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ABSTRACT

Multi-modal multi-task learning (M2TL) aims to discover the implicit correspon-
dences among heterogeneous modalities and tasks, which is common in real-world
applications like autonomous driving and robotics control. Current single-model
solutions for M2TL usually fall short in several aspects. The shared backbone
between the modalities is prone to overfitting the simpler modality, while jointly
optimizing the tasks suffers from unstable training due to the gradient conflicts
across tasks. On the other hand, designing a separate model for each task and
modality can avoid the above problems but leads to prohibitively expensive com-
putation and memory consumption, rendering this approach unrealistic.
In this work, we propose M3SAT, a sparsely activated transformer for efficient
M2TL. The proposed framework tailors the mixture-of-experts (MoEs) into both
the self-attention and the feed-forward networks (FFN) of a transformer back-
bone. It adopts the routing policy to assign attention-heads and FFN experts dur-
ing training, which effectively disentangles the parameter space to prevent training
conflicts among diverse modalities and tasks. Meanwhile, disentangled parameter
space also restrains the problem of simple modal prone to overfitting. Sparsely
activating the transformer also enables efficient computation for each input sam-
ple. Through comprehensive evaluation, we demonstrate the effectiveness of our
M3SAT: a remarkable performance margin (e.g., ≥ 1.37%) is achieved over the
dense models with the same computation cost. More importantly, M3SAT can
achieve the above performance improvements with a fraction of the computation
cost – our computation is only 1.38% ∼ 53.51% of that of the SOTA methods.
Our code will be released upon acceptance.

1 INTRODUCTION

Recently, multi-modal machine learning models have shown effective in several domains, mainly
including image, language and audio understanding Ramesh et al. (2022); Saharia et al. (2022);
Agrawal et al. (2017); Yang et al. (2016); Wang et al. (2022). As the need of understanding our
surroundings keeps rising, new sensing modalities that go beyond these domains need to be deployed
and incorporated in multi-modal learning.

To illustrate, let us consider an example autonomous vehicle system. Nowadays, autonomous ve-
hicles are equipped with different types of sensors to ensure the viable perceptual capability under
adverse conditions such as rain, haze, and snow. Therefore, performing multi-modal perception by
fusing the data from these sensors has become a necessity. For example, Janani et al. (2022) uses
the eye blink sensor and photoplethysmography sensor for fatigue detection, Li et al. (2022) uses the
RGB camera, LiDAR and millimeter wave radar for 3D detection and tracking, Raguraman & Park
(2020) uses the RGB camera and LiDAR for drivable area detection, and Han et al. (2022) uses the
RGB camera and LiDAR for collision avoidance.

In addition, an autonomous vehicle system usually needs to perform a large number of tasks con-
currently, including fatigue detection Nemcova et al. (2021), 3D object detection and tracking Li
et al. (2022), lane detection Gao et al. (2019) and local planning Isele et al. (2018), etc, which poses
challenges to the underlying system. For example, autonomous vehicles usually move at a speed
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between 60 ∼ 120 km/h, forcing most of these tasks to run at a high frequency (e.g., 10Hz∼60Hz
or higher). The fact that autonomous vehicles usually have limited computation resources suggests
that each task needs to finish within a pre-set time, and that we cannot afford to load different task
models when switching tasks.

Multi-modal multi-task learning (M2TL) Liang et al. (2022); Hu & Singh (2021) aims at solving
multiple multi-model tasks simultaneously with a single model. However, challenges from both
multi-modal learning and multi-task learning hinder us from building an effective M2TL model.
Firstly, multi-modal networks are often prone to overfitting with different modalities overfitting
at different rates, and thus naively training them together is only sub-optimal Wang et al. (2020).
Secondly, training multiple tasks within a single model often results in tasks that compete for modal
capacity since the same weights might receive conflicting update directions Chen et al. (2020b); Fifty
et al. (2021). Notably, we assume that the intelligent system often only requires a small number
of tasks simultaneously, and each task only involves a subset of all the modalities. For such a
system, the “fully activated” model is heavily redundant and hard to scale. For example, Singh et al.
(2022); Hu & Singh (2021) has to activate a massive transformer-based network for each task, with
each modality using a distinct transformer encoder. Thus, as the backbone network grows with the
number of modalities and tasks, the inference latency of each task becomes catastrophically long.

To tackle these bottlenecks, we propose the Multimodal Multi-task Sparsely Actived Transformer
(M3SAT) which organically adapts the mixture of experts (MoE) Riquelme et al. (2021); Lepikhin
et al. (2021) for efficient M2TL tasks, as MoE can adaptively divide-and-conquer the entire model
capacity into smaller sub-models Shazeer et al. (2017); Kim et al. (2021b). We train the routing
policy within our backbone to select the subset of experts for each input token. In the training stage,
the load and importance balancing loss prevents the feature tokens from being always put into the
same expert, and thus distributes the parameter updating of the specific modality to different ex-
perts. This can effectively restrain the easy modality from the overfitting problem. Meanwhile, the
routing strategy separates the parameter spaces, which can balance feature reuse and avoid training
conflicts among tasks. In fact, vanilla MoE already disentangles the parameter spaces of the FFN
network; however, we find that these experts with separated parameter spaces are still insufficient
to handle multiple multi-modal tasks. Therefore, the M3SAT adopts the MoE into the feed-forward
network (FFN) and self-attention modules of the vanilla transformer encoder backbone. By further
untangling more parameters into distinct parameter spaces of the transformer backbone, the M3SAT
achieves better restrains the simpler modalities from overfitting and alleviates the gradient conflic-
tions between different tasks. During the inference stage, the M3SAT only activates those experts
corresponding to the necessary modality/task instead of the entire model. As such, the highly sparse
active transformer achieves efficient inference for the specific modality and task.

To verify the effectiveness of our M3SAT, we conduct comprehensive evaluation on MultiBench, a
large-scale benchmark spanning more than 10 modalities, and testing for 20 prediction tasks across
6 distinct research areas. Our model surpasses the performance of the state-of-the-art (SOTA) multi-
modal multi-task model on the MultiBench. Meanwhile, our computation cost is 1.38% – 53.51%
of the computation cost of the current SOTA multi-modal multi-task model on MultiBench.

Our main contributions are outlined below:

• We target the problem of efficient multi-modal multi-task learning and propose the first
multi-modal multi-task mixture of expert model.

• We engage MoE to achieve the following three goals: (1) solving the training conflicts
among tasks, (2) restraining the easy modality from overfitting, and (3) sparsely activating
paths for single-modality and single-task inference.

• We demonstrate remarkable performance improvements over dense models with equiv-
alent computational cost and outperform current multi-task state-of-the-art performance
with only 1.38% to 53.51% of their computational cost.

