel to XAI, causal inference attempts to understand the
world by identifying causal relationships from data. The popular potential outcomes framework [44–
46] and causal graphical models [47] typically require either some control of the experiments (like
randomized trials), or causal assumptions such as unconfoundedness. These methods can lead to
strong scientific (causal) discovery, but require more care to be used correctly. In contrast, most
XAI methods can be deployed to any accessible predictive models. Recently, several works have
considered causal feature relevance [36], and causal contributions [48], bringing causal inference
and explainability closer together [49]. However, these causal explanation methods are still cen-
tered around causal interpretations of a trained model rather than inferring the true data generating
distribution.

Uncertainty Quantification. There are many ways to quantify uncertainty in prediction tasks,
e.g., by predicting uncertainty sets or full probability distributions. A few popular methods in-
clude Gaussian Processes [50, 51], which predict full probability distributions, and quantile re-
gression [52–54], which can give prediction intervals by minimizing the pinball loss. Conformal
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prediction is a post-hoc process that can construct valid uncertainty sets or predictive distributions
from heuristic notions of uncertainty [55, 56].

Uncertainty in Explanations Several existing works consider uncertainty in model explanations.
[57] develop Bayesian methods for quantifying uncertainty about the explanations of a single trained
model. [31] give methods to compute the set of plausible variable importances for a restricted class
of models. Our work differs from this work in that we aim to construct general purpose methods to
quantify uncertainty about the explanations for the data generating distribution.

3 Framework

3.1 Preliminaries

We consider the task of using features x ∈ X to predict an outcome y ∈ Y . Given a dataset of n
i.i.d. pairs D = {(x1, y1), . . . , (xn, yn)}, the learning task is to select a probabilistic model f from
a model class F = {f : X → P(Y)} that approximates the conditional distribution for y given x.
Here, P(Y) is the set of probability measures over Y . Given a loss function ℓ(f(x), y), we aim to
minimize the expected loss L(f) = E [ℓ(f(x), y)].

We assume the model is well-specified, so there exists some model f∗ ∈ F in the model class that
gives the true conditional distribution p(y | x). We refer to f∗ as the true model since it exactly
reflects the data generating distribution. Furthermore, we assume that the loss is a proper scoring
rule, so L(f∗) ≤ L(f) for all other f ∈ F .

Since we do not know the true model, we use some model-fitting algorithm A : D → F , where
D = (X × Y)n, that takes as input a dataset D and outputs a model f̂ = A(D). For example, in
empirical risk minimization we choose the model f̂ that minimizes the loss on the training data.

3.2 Model Explanations

We are interested in an explanation ϕ : F → Φ that assigns to every model an interpretation in
some space Φ. The explanation ϕ can be a simple function of F , such as the predicted conditional
mean for a single input x, ϕmean

x (f) = Ey∼f(x) [y], or a more complex function. For example, we
can let ϕ map any f ∈ F to ϕshap

i,x (f), to the Shapley value of the i-th feature applied to the feature
vector x, with D as the reference dataset; or to the average absolute Shapley value of the i-th feature
ϕshap
i (f) := Ex∼D[|ϕshap

i,x (f)|].

In binary classification where y ∈ {0, 1}, one can consider a counterfactual explanation ϕCF
x,+(f̂)

that returns the closest point x′ to x such that the label is predicted to be most likely of the positive
class P̂ (Y = 1 | X = x′) > 0.5.

We are interested in the explanation of the true model ϕ(f∗). When ϕ is a simple explanation such
as the conditional mean ϕmean

x , we may be able to directly estimate ϕ(f∗) using standard statistical
techniques. When ϕ(f∗) is difficult to estimate directly (e.g., the Shapley values of the true model),
we can first estimate the true model f∗ then apply the explanation ϕ.

3.3 Quantifiying Uncertainty for Explanations

However, the explanation of our trained model ϕ(f̂) could be meaningfully different than the true
explanation ϕ(f∗). For example, consider the conditional mean explanation ϕmean

x (f̂) for some rare
input x taken from our dataset. An expressive model class could vary f̂(x) drastically without
changing any other predictions on the dataset (and therefore only minimally change the loss). Thus,
it is not enough to simply report ϕ(f̂); we instead need to quantify our uncertainty about ϕ(f∗).