2 RELATED WORK

Multi-modal and Multi-task Learning. There has been a long history of work on multi-modal
and multi-task learning. On the one hand, most previous efforts on multi-task learning Strezoski
et al. (2019); Zamir et al. (2018); Søgaard & Goldberg (2016); Hashimoto et al. (2017) focus on
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specific domains or modalities, such as language and vision understanding. MaTL Strezoski et al.
(2019) enables structured deterministic sampling of multiple sub-architectures within a single modal
for multiple vision tasks. Søgaard & Goldberg (2016) design an MTL model with bi-RNNs for vi-
sion tasks. On the other hand, recent work on multi-modal learning prefers the Transformer-based
model to learning general-purpose models over two or three modalities, typically in the language,
vision, and audio Ramesh et al. (2022); Saharia et al. (2022); Agrawal et al. (2017); Yang et al.
(2016); Dai et al. (2022). Base on the vanilla text-based Transformer model Vaswani et al. (2017),
many multi-modal extensions typically use full self-attention over modalities concatenated across
the sequence dimension Su et al. (2020); Chen et al. (2020a) or a cross-model attention layer Tan &
Bansal (2019); Tsai et al. (2019). Several works such as Perceiver Jaegle et al. (2021), ViT-BERT Li
et al. (2021), PolyViT Likhosherstov et al. (2021) have investigated the potential of using the same
unimodal encoder architecture for different modalities. Moreover, multiple works have endeavored
to build a single model that works well on multiple multi-modal tasks (i.e., multi-modal multi-task
learning) Su et al. (2020); Cho et al. (2021); Hu & Singh (2021); Lu et al. (2019); Akbari et al.
(2021). VATT Akbari et al. (2021) introduces a shared model on video, audio, and text data to per-
form audio-only, video-only, and image-text retrieval tasks. VLBERT Su et al. (2020) investigates
a simple yet powerful pre-trainable generic representation for visual-linguistic tasks. Unit Hu &
Singh (2021) uses a single model for several vision-and-language tasks. HighMMT Liang et al.
(2022) goes beyond the commonly studied language, vision, and audio modalities to relatively more
affluent modalities such as tabular, time-series, sensors, graphs, and set data. In addition, High-
MMT investigates a single model to process the above modalities for multi-task learning, and each
task involves only parts of the above modalities, which is what we are concerned about.

MoE and Conditional Computation. Sparsely activated mixture of expert (MoE) models have
recently been used with great effect to both vision Riquelme et al. (2021); Lou et al. (2021) and lan-
guage Lepikhin et al. (2021); Kim et al. (2021b) models. MoE contains a series of sub-models (i.e.,
experts) and performs the conditional computation in an input-dependent fashion. Several pioneer
investigations explore MoE for multi-task learning Ma et al. (2018); Aoki et al. (2021); Hazimeh
et al. (2021); Kim et al. (2021a) and multi-modal learning Kudugunta et al. (2021); Mustafa et al.
(2022), which are related to this work. Particularly, Ma et al. (2018); Aoki et al. (2021); Hazimeh
et al. (2021) investigate task-specific gating networks to choose different sub-models for each task
to solve recommendation system Ma et al. (2018), medical signal process Aoki et al. (2021), and
digital number recognition (MNIST) Hazimeh et al. (2021) multi-task learning. Kim et al. (2021a)
propose a single gating network MoE for supporting training large-scale multi-task multilingual
models. Mustafa et al. (2022) use a single gating network to allocate tokens in a modality-agnostic
fashion for multi-modal contrastive learning. Fedus et al. (2022) investigates MoE into the attention
layer for NLP task, Zhu et al. (2022) further explores different types of routers in the FNN layer and
the attention layer for multi-modal learning. We integrate the MoE to further raveling parameter
spaces of the transformer backbone for the M2TL.

3 METHODOLODY

We first describe the overall architecture of our M3SAT, as shown in Figure 1, and then present the
proposed Sparse MoE design for multi-modal, multi-task learning.

3.1 MULTI-MODAL MULTI-TASK MODEL DESIGN

Input Data Preprocessing. Each modality is treated as a sequence. And then the modality-
specific Fourier positional encoding and one-hot modality encoding are applied to integrate tem-
poral/positional information and modality information into the input sequence of embedding. We
refer (i) the details of the processing for each modality as sequential data, (ii) the Fourier positional
encoding setting for different modalities, and (iii) the one-hot modality encoding to Appendix A.1.

Unimodal Encoder. After the input-data pre-processing, we would receive the sequential tokens of
different modalities, in which the feature dimension of all modalities is the same. A transformer-
based Perceiver Block Jaegle et al. (2021) is adopted to convert each modality sequence to sequences
with the same length. Note that only one copy of the Transformer-based Perceiver Block is used for
all modalities and tasks. Moreover, the process that shares the parameters of unimodal encoder
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Figure 1: Our model first standardizes each input modality into a sequence and uses modality-
specific embedding layers to capture the modality-specific information. Then the uni-modal encoder
layer converts each sequence to sequences of the same length. We concatenate these modality tokens
on the sequence dimension within each task and input them to M3SAT encoder layers for multimodal
multi-task learning. These M3SAT encoder layers perform efficient modality information fusion,
eliminate the training conflicts among tasks, and control easy modality to avoid overfitting.

across different modalities also allows us to get rid of setting specific modality encoder for each
modality. The details of the Transformer-based Perceiver Block can be found in Appendix A.2.

Consecutive Transformer Encoder with MoE. So far, we receive the multi-modal tokens for each
task, for which the sequence length of each modality is the same, and the feature dimension of each
modality token is the same. After concatenating these modality tokens on the sequence dimension
within each task, we put these tokens into several consecutive transformer encoder layers. Our
proposed M3SAT encoder layer and the vanilla transformer dense encoder layer compose these
transformer encoder layers. Specifically, the M3SAT encoder layer replaces the self-attention layer
and the feedforward network (FFN) layer of the dense encoder layer with corresponding sparse MoE
layers. The M3SAT encoder layer is introduced in Section 3.2, and the detailed configuration of the
M3SAT layer and other training setups are provided in Appendix A.3.

Task-specific Head and Multi-task Learning. Finally, we use a linear layer with normalization per
task for task-specific learning. Our optimization objective is minimizing a weighted sum of losses
for multiple tasks.

3.2 MULTI-MODAL MULTI-TASK MOE FOR M3SAT

We first describe the standard MoE, show the proposed Sparse MoE Self-attention, and then present
the multi-router version MoE that consists of a standard MoE and a Sparse MoE Self-attention.

Mixture of Experts Layer. A Mixture of Experts (MoE) layer typically consists of a group of
N experts f1, f2, . . . , fN together with a routing network (also called router) to select appropriate
experts. The experts usually use multi-layer perceptrons in transformer-based models (Riquelme
et al., 2021). We inherit the router design from V-MoE (Riquelme et al., 2021). For an input x, the
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Figure 2: The detailed architecture of the M3SAT Encoder Layer: the Sparse MoE Self-attention and
Sparse MoE FFN. The Sparse MoE Self-attention consists of three Self-attention MoE to compute
the value, key, and query, respectively. Note that, the expert of the Self-attention MoE is composed
of a single linear layer. The Sparse MoE FFN is the same as the vanilla MoE layer.

output of MoE layers selects the top K experts through a router R, depicted as below:

y =

K∑
k=1

R(x)k · fk(x), (1)

R(x) = TopK(softmax(Gate(x)),K), (2)

TopK(v,K) =

{
v if v is in the top K elements
0 otherwise

, (3)

where Gate(·) represents the learnable network within the router, for which we employ a single lin-
ear layer without bias in practice. The softmax(·) and TopK(·,K) work together to set all vector
elements to zero except the elements with the largest K values. To avoid always routing the same
experts while ignoring others, we employ the load and importance balancing loss following Shazeer
et al. (2017). We list the settings of K and N for different tasks group in Appendix A. The M3SAT
uses the vanilla sparsely activated MoE in the FFN layer.