In this work we produce uncertainty sets for the explanation of the true model. Using the data D,
we construct an uncertainty set C = C(D) that is guaranteed to include the true explanation with
high probability

P (ϕ(f∗) ∈ C) ≥ 1− α, (1)
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Method Requires Prior Requires Posterior Guarantee

Frequentist No No P (ϕ(f∗) ∈ C) ≥ 1− α
Conformal Yes No P (ϕ(f) ∈ C) ≥ 1− α
Bayesian Yes Yes P (ϕ(f) ∈ C | D) ≥ 1− α

Table 1: A comparison of the three methods we propose. The frequentist approach assumes there
exists a fixed, true model f∗ and gives a confidence interval that includes the explanation for the true
model with high probability. The randomness in the frequentist guarantee comes exclusively from
the dependence of the confidence interval on the data. In the conformal and Bayesian approaches,
we treat the model as a random variable f distributed according to some prior distribution. Thus,
the randomness in the guarantees for the conformal and Bayesian approaches is over the model f ,
the data D, and additional simulated randomness in C we use to obtain the exact guarantee.

for some desired confidence level 1 − α with α ∈ (0, 1). In Equation (1), the uncertainty set C is
random due to its dependence on the data D. In Section 5, we consider Bayesian models, where the
model itself is a random variable. By convention, in the Bayesian perspective we will denote f∗ by
f instead to indicate that the data generating distribution is random.

From the Bayesian perspective, with an additional assumption that the posterior can be sampled
exactly (see Section 5.1), one can achieve the following guarantee by employing credible intervals:

P (ϕ(f) ∈ C | D) ≥ 1− α (2)
However if one does not have access to exact samples from the posterior (Section 5.2), we propose
an algorithm inspired by conformal prediction to recover a weaker guarantee, P (ϕ(f) ∈ C) ≥ 1−α,
where we no longer condition on the data. This gives a coverage guarantee over the prior rather than
the posterior, unlike a typical Bayesian result.

Finally, we compare all three methods in Section 6. In our analysis we focus on two metrics:
how often the uncertainty set includes the true explanation (the “coverage”), and the size of the
uncertainty set. In general, higher coverage and tighter uncertainty sets are preferable.

4 Frequentist Explanation Interval

In this section, we introduce a method for constructing valid confidence intervals in a frequentist
setting when the model class is sufficiently simple. We measure simplicity in a learning-theoretic
sense; our results hold for model classes that satisfy uniform convergence.

Uniform convergence states that the empirical loss Ln(f) =
1
n

∑n
i=1 ℓ(f(xi), yi) converges to the

population loss L(f) = E [ℓ(f(x), y)] “uniformly” across the model class as the number of training
samples n goes to infinity.
Definition 1. A model class F has the uniform convergence property if, for any distributions P over
X × Y , any error rate α > 0, and any tolerance ϵ > 0, there exists a sample size n < ∞ such that

PD∼P

(
sup
f∈F

|L(f)− Ln(f)| ≤ ϵ

)
≥ 1− α. (3)

We say that F satisfies (α, ϵn)-uniform convergence if n is a sufficiently large sample size to achieve
the inequality in Equation (3) with α and ϵ = ϵn. See examples of well-known uniform convergence
results in Appendix ??. First, we will note that uniform convergence gives us a confidence set for the
true model. Then, we will bound the explanation of the true model by computing the most extreme
explanations within this confidence set.

Uniform convergence immediately gives a bound for the excess empirical loss of the true model.
Lemma 1. If F satisfies (α, ϵn)-uniform convergence, then with probability at least 1− α,

Ln(f
∗) ≤ inf

f∈F
Ln(f) + 2ϵn. (4)

See Appendix A for a simple proof of Lemma 1. This bound gives us a confidence set for the true
model,

Fα =

{
f ∈ F : Ln(f) ≤ inf

f ′∈F
Ln(f

′) + 2ϵn

}
, (5)
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which includes the true model with probability at least 1 − α. Thus, the set of explanations corre-
sponding to Fα, namely Cfreq = {ϕ(f) : f ∈ Fα}, satisfies Equation (1).

Proposition 1. Suppose F is well-specified and satisfies (α, ϵn)-uniform convergence. Then the
confidence interval Cfreq = {ϕ(f) : f ∈ Fα} includes the true explanation with probability at least
1− α.

P (ϕ(f∗) ∈ Cfreq) ≥ 1− α (6)

The randomness in Equation (6) is over the dataset used to compute Cfreq. Proposition 1 provides a
very general guarantee that applies to all possible f∗ ∈ F and any data distribution. This generality
typically comes at the cost of larger confidence sets. Computing Cfreq exactly can be difficult in
practice, depending on the model class. In the following Section 4.1, we elaborate on this challenge
and propose an algorithm for efficiently approximating Cfreq.

4.1 Computing Confidence Set via Pareto Frontier

For simplicity, we now consider a real-valued explanation, so Φ = R. However, the methods
described in this section can easily be extended to vector-valued explanations, e.g., by constructing
a confidence interval for each component of the vector and then applying a union bound.

Note that Cfreq is a subset of the interval
[
inff∈Fα ϕ(f), supf∈Fα

ϕ(f)
]
. In fact, if Fα is connected

and ϕ is continuous, then the sets are equal up to measure 0. In turn, estimating the endpoints of
this interval amounts to solving non-convex optimization problems, which can be difficult to solve
exactly:

minimize ϕ(f) s.t. f ∈ Fα (7)
maximize ϕ(f) s.t. f ∈ Fα (8)

However, we can solve a set of related unconstrained problems to approximate the solution. For
Equation (7), we can define a mixed training objective:

Jλ(f) = λϕ(f) + (1− λ)Ln(f) (9)

By optimizing this objective for a sequence of λ ∈ [0, 1], we can estimate the Pareto frontier of ϕ(f)
and Ln(f) (and of −ϕ(f) and Ln(f), by flipping a sign). By choosing the first point on this Pareto
frontier that satisfies the constraint, we can estimate the solution to the optimization problems posed
in Equations (7) and (8). While not exact, these solutions provides an upper bound to the solution
for Equation (7) and a lower bound for the solution to Equation (8).

Algorithm 1: UCEI: Uniform Convergence Explanation Intervals
Input : dataset D, mixture weights 0 ≤ λ1 < · · · < λK ≤ 1

1 Estimate the ERM f̂ = minf∈F Ln(f) and its empirical risk Ln(f̂)
2 for λ ∈ {λ1, . . . , λK} do
3 Optimize the mixed objective f̂−

λ = argminf∈F λϕ(f) + (1− λ)Ln(f)

4 Optimize the mixed objective f̂+
λ = argminf∈F −λϕ(f) + (1− λ)Ln(f)

5 end
Return:

6 The confidence interval Ĉfreq with lower bound
7 min{ϕ(f̂−

λ ) : Ln(f
−
λ ) ≤ Ln(f̂) + 2ϵn}

8 and upper bound
9 max{ϕ(f̂+

λ ) : Ln(f
+
λ ) ≤ Ln(f̂) + 2ϵn}

The frequentist guarantee relies on our ability to exactly solve the optimization problems in Equa-
tions (7) and (8). When ϕ is differentiable, as is the case for popular methods like LIME [9] and
SHAP [8], we can use backpropagation to optimize the mixed training objective. One can also
optimize each mixed objective Jλ in parallel, or adaptively search for a λ that gives a model with
empirical loss close to minf∈F Ln(f) + 2ϵn.
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5 Bayesian Explanation Sets

The algorithm in the previous section guarantees coverage for any true function. A natural question
to ask is, “can we get tighter uncertainty sets if we instead require coverage on average, when the
true model is distributed according to some known distribution?” Consider a Bayesian model, where
instead of estimating a fixed but unknown true function f∗, we assume the model follows a prior
distribution p(f). We are then interested in the posterior distribution p(f | D), which represents our
updated beliefs about the model after observing the data. A credible set for the posterior distribution
is any subset of F that has probability at least 1 − α under the posterior. We can similarly define
a credible set for the explanation ϕ(f) as any subset of Φ that includes the explanation of a model
drawn from the posterior with probability at least 1− α.