Sparse Self-attention MoE. We first revisit the definition of the original Self-attention layer. The
Self-attention layer is mainly used to compute the self-attention of input tokens. The scaled-dot
product computes the self-attention:

Attention(Q,K,V) = softmax(
QKT

√
C

)V, (4)

where Q,K,V ∈ RS×C are the query, key, and value matrices computed by three linear layers from
the input tokens; S and C denote the sequence length and the hidden dimension. These three linear
layers for computing query, key, and value use the same architecture but different parameters. In
our proposed Sparse Self-attention MoE, we integrate MoE into these three linear layers to further
disentangle parameter spaces, which are displayed on the left side of Figure 2. For each attention
MoE:

y =

K∑
k=1

R(x)k · fa
k (x), (5)

where these expert candidates fa
k are shared across modalities and tasks. Unlike vanilla MoE, the

expert fa
k (·) is a single linear layer where the input and output dimensions are the same as the hidden

dimension. Each expert of vanilla MoE is computed with W2δgelu(W1x), where δgelu is the GELU
activation Hendrycks & Gimpel (2016), W1 and W2 are two learnable weight matrix. The Sparse
MoE Self-attention layer expert is computed with Wx, where the W is the learnable weight matrix
for calculating key, query, and value for self-attention. Note that, unlike Fedus et al. (2022); Zhu
et al. (2022), we use three independent routers to router tokens for q, k, and v separately.
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Figure 3: In the multi-router version of M3SAT encoder layer, we allow the Self-attention MoE and
the Sparse MoE FFN of our M3SAT encoder layer to use task-specific router network or modality-
specific router network. The task-specific router indicates that each task owns its router network,
and the modality-specific router indicates that each modality owns its router network.

Task/Modality Specific Multi-router MoE. We notice several works Ma et al. (2018);
Aoki et al. (2021); Hazimeh et al. (2021); Kim et al. (2021a) investigate task-specific rout-
ing networks for multi-task learning. This paper takes one step further - we propose the
task/modality specific multi-router MoE to study the benefits of the multi-router design. Formally,
we define the output of our MoE layer as follows:

yt =

K∑
k=1

Rs(x)k · fk(x), (6)

where s is the routing network index and can be set as task index or modality index. The ex-
pert fk(·) can be either a single linear layer (used in the Sparse MoE Self-attention layer) or
an FFN layer (used in the Sparse MoE FFN layer). All of these experts are shared between
different modalities and tasks. Both the Sparse MoE Self-attention layer and FFN layer can
use the task-specific or modality-specific router. Therefore, we design four versions of multi-
router M3SAT : i) the Multi-router M3SAT uses modality-specific routing networks in the Sparse
MoE Self-attention layer and task-specific routing networks in the Sparse MoE FFN layer. ii)
the R-Multi-router M3SAT ‘reverses’ settings of the Multi-router M3SAT which uses modality-
specific routing networks in the Sparse MoE FFN layer and task-specific routing networks in
the Sparse MoE Self-attention layer. Meanwhile, we also use modality-specific routing net-
works (P-Modality-router M3SAT ) or task-specific routing networks (P-Task-router M3SAT ) along
both in the Sparse MoE Self-attention layer and the Sparse MoE FFN layer. The backbone
model parameters of the M3SAT and these versions of multi-router M3SAT do not proportion-
ally increase if we involve more modalities and tasks in training. We show the details of the
task/modality specific multi-router MoE in Figure 3. The effects of the multi-router MoE are in-
cluded in Section 4.3 and Appendix B.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

To evaluate the proposed method, we conduct experiments on the MultiBench, a large-scale multi-
modal multi-task benchmark involving more than 10 modalities and testing for 20 prediction tasks
across 6 research areas. We choose 7 tasks in MultiBench and train 3 multi-modal multi-task models
across combinations of these tasks in Table 1 (please see Appendix C for more experimental details).

Evaluation Metrics. We use the standard evaluation metrics provided by MultiBench Liang
et al. (2021). Following Vandenhende et al. (2022), we use ∆ to evaluate our M2TL model
m as the average per task drop with respect to the HighMMT model b over all tasks: ∆ =

6



Under review as a conference paper at ICLR 2023

Table 1: We follow the setting of HighMMT Liang et al. (2022), which uses 3 multimodel multi-
task training to evaluate the performance of the M3SAT. These setups include tasks with different
modality inputs, predicting objectives, research areas, and dataset size.

Setting Dataset Modalities Prediction Task Research Area Size

Small PUSH image,force,proprioception,control object pose Robotics 37,990
V&T image,force,proprioception,depth contact Robotics 147,000

Medium
ENRICO image,set design interface HCI 1,460

PUSH image,force,proprioception,control object pose Robotics 37,990
AV-MNIST image,audio digit Multimedia 70,000

Large

YR-FUNNY text,video,audio humor Affective Computing 16,514
MOSEI text,video,audio sentiment Affective Computing 22,777
MIMIC time-series,table ICD-9 codes Healthcare 36,212

AV-MNIST image,audio digit Multimedia 70,000

Table 2: We compare the performance of our model, HighMMT (the state-of-the-art multi-modal
multi-task learning method on the MultiBench benchmark), and all the 20 models implemented
in the benchmark for in 3 different training settings. We show that our model outperforms the
HighMMT model in most tasks.

Small setting PUSH ↓ V&T ↑ ∆(%) ↑ Params (M) Flops (G)

MultiBench Models 0.574-0.290 93.30-93.60 - 2.03-24.70 5.20-25.10
HighMMT 0.445 96.10 0.00 0.85-0.89 5.14-32.48
Ours 0.331 96.33 12.93 0.25-0.27 2.59-17.38

Medium setting ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑ Params (M) Flops (G)

MultiBench Models 44.40-51.00 0.574-0.290 65.10-72.80 - 21.20-51.70 0.25-314.10
HighMMT 53.10 0.600 68.48 0.00 0.52-0.63 0.95-79.48
Ours 71.58 0.475 71.86 20.19 1.23-1.25 0.41-2.33

Large setting UR-FUNNY ↑ MOSEI ↑ MIMIC ↑ AV-MNIST ↑ ∆(%) ↑ Params (M) Flops (G)

MultiBench Models 58.30-66.70 76.40-82.10 67.6-68.9 65.1-72.8 - 0.41-37.7 0.25-10.03
HighMMT 62.00 78.40 65.60 70.60 0.0 0.52-0.52 0.67-1.65
Ours 64.24 79.47 67.91 71.05 2.28 0.76-0.76 0.15-0.53

1
T

∑T
i (−1)li(Mm,i − Mb,i)/Mb,i, where Mi is the metrics of task i, and li = −1 if a lower

value means better performance. M2TL results of HighMMT are running by their released code
and training configuration. Training each task group takes about 12 − 24 hours for HighMMT and
our M3SAT model. Therefore, the performances of these tasks for HighMMT and M3SAT that
we report in this paper are the mean of 3 times repetitions. For the min and max performance of
MultiBench in Table 2, we report numbers directly from the MultiBench paper.

Configuration Details. We display our model overview architecture in Figure 1 and the architec-
ture design details of M3SAT we proposed in Figure 2. We conduct all of our experiments on the
NVIDIA A30 Tensor Core GPU. Please refer to Appendix A.3 for more details on network config-
uration and training setup.