5.1 Bayesian Models with a Posterior Sampler

First, we consider the case where we have sample access to the posterior distribution, i.e., a sample
ft can be drawn from exactly p(f | D) (without approximation). Credible intervals give us a
natural notion of uncertainty quantification for explanations of Bayesian models; we want a set of
explanations CBayes that satisfies the following inequality:

P (ϕ(f) ∈ CBayes | D) ≥ 1− α (10)
Below, we describe Algorithm 2, which outputs CBayes achieving the guarantee in Equation (10).
Suppose that we have T models f1, . . . , fT sampled independently from the posterior distribution
p(f | D). We can explain each model to get T explanations ϕ(f1), . . . , ϕ(fT ), which are indepen-
dently distributed according to the posterior for the explanation p(ϕ(f) | D). We can then use these
samples the estimate the quantiles of p(ϕ(f) | D). The quantiles of p(ϕ(f) | D) tell us how to
construct credible intervals for the explanation. For example, the interval between the 0.05 and 0.95
quantiles of p(ϕ(f) | D) represents a credible interval with 90% probability under the posterior
distribution. We cannot infer the quantiles of p(ϕ(f) | D) exactly from T samples, but we can
estimate the quantiles in such a way as to guarantee Equation (10) holds with a finite number of
samples T , and not only asymptotically. To see this, consider drawing one more model from the
posterior fT+1 ∼ p(f | D). Then ϕ(f1), . . . , ϕ(fT ), ϕ(fT+1) are i.i.d. explanations. It follows that
ϕ(fT+1) is equally likely to be the smallest, second smallest, . . . , largest element of this collection.
If we define the ranking function R(u) =

∑T
t=1 1 {u ≤ ϕ(ft)} then R(ϕ(fT+1)) is distributed uni-

formly on the set {0, 1, 2, . . . , T}. Thus, if we define the interval CBayes with lower bound and upper
bound as the ⌊α

2 (T + 1)⌋/T -quantile and ⌈
(
1− α

2

)
(T + 1)⌉/T -quantile (respectively) of the set

{ϕ(f1), . . . , ϕ(fT )}, then Equation (10) is guaranteed to hold, even in the finite-data regime. This
is because CBayes is random, even conditioned on the data D, since CBayes also depends on the T
randomly drawn models from the posterior.

Algorithm 2: BEI: Bayesian Explanation Intervals
Input : Sampler of posterior distribution p(f | D), explanation algorithm ϕ, the number of

samples T
1 for t = 1, . . . , T do
2 Sample a model ft ∼ p(f | D)
3 Compute an explanation ϕ(ft) for the sampled model
4 end

Return:
5 the confidence interval CBayes with lower bound
6 Quantile({ϕ(f1), . . . , ϕ(fT )}; ⌊α

2 (T + 1)⌋/T )
7 and upper bound
8 Quantile({ϕ(f1), . . . , ϕ(fT )}; ⌈

(
1− α

2

)
(T + 1)⌉/T )

5.2 Bayesian Models with a Prior Sampler
In the previous section, we showed that one can get exact uncertainty sets for Bayesian models if an
exact posteior sampler is available. However, for many Bayesian models, such as Bayesian neural
networks [50, chap 5.7] and latent Dirichlet allocation [58], it would be prohibitively expensive to
sample from the exact posterior distribution. In such settings, practitioners often resort to approxi-
mating the posterior distribution, e.g., by using variational inference or Markov Chain Monte Carlo
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samplers [50, chap 10,11]. However, when we only have access to samples from an approximate
posterior distribution, it is not obvious how we can salvage our exact credible interval guarantee in
Equation (10). In this section, we provide an algorithm that works without exact posterior samples,
at the cost of providing weaker guarantees. Specifically, we guarantee validity with respect to the
prior instead of the posterior. To do this, we recruit tools from conformal inference (See Section 2.)

Conformal inference is most often applied in frequentist settings, and allows one to construct predic-
tion sets C(xi) for each new label yi that enjoy finite-sample coverage guarantees. Specifically, the
guarantee is that P

(
y ∈ C(f̂(x))

)
≥ 1−α, where x and y are random, and C is a random function

of f̂(x) that also depends on held out calibration samples. Here, f̂ is an arbitrary predictor for y that
takes x as input. (Technically, there is an assumption that f̂ treats the data symmetrically, but this
is not important for our discussion here.) Conformal prediction requires T calibration samples for
which both the prediction f̂(x) and the outcome y are observed.