4.2 PERFORMANCE COMPARISON OF M3SAT WITH EXISTING MULTIMODEL MODELS

In Table 2, we compare the performance of our model with the current SOTA model High-
MMT Liang et al. (2022) as well as 20 recent multimodel models that are implemented in Liang et al.
(2021). The results show that our method outperforms the HighMMT on all tasks under all three
settings (+12.93%/+20.19%/+2.28% M2TL performance, respectively). Notably, the ‘ENRICO’
performance of M3SAT is even significantly higher (+20.58% single-task performance) than the
best performance of MultiBench, which sets a new state-of-the-art result. Meanwhile, the M3SAT
only uses 1.38% ∼ 53.51% of the computation resources compared to HighMMT. For the large
setting, although the number of parameters of M3SAT is larger than HighMMT, the computation
resources (Flops) we used are still much smaller.
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Table 3: Comparison of routing networks. To explore the effects of different routing networks, we
consider the influences of task-specific routing networks and modality-specific routing networks in
the self-attention layer and the FFN layer separately. We also investigate the combinations between
the multi-routing network and the single-routing networks in Appendix B.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑

HighMMT multitask 53.10 0.600 68.48 0.00
M3SAT (ours) 71.58 0.475 71.86 20.19
Multi-gate M3SAT 71.00 0.684 71.03 7.81
R-Multi-gate M3SAT 64.38 0.995 71.33 -13.48
P-Modality-gate M3SAT 68.72 0.786 70.70 0.54
P-Task-gate M3SAT 68.38 0.833 70.69 -2.25
Dense Model 65.98 1.342 70.49 -32.14
- w/o Attention MoE 69.06 1.227 70.26 -23.92
- w/o FFN MoE 68.84 0.818 70.94 -1.02

4.3 DETAILED INVESTIGATIONS OF M3SAT

Ablation Study: single-router vs. multi-router. We notice that earlier works such as Ma et al.
(2018); Aoki et al. (2021); Hazimeh et al. (2021); Kim et al. (2021a) have investigated task-
specific routing networks in learning the routing policy individually for different tasks in MTL.
Therefore, we next explore the following question: What kind of routing network is suitable
for M2TL? To answer this question, we compare our M3SAT with the Multi-router M3SAT , the
R-Multi-router M3SAT , the P-Modality-router M3SAT , and the P-Task-router M3SAT . We also
investigate more detailed experiments in Appendix B. Our final results show that the single router is
better suited for M2TL.

Ablation Study: with MoE vs. w/o MoE. We further analyze the MoE components of M3SAT in
Table 3 and Appendix B.1. The Dense model is the model that uses the same computation cost with
the M3SAT but without any MoE components. The w/o Attention MoE leaves out the Sparse MoE
Self-attention and uses the original self-attention layer. The w/o FFN MoE replaces the Sparse MoE
FFN with the primary FFN layer. Compared with the dense model, M3SAT achieves a noticeable
performance gain (e.g., ≥ 1.37%), which shows that the M2TL benefits from the MoE.

Ablation Study: expert number and selection number. For the MoE layer, the number of se-
lected experts per token K and the total number of experts N are two of the most significant hyper-
parameters. Due to the limited space, we show the detailed performance in Appendix C.2.

In-Depth Discussion: MTL. We measure the following two metrics to explain the reason for obtain-
ing MoE successfully from the multi-task learning (MTL) view: the gradient positive sign purity and
the inter-task affinity. The gradient positive sign purity Chen et al. (2020b) (GPSP) measures how
many positive gradients are presented in a network parameter at any given value. P is bounded by
[0, 1]. The value of P close to 0 or 1 indicates that the gradient conflict of MTL has less effect on the
corresponding parameter. In Figure 4, we discretize P into 5 intervals and then count the number
of parameters that fall within these 5 intervals. We record the GPSP distribution of the M3SAT ,
M3SAT without MoE on self-attention, M3SAT without MoE on FFN, and the equal computation
dense model. The inter-task affinity Zi→j defined by Fifty et al. (2021) indicates the influence of
the parameter update of task i on task j. The higher value of Zi→j indicates the update on the
parameters is positive for task j, while a lower value of Zi→j indicates that the parameter update is
antagonistic for task j. For the medium setting, in the right part of Figure 4, we record the inter-task
affinity of the ‘ENRICO’ task to the ‘PUSH’ task of the M3SAT , the multi-router M3SAT , and the
equal computation dense model.

Compared with other models, the GPSP of M3SAT is accumulated more in intervals [0.6, 0.8] and
[0.8, 1.0], which shows by splitting the parameter space, only a fraction of the conflict parameters
are running for specific tasks. The inter-task affinity of M3SAT and multi-router M3SAT is higher
than the dense model most of the time, which shows that MoE can restrain the gradient conflict of
MTL. For more details on the GPSP and the inter-task affinity, please refer to Appendix C.5 and
Appendix C.6.
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Figure 4: The distribution of The Gradient Positive Sign Purity(left), and the inter-task affinity of
the ‘ENRICO’ to the ‘PUSH’ task (right).

Table 4: The optimal gradient blend for each tasks under different model architectures.

Model ENRICO PUSH AV-MNIST

image set image force proprioception control image audio
M3SAT 0.48 0.52 0.00 0.37 0.32 0.31 1.00 0.00
- Dense Model (w/o MoE) 0.61 0.39 0.00 0.36 0.32 0.31 1.00 0.00
- w/o Self-attention MoE 0.63 0.37 0.00 0.37 0.32 0.30 1.00 0.00
- w/o FFN MoE 0.75 0.25 0.00 0.37 0.32 0.32 1.00 0.00
multi-gate M3SAT 0.71 0.29 0.00 0.35 0.32 0.32 1.00 0.00

In-depth Discussion: multi-modal learning. From the perspective of multi-modal learning, the
optimal gradient blend (OGB) defined by Wang et al. (2020) indicates which modality is easily prone
to overfitting (the smaller the value, the easier the modality is prone to overfitting). For a multi-modal
task with M modalities, the OGB is bounded: wogb

m ∈ [0, 1] and
∑M

m wogb
m = 1, where m is the

modality index. The greater the difference between the modality OGB values within a single task,
the more serious the overfitting problem for the modalities with smaller OGB values. In Table 4, we
present the optimal gradient blend of the trained models under different MoE settings. For PUSH
and AV-MNIST tasks, the overfitting problem still exists. However, M3SAT alleviates the problem
in the ENRICO task. For more details on the optimal gradient blend, please see Appendix C.7.

In-depth Discussion: Expert distribution. We also explore how routing is distributed across dif-
ferent modalities and tasks. Due to the limited space, we show the routing distribution under testing
data for different modalities and tasks of the medium setting in Appendix C.8.

5 CONCLUSION AND LIMITATION

This paper proposes a sparsely active transformer model for efficient multi-modal multi-task learn-
ing. By tailoring the mixture-of-experts into both the self-attention and the feed-forward net-
works of a transformer backbone, we achieve the following. Firstly, we sparsely active experts
in the self-attention and the feed-forward networks in training to restrain easy models from be-
ing overfitting and mitigating MTL gradient conflicts. Secondly, given any task and corresponding
modalities, we can only activate the sparse ‘expert’ pathway for efficiency. Comprehensive experi-
ments show that the proposed M3SAT surpasses the SOTA with a fraction of the computation cost
(+12.93%/+20.19%/+2.28% M2TL performance); our computation cost is only 1.38% ∼ 53.51%
of the SOTA model. Our experiments on MoE also provide rational perspectives for designing
multi-modal multi-task learning neural network architectures.