We give a strategy for computing an uncertainty set Cconformal that is analogous to the conformal
inference result, except that instead of giving an uncertainty set for a new label, we give an uncer-
tainty set for the explanation of a model. The central challenge to applying conformal inference to
our setting is obtaining our calibration samples; we usually do not know the true model explanation
for any dataset. We get around this problem by sampling models i.i.d. from our prior distribution,
f1, . . . , ft, . . . , fT ∼ p(f). Recall that since our models are probabilistic, given an input xi, we can
sample a label yti ∼ ft(xi) from the distribution predicted by the model. By pairing each original in-
put xi with the corresponding resampled label yti , we have a dataset Dt = {(x1, y

t
1), . . . , (xn, y

t
n)}

drawn from the model ft. We can then train a model f̂t = A(Dt) on this new dataset. This gives us
T examples where we can observe the ground truth explanation ϕ(ft) and an estimated explanation
ϕ(f̂t). We compare how close ϕ(ft) and ϕ(f̂t) tend to be using a nonconformity score, such as the
distance ∥ϕ(ft)− ϕ(f̂t)∥. These examples act as our calibration dataset in Algorithm 3.

Algorithm 3: CEI: Conformal Explanation Intervals
Input : Model-fitting algorithm A, dataset D = (x1, y1), . . . , (xn, yn)
Input : Nonconformity score s : Φ× Φ → R

1 Train a model f̂ = A(D) using the dataset
2 Explain the trained model ϕ̂ = ϕ(f̂)
3 for t = 1, . . . , T do
4 Sample a model ft ∼ p(f)
5 Sample a dataset of labels yti ∼ ft(xi)
6 Define the synthetic dataset Dt = {(x1, y

t
i), . . . , (xn, y

t
n)}

7 Train a model f̂t = A(Dt)

8 Explain the sampled model ϕt = ϕ(ft) and the trained model ϕ̂t = ϕ(f̂t)

9 Compute the nonconformity score st = s(ϕt, ϕ̂t)
10 end
11 Set the threshold τ as the ⌈(1− α)(T + 1)⌉/T -quantile of the set {s1, . . . , sT }

Return: Cconformal = {φ ∈ Φ : s(φ, ϕ(f̂)) ≤ τ}

The uncertainty set Cconformal has the following guarantee:
Proposition 2. The confidence interval Cconformal given by Algorithm 3 includes the model f with
high probability over the prior distribution:

Pf∼p(f) (ϕ(f) ∈ Cconformal) ≥ 1− α (11)

Here, f is random due to the prior and Cconformal is random due to the data and the calibration
samples. Note that computing Cconformal does not rely on us knowing the posterior distribution. We
only need some algorithm A, such as an empirical risk minimizer that, given a dataset, returns a
model f̂ ∈ F . However, this guarantee is weaker than the guarantee we got when we had access to
the posterior distribution in Equation (10). Note that we are not conditioning on the data in Equation
(11), and so Cconformal is not necessarily a credible interval under the posterior. Furthermore, by
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Coverage Interval Width

Naive 0.5067± 0.002 0.2522± 0.001
Frequentist 1.0000± 0.000 3.9310± 0.003
Bayesian 0.9500± 0.001 0.9679± 0.001
Conformal 0.9600± 0.001 1.0493± 0.001

Table 2: A comparison of the coverage rate and interval width of the uncertainty sets from each
method on synthetic data. Each of our proposed methods achieves the desired coverage of 0.95. The
frequentist method is overly cautious due to its reliance on conservative learning theory results.

integrating over the dataset D, the (conditioned) guarantee in Equation (10) can be seen to imply
the (unconditioned) guarantee in Equation (11). The condition in Proposition 2 is also satisfied by
any credible interval C for the prior distribution. However, one should typically find that Cconformal
can give much tighter uncertainty sets than this naive strategy since it is adaptive to the data. In this
way, Cconformal can be viewed as an intermediate solution between a credible set for the prior and a
credible set for the posterior; it is more adaptive to the data than the former but not as adaptive as
the latter.

6 Experiments

We perform experiments on synthetic and real-world datasets. Synthetic datasets allow us to gen-
erate uncertainty sets for explanations where we know the true data generating distribution. This
means that we can validate the coverage rates of our methods, which is difficult to do with real-
world data where we do not know the data generating distribution. Experiments with real-world
datasets give insight on how our methods scale to larger datasets and realistic distributions.

6.1 Experimental Setup

We perform three experiments under the Shapley value explainer. In a synthetic experiment, we first
validate that the frequentist, Bayesian, and conformal methods all achieve the desired coverage rate
and compare the size of the uncertainty sets each method gives. In the second synthetic experiment,
we test the robustness of the Bayesian and conformal methods to violations of their assumptions
by exploring settings where the prior distribution is misspecified. Lastly, we apply the conformal
method to infer feature importance scores for a variety of real-world datasets.

Testing Coverage on Synthetic Data We consider a regression problem with three features. The
data is generated according to the following distributions:

xi ∼ N

(
µ = 0,Σ =

[
1 0.99 0

0.99 1 0
0 0 1

])
yi = θ⊤x+ ϵi, ϵi ∼ N (0, 1)

We fit linear models fβ(x) = N (· ; µ = β⊤x, σ2 = 1) that predict Gaussian distributions for y,
where β ∈ R3. We independently sample M = 100 true models θ1, . . . , θM ∼ N (0, I3), and
for each true model θm, we sample a dataset Dθ consisting n = 100 examples. For the Bayesian
and conformal methods, we the correct prior N (0, I3) for θ. For the naive and conformal methods,
we fit T = 100 linear models using Ridge regression. For the frequentist method, we use a stan-
dard uniform convergence result for linear regression. We use closed-form expression of Shapley
value under the linear case. Refer to Appendix B for the detailed Rademacher complexity chosen
and Shapley expression. For each method, we record the portion of the time that the uncertainty
set includes the true explanation: coverage(C) = 1

3M

∑M
m=1

∑n
i=1 1

{
ϕ(θ

(i)
m ) ∈ C(i)

}
. For each

method, the targeted coverage rate is 0.95. We also report the average width of the uncertainty set
for each method.

Testing Coverage under Model Misspecification We also explore how the Bayesian and confor-
mal methods perform when the prior distribution is incorrect. We re-run the coverage experiment
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Coverage Interval Width

well-specified 0.9500± 0.001 0.9679± 0.001
Bayesian wrong mean 0.7511± 0.001 0.8620± 0.001

wrong var 0.9600± 0.001 0.8720± 0.001

well-specified 0.9600± 0.001 1.0493± 0.001
Conformal wrong mean 0.9867± 0.001 1.0634± 0.001

wrong var 0.9800± 0.001 1.0578± 0.001

Table 3: A comparison of the Bayesian and conformal methods when their assumptions are not
met, due to a misspecified prior distribution. The Bayesian method loses coverage when the mean
is misspecified in this case. The conformal method becomes unnecessarily cautious, giving wider
intervals than necessary.

Figure 3: Feature importance scores (as measured by the mean Shapley value of each feature across
the dataset) computed using the conformal method. For some datasets (e.g., MPG) there are signif-
icant differences between the importances assigned to different features. For other datasets (e.g.,
WINE), conclusions are more difficult to make. When features have overlapping feature importance
uncertainty sets, it indicates that practitioners should be cautious when drawing conclusions.

for the Bayesian and conformal methods, except with the true models sampled with a different
mean N (1, I3) and with a different variance N

(
0, 1

2I3
)
. All other aspects of the experiment are

unchanged.

Real-world Data Experiments We consider eight tabular regression datasets: (all results except
for WINE and MPG deferred to Appendix D). In each case, we train a neural network to predict a
real-valued label. The model outputs a mean and variance for a Gaussian distribution, and is trained
with the negative log-likelihood loss. The architecture has 2 hidden layers, each with 100 neurons,
and uses ReLU activations. We compute uncertainty sets for the explanation of the true model using
the conformal explanation intervals method. For the explanation, we use the average of the absolute
value of the Shapley value of the feature across the dataset (a measure of feature importance). We set
the prior distribution for each weight to be Gaussian with zero mean and variance as the reciprocal of
the dimension of the layer. The prior for the biases are standard Gaussian distributions. We generate
T = 100 calibration examples by sampling models from the prior.

6.2 Experimental Results

Testing Coverage on Synthetic Data We find that each of our proposed method achieves a cov-
erage of at least 95% (the naive method has coverage close to 50%). See Table 2 for the complete
results. The frequentist coverage interval tends to be overly conservative due to the worst-case per-
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spective of uniform convergence, leading to a roughly 4x greater interval width when compared to
the other methods, and 100% coverage in our experiments.

Real-world Data Experiments We find that the strength of conclusions that can be drawn from
the conformal method varies across datasets. For example, for the MPG dataset, the features
displacement, horsepower, and weight have high importance with low uncertainty. However,
in the PROTEIN dataset, it is difficult to make any meaningful conclusions about the relative im-
portance of features, possibly due to the existence of competing models that use different features.
Seven additional experimental results are included in Appendix D.