The limitation of our work is that the proposed M3SAT is only evaluated on academic datasets. Mov-
ing forward, we will evaluate M3SAT on more practical tasks like in-door robots and autonomous
vehicles in future work. Also, we expect to expand our model size for larger scale tasks and more
kinds of modalities in future work.
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A MODEL DETAILS

A.1 PROCESS DATA INTO SEQUENCE

Following the process of Jaegle et al. (2022), we first standardize each input into a sequence.
For each modality Jaegle et al. (2022), we define some hyperparameters (such as max freq,
num freq bands, and freq base) for the Fourier positional encoding. Fourier transformations get
this positional information. For modalities such as text and time-series, they are already sequential
data. We apply 1D positional encoding for these modalities x ∈ Rbm×tm×dm , where bm, tm, dm
are the batch-size, sequence length, and input dimension of current modality, respectively. For im-
age and similar modalities, we follow the processing procedure of Dosovitskiy et al. (2021), which
breaks each input into hm × wm patches and flattens it as a sequence of p2 regions. We use 2D
positional encoding for image and similar modalities input x ∈ Rbm×hm×wm×dm , where hm ×wm

is the number of patches. For image modality, the dm is the number of pixels within a patch. For
video and similar modalities, we treat each frame data as the image modality, therefore we apply 3D
positional encoding for input x ∈ Rbm×lm×hm×wm×dm , where lm is the number of the frame. In
the other modalities, such as table and graph, we treat each element in the table/graph as an element
in the sequence and use a 1D positional encoding.

After transposing inputs into sequence data, now we show the subsequent processing procedure in
Algorithm 1. The ‘max modality dim’ equals to maxm∈M (dm+dpm), where dpm is the dimension
of Fourier positional encoding for the corresponding modality. The one-hot encoding is defined as
em ∈ R|M |, where |M | is the number of all modalities involved.

Algorithm 1 Data Preprocess
# x: the input tokens of specific modality
def DataPreprocess(x, modality):

# get positional encoding information
# pos dim: indicates 1D/2D/3D positional encoding
enc pos=fourier encode(modality.pos dim,

modality.max freq,
modality.num freq bands,
modality.freq base)

# add padding for modalities with smaller input dimension
# max modality dim: the maximum input dimension overall modalities
# input dim: the input dimension of current modality
padding=zeros(max modality dim−modality.input dim)
# modality one-hot encoding
# modality index: the index of current modality
modality encodings=one hot(modality.modality index)
# construct final input
modality input=concatenate(x, padding, enc pos, modality encodings)
return modality input

A.2 THE UNIMODAL ENCODER

The result of Algorithm 1 is then feeded into the unimodal encoder layer. We display the details of
the unimodal encoder layer in Figure 5. The sequence length T of different modalities are different,
as T can be tm, hm × wm, or lm × hm × wm. However, the cross attention between the input
sequence and latent input will convert the sequence length from different modalities into the same
value. For example, the input modality sequence is x ∈ RTm×D and the latent input is z ∈ RN×C .
After these three linear layer, we got K,V ∈ RTm×X and Q ∈ RN×X . Following the scaled-dot
product attention:

Attention(Q,K,V) = softmax(
QKT

√
C

)V, (7)

from which we can know the dimension after the attention is Attention(Q,K,V) ∈ RN×X . There-
fore, the sequence length of the output depends on the sequence length of the latent input and the
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Figure 5: The details of the unimodal encoder layer. The D and T are the sequence length and
feature dimension of the modality-specific input sequence. The N and C are the sequence length
and the number of dimensions of latent input. The latent input is the learnable parameters shared
across different modalities and tasks.

feature dimension depends on the unimodal encoder’s hidden size, which is independent of the shape
of the input modality sequence. The hidden dimension of the self-attention encoder layer equals to
the previous layer’s cross-attention layer.

A.3 THE MODEL AND TRAINING SETUPS

We list hyperparameters for the training and the model in Table 13, Table 14 and Table 15 for small,
medium and large setting, respectively.

B SINGLE-ROUTER V.S. MULTI-ROUTER IN M3SAT

This paper applies MoE in both the self-attention layer and the FFN layer within a vanilla trans-
former encoder layer. Moreover, several works Ma et al. (2018); Aoki et al. (2021); Hazimeh et al.
(2021); Kim et al. (2021a); Kudugunta et al. (2021); Mustafa et al. (2022); Kim et al. (2021a) in-
vestigate single-router or multi-router for multi-task learning or multi-modal learning. Therefore,
we also investigate the multi-router M3SAT for M2TL. With those in mind, we ask a much more
significant question:

What kind of MoE structure is appropriate for M3SAT to M2TL?

For our proposed M3SAT, we can use single-router MoE, multi-router MoE, and dense network in
both the self-attention and FFN layers, respectively. Meanwhile, the multi-router MoE can also be
divided into the modality-specific multi-router MoE and the task-specific multi-router MoE. There-
fore, we explore all possible combinations of the above settings in the self-attention and FFN layers.
We list all explored network architectures in Table 5.

Table 5: All possible MoE design combinations for M3SAT.
The FFN layer

Modality-Specific MoE Task-Specific MoE Single-Router MoE w/o MoE

The Self-attention
layer

Modality-Specific MoE P-Modality-Router M3SAT Multi-Router M3SAT Attn-Modality-FFN-Single M3SAT Multi-Router M3SAT w/o FFN MoE
Task-Specific MoE R-Multi-Router M3SAT P-Task-Router M3SAT Attn-Task-FFN-Single M3SAT R-Multi-Router M3SAT w/o FFN MoE
Single-Router MoE Attn-Single-FFN-Modality M3SAT Attn-Single-FFN-Task M3SAT M3SAT M3SAT w/o FFN MoE

w/o MoE R-Multi-Router M3SAT w/o Attn. MoE Multi-Router M3SAT w/o Attn. MoE M3SAT w/o Attn. MoE Dense Model

We run above network architectures in the medium setting and report the results in Table 6. All
results reported in Table 6 use the same hyperparameters in Table 14, except for the routing network
setting. In particular, the ‘Dense Model’ is an equal computation dense model where we propose
two kinds of equal computation dense model: ‘Dense Model 1’ uses the transformer encoder layer
with double depth and ‘Dense Model 2’ is 4x wider than the hidden dimension of the transformer
encoder layer. To further illustrate our performance gains are mainly come from our M3SAT design,
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Table 6: The results of different MoE router settings in the medium setting.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑

HighMMT multitask 53.10 0.600 68.48 0.00
M3SAT 71.58 0.475 71.86 20.19
Multi-router M3SAT 71.00 0.684 71.03 7.81
R-Multi-router M3SAT 64.38 0.995 71.33 -13.48
Dense Model 1 65.98 1.342 70.49 -32.14
Dense Model 2 62.56 1.400 71.40 -37.11
M3SAT w/o FFN MoE 68.84 0.818 70.94 -1.02
M3SAT w/o Attn. MoE 69.06 1.227 70.26 -23.92
Multi-Router M3SAT w/o FFN MoE 67.58 1.166 71.11 -21.06
Multi-Router M3SAT w/o Attn. MoE 65.41 1.402 70.08 -36.03
R-Multi-Router M3SAT w/o FFN MoE 67.35 0.633 71.37 8.54
R-Multi-Router M3SAT w/o Attn. MoE 66.43 0.969 71.04 -10.89
Attn-Task-FFN-Single M3SAT 63.81 0.952 71.02 -11.62
Attn-Modality-FFN-Single M3SAT 69.52 0.777 71.47 1.94
Attn-Single-FFN-Task M3SAT 67.24 0.764 71.03 1.00
Attn-Single-FFN-Modality M3SAT 65.75 1.088 71.31 -17.77
P-Modality-router M3SAT 68.38 0.786 70.70 0.54
P-Task-router M3SAT 68.38 0.833 70.69 -2.25
Equal Capacity Model 64.61 0.878 69.8 -7.59