7 Discussion

We offer guidance to a practitioner deciding between the frequentist, Bayesian, and conformal ap-
proaches. If we do not have a prior for our model, the frequentist approach can give strong guar-
antees at the cost of large uncertainty sets. For Bayesian models, we recommend using the fully
Bayesian approach when the posterior admits exact sampling, since this gives stronger guarantees.
When an exact posterior sampler is not available, the conformal approach can recover a weaker
guarantee that can still give tight uncertainty sets.

In this work we show how to give confidence sets for explanations of the data generating process.
We caution, however, that explanations of the true data generating distribution do not in general
have causal implications. Still, we hope that formalizing a connection between model explanations
and the data generating distribution can help users understand which explanations are the result of
spurious correlations, and which are meaningful.

References
[1] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-

neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al.
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A Proofs

Lemma 1. If uniform convergence holds, then with probability at least 1− α,

Ln(f
∗) ≤ inf

f∈F
Ln(f) + 2ϵn.

Proof of Lemma 1. To see this, denote by the event E = {supf∈F |L(f) − Ln(f)| ≤ ϵ}, which
occurs with probability at least 1− α. If the event E occurs, then for all models f ∈ F we have

Ln(f
∗) ≤ L(f∗) + ϵn (E occurred)

≤ L(f) + ϵn (Optimality of f∗)
≤ Ln(f) + 2ϵn. (E occurred)

Since this inequality holds for all f ∈ F , it also holds for the infimum over F . This gives the result
in Equation (4).

B Example: Linear Regression

We will walk through an example in which we infer the Shapley values of an unknown linear func-
tion.

B.1 Shapley Value Derivation for Linear Models

Consider a linear model given by fθ(x) = θ⊤x, where θ ∈ Rd and x ∈ Rd. We use the capital X to
represent the random variable for the feature vector, and the lower case x to represent a fixed value
for this random variable. Given a coalition of features S ⊆ {1, . . . , d}, we can write the feature
vector x as x = [xS , xS ] where xS = {xi : i ∈ S} and xS = {xi : i /∈ S}. The prediction
associated with the coalition xS can be defined as

fθ(xS) := E [fθ([xS , XS ])] (12)

= E
[
θ⊤[xS , XS ]

]
(13)

= θ⊤S xS + θ⊤
S
E [XS ] (14)

= θ⊤S xS + θ⊤
S
xS + θ⊤

S
E [XS − xS ] (15)

= fθ(x) +
∑
i/∈S

θiE [Xi − xi] (16)

The Shapley value for a linear model on a particular instance x can then be written as:

ϕx
i (fθ) =

∑
S⊆[d]\i

|S|!(d− |S| − 1)!

d!
(fθ(xS∪{i})− fθ(xS)) (17)

=
∑

S⊆[d]\i

|S|!(d− |S| − 1)!

d!

fθ(x) +
∑

j /∈S∪{i}

θjE [Xj − xj ]

−

fθ(x) +
∑
j /∈S

θjE [Xj − xj ]


(18)

=
∑

S⊆[d]\i

|S|!(d− |S| − 1)!

d!
θiE [Xi − xi] (19)

=
1

Z
θiE [Xi − xi] (20)
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where Z =
(∑

S⊆[d]\i
|S|!(d−|S|−1)!

d!

)−1

is the normalizing constant. Using the efficiency property
of the Shapley value which states that

∑
i∈[d] ϕ

x
i (fθ) = fθ(x), we can compute the normalizing

constant Z by noting that:

fθ(x) =
∑
i∈[d]

ϕx
i (fθ) (21)

=
1

Z

∑
i∈[d]

θiE [Xi − xi] (22)

giving us that

Z =
1

fθ(x)

∑
i∈[d]

θiE [Xi − xi] (23)

We can then write the Shapley value as

ϕx
i (fθ) =

fθ(x)

θ⊤(E [X]− x)
θiE [Xi − xi] (24)

when the denominator is nonzero, and ϕx
i (fθ) = 0 when the denominator is equal to zero.

B.2 Uniform Convergence for Squared Loss of Linear Models

Uniform convergence results bound (with high probability) the disagreement supf∈F |L(f) −
Ln(f)| between the sample loss and population loss over a model class. Uniform convergence
results are often stated in terms of the Vapnik–Chervonenkis dimension, Rademacher complexity,
Gaussian complexity, covering number, and other notions of complexity of the model class. Below,
we display a few standard results that, together, give a uniform convergence result for linear models
with squared error loss.
Theorem 1 ([59]). Let F =

{
x 7→ θ⊤x : ∥θ∥p ≤ w

}
be a family of linear functions defined over

Rd with bounded weight in ℓp-norm. Then, the empirical Rademacher complexity of F for a sample
S = (x1, . . . ,xn) admits the following upper bounds:

R̂S (F) ≤ w

n
∥X∥Fr

where X is the d× n-matrix with xis as columns: X = [x1 . . .xn].
Theorem 2. For the squared error loss ℓ(y, ŷ) = (y − ŷ)2, let ℓ ◦ F :={
x 7→ (fθ(x)− f∗(x))

2
: fθ ∈ F

}
. Assume that supx∈X ,fθ∈F (fθ(x)− f∗(x))

2 ≤ M2. Then

for any sample S = {x1, . . . , xn},

R̂S(ℓ ◦ F) ≤ 2MR̂S(F) (25)

Theorem 3. With probability at least 1−δ, for all f ∈ F and distributions over X×Y the following
holds:

L(f)− Ln(f) ≤ 2R̂S(ℓ ◦ F) + 3

√
ln 1/δ

2n
(26)

Together, Theorems 1-3 give us the following result for linear models with the squared error loss.
For all f ∈ F and any distribution over X × Y , with probability at least 1− δ,

L(f)− Ln(f) ≤
4Mw

n
∥X∥Fr + 3

√
ln 1/δ

2n
(27)

where X,M,w, n, δ are defined as in Theorems 1-3.
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C Conformal Prediction

Our Algorithm 3 is heavily inspired by conformal prediction, a simple and effective method for
constructing statistically rigorous uncertainty intervals [56, 60, 61]. In the standard conformal pre-
diction setup, we have an i.i.d. calibration dataset (X1, Y1), . . . , (Xn, Yn) and some new input Xtest

for which we want to predict the label Ytest. Given a black-box model f̂ trained (on separate data) to
predict the label, we want to construct uncertainty estimates for the predictions made by the black-
box model. Conformal prediction tells us how to construct an uncertainty interval Ctest such that the
ground truth value Ytest is included in the uncertainty interval with some chosen probability 1 − α,
such at 95%:

P (Ytest ∈ Ctest) ≥ 1− α (28)

Perhaps the biggest advantage of conformal prediction is that it applies under extremely weak as-
sumptions. As long as the model-fitting algorithm A treats the data symmetrically (e.g., a time series
forecast that weighs recent data more heavily does not treat data symmetrically) and the data is i.i.d.
(in fact, the weaker condition of exchangeability is sufficient), the uncertainty interval will be valid.
No additional distributional assumptions on the data generating process are needed.

The central component of a conformal prediction algorithm is the nonconformity score. The non-
conformity score s(Y, f̂(X)) evaluates the disagreement between the observed outcome and the
model’s prediction. For a binary classifier that outputs a probability p̂(Xtest) that Ytest = 1, a reason-
able nonconformity score would be s(Ytest, p̂(Xtest)) = |Ytest − p̂(Xtest)|. For a regression model, a
reasonable nonconformity score would be s(Ytest, µ̂(Xtest)) = |Ytest − µ̂(Xtest)| where µ̂(Xtest) is the
predicted mean.

Importantly for our purposes, conformal prediction requires us to have i.i.d. examples to calibrate
our uncertainties. When we want an uncertainty interval for an outcome Ytest, this is not a problem
since we often have access to pairs of true outcomes Yi and predicted outcomes f̂(Xi). However,
in our case we want an uncertainty interval for the explanation ϕ(f). Problematically, we never
observe a true explanation because we never observe i.i.d. examples of a “true explanation” ϕ(f)

and an estimated explanation ϕ(f̂). Usually, we only observe a single dataset generated from a
single model f . However, if we have a prior distribution for the model, then we can simulate i.i.d.
examples of true explanations ϕ(f) and estimated explanations ϕ(f̂) then run conformal prediction.

D Additional Experimental Results

Figure 4: Feature importance scores (as measured by the mean Shapley value of each feature across
the dataset). Confidence intervals are computed using the conformal explanation intervals method.
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Figure 5: Feature importance scores (as measured by the mean Shapley value of each feature across
the dataset). Confidence intervals are computed using the conformal explanation intervals method.

Figure 6: Feature importance scores (as measured by the mean Shapley value of each feature across
the dataset). Confidence intervals are computed using the conformal explanation intervals method.
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