Table 7: Task performances of different models. M3SAT 2/3/4 layers: 2/3/4 transformer encoder
layers and replacing with M3SAT layer every other layer. P-M3SAT 2/3/4 layers: 2/3/4 consec-
utive M3SAT layers. M3SAT early/middle/late-2: 4 transformer encoder layers and replacing the
early/middle/late-2 encoder layers with two M3SAT layers.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑

HighMMT multitask 53.10 0.600 68.48 0.00
M3SAT 71.58 0.475 71.86 20.19
M3SAT 2 layers 70.55 0.992 70.34 -9.92
M3SAT 3 layers 69.18 0.551 70.32 13.71
M3SAT 4 layers 71.46 1.223 70.18 -22.24
P-M3SAT 2 layers 69.63 0.766 71.57 2.64
P-M3SAT 3 layers 70.78 0.616 71.12 11.49
P-M3SAT 4 layers 67.47 0.976 71.68 -10.30
M3SAT early two layer 68.15 0.793 71.19 -0.03
M3SAT middle two layer 73.17 0.884 69.89 -2.49
M3SAT late two layer 72.15 1.374 69.97 -30.33

we construct a same capacity model where we ×4 the number of attention heads, ×8 the dimension
of each attention head, and ×32 the hidden dimension of the MLP layer. .

We find out that the single-router is the best architecture for M2TL. The second best architecture
is using the task-specific router in the self-attention layer and the dense layer in the FFN layer.
Meanwhile, using the modality-specific router in the self-attention layer and the task-specific router
in the FFN layer also seems like a reasonable choice.

For better understanding, we display the architecture of the Multi-Router M3SAT and the R-
Multi-Router M3SAT in Figure 6 and Figure 7, respectively.

B.1 USING CONSECUTIVE M3SAT

This section is used to illustrate how use consecutive M3SAT layer as transformer backbone, and
provide more observation about how use M3SAT while network is getting deeper.

Our experimental results in Table 7 show:

• The performance may not be improved as the number of M3SAT layers increases.

• The location of M3SAT matters. Using M3SAT in shallow layers helps the most.
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Figure 6: In the Multi-router M3SAT encoder layer, We use the modality-specific router in the
Self-attention layer and the task-specific router in the FFN layer.
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Figure 7: In the Reverse Multi-router M3SAT (R-Multi-router M3SAT) encoder layer, We use
the task-specific router in the Self-attention layer and the modality-specific router in the FFN layer.

Table 8: Detailed results of parameter and computation cost.

Small setting PUSH V&T
Params (M) Flops (G) Params (M) Flops (G)

HighMMT multitask 0.89 5.14 0.85 32.48
M3SAT 0.27 2.59 0.25 17.38

Medium setting ENRICO PUSH AV-MNIST
Params (M) Flops (G) Params (M) Flops (G) Params (M) Flops (G)

HighMMT multitask 0.58 79.48 0.63 21.60 0.52 0.95
M3SAT 1.23 1.10 1.25 2.33 1.23 0.41

Large setting UR-FUNNY MOSEI MIMIC AV-MNIST
Params (M) Flops (G) Params (M) Flops (G) Params (M) Flops (G) Params (M) Flops (G)

HighMMT multitask 0.52 1.51 0.52 1.65 0.52 0.67 0.52 0.95
M3SAT 0.76 0.38 0.76 0.53 0.76 0.15 0.76 0.43

C EXPERIMENTS DETAILS

We show the number of parameters and the computation cost of the current SOTA and M3SAT in
Figure 8.
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C.1 DATASET

PUSH Lee et al. (2020a), i.e., the MUJOCO PUSH task, is a planar pushing task, in which a 7-DoF
Panda Franka robot is pushing a circular puck with its end-effector in simulation. We estimate the
2D position of the unknown object on a table surface while the robot intermittently interacts with
the object. This dataset contains 1000 training data, 10 validation data, and 100 testing data, where
each data point is split into 29 sequences, and each sequence includes 16 consecutive steps.

V&T Lee et al. (2020b) also called ‘VISION&TOUCH’, is a real-world robot manipulation dataset
that collects visual, force, and robot proprioception data for a peg insertion task. The robot is
used to insert the peg into the hole. In this paper, we use this dataset to predict the manipulator
weather contact the peg in the next step, which is a binary classification task. We follow the setting
of MultiBench and use 117,600 data points for training and the remaining 29,400 data points for
validation and testing.

ENRICO Leiva et al. (2020) includes 20 Android app design categories. Each data point consists
of the app screenshot and the view hierarchy. The view hierarchy describes the spatial and structural
layout of UI elements of the corresponding screenshot. During training, the view hierarchy is ren-
dered as “wireframe”, which can be viewed as a form of set data. ENRICO contains 947 data points
for training, 219 data points for validation, and 292 data points for testing.

AV-MNIST Vielzeuf et al. (2018) is a multimedia dataset that uses audio and image information
to predict the digit into one of 10 classes (0-9). This dataset comprises 55,000 training data points,
5,000 validation data points, and 10,000 testing data points.

UR-FUNNY is the multi-modal affective computing dataset of humor detection in human speech.
Each data point of UR-FUNNY is a video with text, visual, and acoustic modalities. We train this
dataset to predict whether the current data point makes people fill positive or negative. There are
1,166, 300, and 400 videos in the train, valid, and test data, respectively.

MOSEI Zadeh et al. (2018) is the largest dataset of sentence-level sentiment analysis and emotion
recognition in real-world online videos. Each video is annotated for 9 discrete emotions (angry,
excited, fear, sad, surprised, frustrated, happy, disappointed, and neutral), and a continuous emotions
value (valence, arousal, and dominance). We follow the MultiBench, training this dataset as a binary
classification task. We use 16,265, 1,869, and 4,643 train, valid, and test data points, respectively.

MIMIC Johnson et al. (2016), i.e., the Medical Information Mart for Intensive Care III, is a freely
accessible critical care database, which records ICU patient data, including time-series and other
demographic variables in the form of tabular numerical data. We use this dataset for binary classi-
fication on whether the patient fits any ICD-9 code in group 7 (460-519). The dataset is randomly
split into 28,970, 3,621, and 3,621 data points for training, validation, and testing.

For more details of the above datasets, please refer to the Liang et al. (2021) and their released
website:

https://github.com/pliang279/MultiBench.

Results of HighMMT is running by Liang et al. (2022) released code:

https://github.com/pliang279/HighMMT.

C.2 THE TOTAL NUMBER OF EXPERTS AND THE NUMBER OF EXPERTS PER SELECTION

We do ablation studies on the number of experts per selection K and the total number of experts
N for the medium setting. From Table 9, we can observe that the performance is increase with the
number of N . However, increasing the total number of experts requires more memory resources.
Increasing the number of experts per selection K can improve performance to some extent, but
too larger K will restrain parameters from getting enough training, decreasing performances. The
appropriate value of N and K is crucial for M2TL performance.
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Table 9: Ablation studies. Effects of the number K of selected experts per token and the total
number N of experts.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑

HighMMT multitask 53.10 0.600 68.48 0.00
2K, 32N (M3SAT) 71.58 0.475 71.86 20.19
1K, 32N 65.41 0.522 71.48 13.49
3K, 32N 69.98 0.645 71.10 9.36
4K, 32N 67.24 0.782 71.43 0.20
2K, 4N 67.92 1.250 71.33 -25.41
2K, 8N 67.69 0.975 70.93 -10.51
2K, 16N 69.75 0.771 70.45 1.89

Table 10: Concatenate tokens along the batch axis.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑

HighMMT multitask 53.10 0.600 68.48 0.00
M3SAT 71.58 0.475 71.86 20.19
Concate along batch 64.38 1.174 71.05 -23.57

C.3 FUSION BY CONCATENATE TOKENS ON THE SEQUENCE DIMENSION

Before we input tokens into our transformer backbone (several consecutive transformer encoder lay-
ers), we concatenate tokens on the sequence dimension. Therefore, we can fusion different modal-
ities by the attention layer within each transformer encoder layer. To further illustrate that such an
operation is necessary, we additional training the same model but concatenate tokens along the batch
axis. Our following table shows fuse modalities by concatenating tokens along the sequence axis is
positive for our tasks.

Our results in Table 10 show fuse modalities by concatenating tokens along the sequence axis is
positive for our tasks.

C.4 INDEPENDENT ROUTING POLICY BETWEEN Q, K, AND V

Prior works Fedus et al. (2022); Zhu et al. (2022) also apply MoE in the attention layer. However,
they all use a single router to routing tokens for q, k, and v simultaneously. We think such a design
lack flexibility. Therefore, in our MoE attention layer, the router for q, k, and v is separate, which
could provide a more flexible attention mechanism. In order to support the above statement, we con-
duct additional experiments in Table 11 to study the advantage of M3SAT v.s. Prior MoE attention
design style (q, k, v using the same router in the MoE attention).

C.5 THE GRADIENT POSITIVE SIGN PURITY OF M3SAT

The Gradient Positive Sign Purity Chen et al. (2020b) P of a single parameter for T tasks is defined
as:

P =
1

2
(1 +

∑T
i ∆Li∑T
i |∆Li|

), (8)

where ∆Li is the gradient for the task i. The Gradient Positive Sign Purity is bounded by [0, 1],
which P close to 1 or 0 indicates such parameters suffer less gradient confliction from multi-task
training. We use the trained model to collect the Gradient Positive Sign Purity of such model. Then
we discrete the Gradient Positive Sign Purity value into five intervals of each parameter and count
the ratio of parameters in these five intervals.
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Table 11: Using a single router to routing tokens for q, k, and v simultaneously.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑

HighMMT multitask 53.10 0.600 68.48 0.00
M3SAT 71.58 0.475 71.86 20.19
qkv share routers 73.51 0.936 69.28 -5.45
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Figure 8: The inter-task affinity of the ‘ENRICO’ to the ‘AV-MNIST’ task (right), and the inter-task
affinity of the ‘ENRICO’ to the ‘PUSH’ task (right). The results reported are the average of three
replicates.

C.6 THE TASK AFFINITY OF M3SAT

The task affinity Fifty et al. (2021) is defined as follows:

Zt
i→j = 1−

Lj(X t, θt+1
s|i , θtj)

Lj(X t, θts, θ
t
j)

, (9)

where Xt is the training batch at time-step t, θt+1
s|i is the updated shared parameters after a gradient

step with respect to the task i. θtj represents the task j’s specific parameters. Considering the
imbalance between datasets in the MultiBench, we set the size of Xt is the training data size of
such task t. Therefore, for the medium setting, we collect the task affinity by solitary training the
‘PUSH’ task for an single epoch, then we calculate the loss of ‘ENRICO’ and ‘AV-MNIST’ on
the corresponding training data. We count the task affinity from ‘PUSH’ to ‘ENRICO’ and ‘AV-
MNIST’ every 10 epochs during training. We display the task affinity changes with training epochs
in Figure 8. The task affinity of M3SAT and multi-router M3SAT is usually higher than the one of
the dense model which indicates that the MoE we proposed alleviates the training conflict of MTL.

C.7 THE OPTIMAL GRADIENT BLEND OF M3SAT

The optimal gradient blend Wang et al. (2020) is used to re-weight the feature of each modality
during multi-modal training. The optimal gradient blend will give this modality a small weight
for the modality that is easy to prone to overfitting. The weight of each modality is bounded by
[0, 1] within a task, and the sum of all modalities for this task is 1. Therefore, the gap between
different modalities within a task indicates that the modality with a smaller weight (optimal gradient
blend) tends to overfit. We collect the optimal gradient blend of the corresponding trained model
to determine whether our proposed model can restrain the easy model from overfitting. We use a
modified version of the optimal gradient blend where the unnormalized optimal gradient blend of
modality m is defined as:

wm,n
unnorm =

Lm
valid

Lm
valid − Lm

train

, (10)

where Lm
valid is the validation loss after training n epochs only using modality m, and Lm

train is the
training loss after training n epochs only using modality m. For task i, the final optimal gradient
blend we reported is:

wi,m =
wm,n

unnorm∑M
m wm,n

unnorm

, (11)
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Table 12: The optimal gradient blend for each tasks under different model architectures.

Model ENRICO PUSH AV-MNIST

image set image force proprioception control image audio
M3SAT 0.48 0.52 0.00 0.37 0.32 0.31 1.00 0.00
- Dense Model (w/o MoE) 0.61 0.39 0.00 0.36 0.32 0.31 1.00 0.00
- w/o Self-attention MoE 0.63 0.37 0.00 0.37 0.32 0.30 1.00 0.00
- w/o FFN MoE 0.75 0.25 0.00 0.37 0.32 0.32 1.00 0.00
multi-gate M3SAT 0.71 0.29 0.00 0.35 0.32 0.32 1.00 0.00
P-Modality-gate M3SAT 0.73 0.27 0.00 0.37 0.31 0.32 1.00 0.00
P-Task-gate M3SAT 0.80 0.20 0.00 0.36 0.32 0.31 1.00 0.00

where M is the number of modalities of the task i.

For M2TL, the appropriate combination between modality-specific routers and task-specific routers
(multi-router M3SAT) helps each other better than purely using one of them (In Figure 8 and Ta-
ble 12, the Inter-Task Affinity and the optimal gradient blend of multi-router M3SAT is better than
models which only use modality-specific routers (P-Modality-gate M3SAT) or task-specific routers
(P-Task-gate M3SAT)).

C.8 EXPERT DISTRIBUTION

This section explores how tokens are distributed across different tasks and modalities by the routing
policy of the M3SAT. We show the routing distributions under the testing distribution in Figure 9,
Figure 10, and Figure 11. In these three settings, our routers work well, and most experts handle all
modalities and tasks. Meanwhile, several experts focus on specific tasks.

For the large setting, we find out that the routing policy tends to route tokens to several specific ex-
perts, which also successfully proves MTL’s MoE separate gradient conflict parameters. Especially
for the ‘MIMIC’ dataset, only 2 to 4 experts activate for this task.

In Figure 9, Figure 10, and Figure 11, we also denote the FFN layer as the MLP layer.
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Figure 9: The token distributions of the small setting of the first M3SAT layer. The first two rows
show the token distribution of different modalities for the ‘PUSH’ dataset, and the ‘V&T’ dataset.
The last row shows the token distribution across different tasks within the self-attention key layer,
the self-attention query layer, the self-attention value layer, and the FFN layer.
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Figure 10: The token distributions of the medium setting of the first M3SAT layer. The first three
rows show the token distribution of different modalities for the ‘ENRICO’ dataset, the ‘AV-MNIST’
dataset, and the ‘PUSH’ dataset. The last row shows the token distribution across different tasks
within the self-attention key layer, the self-attention query layer, the self-attention value layer, and
the FFN layer.
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Figure 11: The token distributions of the large setting of the first M3SAT layer. The first four rows
show the token distribution of different modalities for the ‘AV-MNIST’ dataset, the ‘MOSEI’ dataset,
the ‘UR-FUNNY’ dataset, and the ‘MIMIC’ dataset. The last row shows the token distribution
across different tasks within the self-attention key layer, the self-attention query layer, the self-
attention value layer, and the FFN layer.
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Table 13: Table of the modal and training setups on the small setting tasks: PUSH and V&T.
Model Setup

Name of Hyperparameter Value
PUSH V&T

Perceiver Unimodal
Encoder

Sequence Length of Latent 20
Latent Dimension 64

Cross Attention Head 1
Cross Head Dim 64

Self-Attention Head 8
Self Head Dim 64

M3oE&Dense
Encoder Layer

Depth 1
Self-Attention Head 8

Self Head Dim 8
Experts Number 16

Experts Number Per Selection 2
Classification Heads
BatchNorm follow a Linear layer Input/Output dimensions 256/32 320/1

Training

Optimizer Adam
Learning rate 0.0005

Learning Scheduler N/A
Weight Decay 0.0

Load&Importance
Balancing Loss Weight 0.1

Pretrain N/A
Max Epoch 100

Training loss weight 100.0 1.0
Evaluation weight 100.0 1.0

Batchsize 28 64
Loss Function MSE CrossEntropy

MultiBench
Input Dimension

Gripper Pos: 16×3
Gripper Sensors: 16×7
Image: 16×32×32
Control: 16×7

Image: 128×128×3
Force: 6×32
Proprio: 8
Depth: 128×128
Action: 4

Dataset

Perceiver Input
Channel Size

Gripper Pos: 3
Gripper Sensors: 7
Image: 1
Control: 7

Image: 3
Force: 32
Proprio: 8
Depth: 1
Action: 4

Perceiver Input
Extra Axis

Gripper Pos: 1
Gripper Sensors: 1
Image: 3
Control: 1

Image: 2
Force: 1
Proprio: 1
Depth: 2
Action: 1

Perceiver Input
num freq bands

Gripper Pos: 6
Gripper Sensors: 6
Image: 6
Control: 6

Image: 6
Force: 6
Proprio: 6
Depth: 6
Action: 6

Perceiver Input
max freq

Gripper Pos: 1
Gripper Sensors: 1
Image: 1
Control: 16×7

Image: 1
Force: 1
Proprio: 1
Depth: 1
Action: 1
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Table 14: Table of the modal and training setups on the medium setting tasks: ENRICO, PUSH and
AV-MNIST.

Model Setup

Name of Hyperparameter Value
ENRICO PUSH AV-MNIST

Perceiver Unimodal
Encoder

Sequence Length of Latent 12
Latent Dimension 64

Cross Attention Head 1
Cross Head Dim 64

Self-Attention Head 8
Self Head Dim 64

M3oE&Dense
Encoder Layer

Depth 1
Self-Attention Head 8

Self Head Dim 8
Experts Number 32

Experts Number Per Selection 2
Classification Heads
BatchNorm follow a Linear layer Input/Output dimensions 128/20 256/32 128/10

Training

Optimizer Adam
Learning rate 0.001

Learning Scheduler CosineAnnealingLR
Weight Decay 0.0

Load&Importance
Balancing Loss Weight 0.05

Pretrain Training PUSH for 100 epochs first
Max Epoch 100

Training loss weight 10.0 10.0 0.8
Evaluation weight 1.0 10.0 1.0

Batchsize 32 32 32
Loss Function CrossEntropy MSE CrossEntropy

MultiBench
Input Dimension

Image: 256×128×3
Set: 256×128×3

Gripper Pos: 16×3
Gripper Sensors: 16×7
Image: 16×32×32
Control: 16×7

Colorless Image: 28×28
Audio Spectogram:
112×112

Dataset

Perceiver Input
Channel Size

Image: 384
(cut into 16×8 rectangles)
Set: 384
(cut into 16×8 rectangles)

Gripper Pos: 3
Gripper Sensors: 7
Image: 16
(cut into 4×4 squares)
Control: 7

Colorless Image: 16
(cut into 4×4 squares)
Audio Spectogram: 256
(cut into 16×16 squares)

Perceiver Input
Extra Axis

Image: 2
Set: 2

Gripper Pos: 1
Gripper Sensors: 1
Image: 2
Control: 1

Colorless Image: 2
Audio Spectogram: 2

Perceiver Input
num freq bands

Image: 6
Set: 6

Gripper Pos 6:
Gripper Sensors: 6
Image: 6
Control: 6

Colorless Image: 6
Audio Spectogram: 6

Perceiver Input
max freq

Image: 1
Set: 1

Gripper Pos: 1
Gripper Sensors: 1
Image: 1
Control: 1

Colorless Image: 1
Audio Spectogram: 1
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Table 15: Table of the modal and training setups on the large setting include tasks:UR-FUNNY,
MOSEI, MIMIC, and AV-MNIST.

Model Setup

Name of Hyperparameter Value
UR-FUNNY MOSEI MIMIC AV-MNIST

Perceiver Unimodal
Encoder

Sequence Length of Latent 12
Latent Dimension 64

Cross Attention Head 1
Cross Head Dim 64

Self-Attention Head 8
Self Head Dim 64

M3oE&Dense
Encoder Layer

Depth 1
Self-Attention Head 8

Self Head Dim 8
Experts Number 16

Experts Number Per Selection 2
Classification Heads
BatchNorm follow a Linear layer Input/Output dimensions 192/2 192/2 128/2 128/10

Training

Optimizer Adam
Learning rate 0.0008

Learning Scheduler N/A
Weight Decay 0.001

Load&Importance
Balancing Loss Weight 0.1

Pretrain N/A
Max Epoch 100

Training loss weight 0.2 1.0 1.2 0.9
Evaluation weight 1.0 1.0 1.0 1.0

Batchsize 32 32 20 40
Loss Function CrossEntropy CrossEntropy CrossEntropy CrossEntropy

MultiBench
Input Dimension

Image: 20×371
Audio: 20×81
Text: 50×300

Image: 50×35
Audio: 50×74
Text: 50×300

Static: 5
Time-series: 24×12

Colorless Image: 28×28
Audio Spectogram:
112×112

Dataset

Perceiver Input
Channel Size

Image: 371
Audio: 81
Text: 300

Image: 35
Audio: 74
Text: 300

Static: 1
Time-series: 12

Colorless Image: 16
(cut into 4×4 squares)
Audio Spectogram: 256
(cut into 16×16 squares)

Perceiver Input
Extra Axis

Image: 1
Audio: 1
Text: 1

Image: 1
Audio: 1
Text: 1

Static: 1
Time-series: 1

Colorless Image: 2
Audio Spectogram: 2

Perceiver Input
num freq bands

Image: 3
Audio: 3
Text: 3

Image: 3
Audio: 3
Text: 3

Static: 6
Time-series: 3

Colorless Image: 6
Audio Spectogram: 6

Perceiver Input
max freq

Image: 1
Audio: 1
Text: 1

Image: 1
Audio: 1
Text: 1

Static: 1
Time-series: 1

Colorless Image: 1
Audio Spectogram: 1
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