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ABSTRACT

A neural implicit outputs a number indicating whether the given query point in
space is inside, outside, or on a surface. Many prior works have focused on latent-
encoded neural implicits, where a latent vector encoding of a specific shape is also
fed as input. While affording latent-space interpolation, this comes at the cost of
reconstruction accuracy for any single shape. Training a specific network for each
3D shape, a weight-encoded neural implicit may forgo the latent vector and focus
reconstruction accuracy on the details of a single shape. While previously consid-
ered as an intermediary representation for 3D scanning tasks or as a toy-problem
leading up to latent-encoding tasks, weight-encoded neural implicits have not yet
been taken seriously as a 3D shape representation. In this paper, we establish that
weight-encoded neural implicits meet the criteria of a first-class 3D shape repre-
sentation. We introduce a suite of technical contributions to improve reconstruc-
tion accuracy, convergence, and robustness when learning the signed distance field
induced by a polygonal mesh — the de facto standard representation. Viewed as a
lossy compression, our conversion outperforms standard techniques from geome-
try processing. Compared to previous latent- and weight-encoded neural implicits
we demonstrate superior robustness, scalability, and performance.

1 INTRODUCTION

While 3D surface representation has been a foundational topic of study in the computer graphics
community for over four decades, recent developments in machine learning have highlighted the
potential that neural networks can play as effective parameterizations of solid shapes.

The success of neural approaches to shape representations has been evidenced both through their
ability of representing complex geometries as well as their utility in end-to-end 3D shape learning,
reconstruction, and understanding and tasks. These approaches also make use of the growing avail-
ability of user generated 3D content and high-fidelity 3D capture devices, e.g., point cloud scanners.

For these 3D tasks, one powerful configuration is to represent a 3D surface S as the set containing
any point Z € R for which an implicit function (i.e., a neural network) evaluates to zero:

S = {Z e R®|fo(&;2) = 0}, (1)
where # € R™ are the network weights and 7 € R” is an in- Expliflif Implicit
put latent vector encoding a particular shape. In contrast to the de (mesh) (f =0

facto standard polygonal mesh representation which explicitly dis-
cretizes a surface’s geometry, the function f implicitly defines the
shape S encoded in Z. We refer to the representation in Eq. (1) as
a latent-encoded neural implicit.

Park et al. (2019) propose to optimize the weights 6 so each shape S; € D in a dataset or shape
distribution D is encoded into a corresponding latent vector Z;. If successfully trained, the weights
0 of their DEEPSDF implicit function fy can be said to generalize across the “shape space” of D.
As always with supervision, reducing the training set from D will affect f’s ability to generalize and
can lead to overfitting. Doing so may seem, at first, to be an ill-fated and uninteresting idea.

Our work considers an extreme case — when the training set is reduced to a single shape S;. We can
draw a simple but powerful conclusion: in this setting, one can completely forgo the latent vector
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(i.e., k = 0). From the perspective of learning the shape space of D, we can “purposefully overfit”
a network to a single shape S;:

S = {z € R?|fp, (x) = 0}, @)
where 0, now parameterizes a weight-encoded neural implicit for the single shape S;.

In the pursuit of learning the “space of shapes,” representing a single shape as a weight-encoded
neural implicit has been discarded as a basic validation check or stepping stone toward the ultimate
goal of generalizing over many shapes (see, e.g., (Chen & Zhang, 2019; Park et al., 2019; Atzmon
& Lipman, 2020a;b)). Weight-encoded neural implicits, while not novel, have been overlooked as a
valuable shape representation beyond learning and computer vision tasks. For example, the original
DEEPSDF work briefly considered — and nearly immediately discards — the idea of independently
encoding each shape of a large collection:

“Training a specific neural network for each shape is neither feasible nor very useful.”
— Park et al. (2019)

We propose training a specific neural network for each shape and will show that this approach is
both feasible and very useful.

We establish that a weight-encoded neural implicit meets I O 1 Iv
the criteria of a first-class representation for 3D shapes
ready for direct use in graphics and geometry process-
ing pipelines (see inset table) While common solid shape ~ Mesh o
representations have some important features and miss  Regular grid e o °
[}
[}

Point cloud ° /o

qthers, neural implicits provide anew and rich constella- Adaptive grid
tion of features. Unstructured point clouds are often raw
output from 3D scanners, but do not admit straightfor-
ward smooth surface visualization (I). While meshes are
the de facto standard representation, conducting signed distance queries and CSG operations remain
non-trivial (I). Signed distances or occupancies stored on a regular grid admit fast spatial queries
and are vectorizeable just like 2D images, but they wastefully sample space uniformly rather than
compactly adapt their storage budget to a particular shape (IIT). Adaptive or sparse grids are more
economical, but, just as meshes will have a different number of vertices and faces, adaptive grids
will different storage profiles and access paths precluding consistent data vectorization (IV).

Neural implicit

While previous methods have explored weight-encoded neural implicits as an intermediary repre-
sentation for scene reconstruction (e.g., (Mildenhall et al., 2020)) and noisy point-cloud surfacing
tasks (e.g., (Atzmon & Lipman, 2020a;b)), we consider neural implicits as the primary geomet-
ric representation. Beyond this observational contribution, our technical contributions include a
proposed architecture and training regime for converting the (current) most widely-adopted 3D ge-
ometry format — polygonal meshes — into a weight-encoded neural implicit representation.

We report on experiments' with different architectures, sampling techniques, and activation func-
tions — including positional encoding (Mildenhall et al., 2020) and sinusoidal activation approaches
(Sitzmann et al., 2020b) that have proven powerful in the context of neural implicits. Compared to
existing training regimes, we benefit from memory improvements (directly impacting visualization
performance), stability to perturbed input data, and scalability to large datasets.

Weight-encoded neural implicits can be treated as an efficient, lossy compression for 3D shapes.
Increasing the size of the network increases the 3D surface accuracy (see Figure 1) and, compared to
standard graphics solutions for reducing complexity (mesh decimation and storing signed distances
on a regular grid), we achieve higher accuracy for the same memory footprint as well as maintaining
a SIMD representation: n shapes can be represented as n weight-vectors for a fixed architecture.

The benefits of converting an existing mesh to a neural implicit extends beyond compression: in
approximating the signed distance field (SDF) of the model, neural implicits are both directly usable
for many tasks in graphics and geometry processing, and preferable in many contexts compared to
traditional representations. Many downstream uses of 3D shapes already mandate the conversion of
meshes to less accurate grid-based SDFs, due to the ease and efficiency of computation for SDFs:
here, neural implicits serve as a drop-in replacement.

'Source code, data, and demo at our (anonymized) repo: https://github.com/u2ni/ICLR2021
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Many works explore latent-encoding methods (e.g.,  Encoding: Latent  Weight
(Park et al., 2019; Atzmon & Lipman, 2020a;b)), taking
advantage of interpolation in latent space as a (learned)
proxy for exploration in the “space of shapes”. We show  Scalability: poor  excellent
that this flexibility comes at a direct cost of other de-  Stability: poor  excellent
sirable proprieties. In particular, we show that latent-
encoded neural implicits scale poorly as a representation for individual shapes both at training and
inference time. Existing latent-encoded neural implicits are sensitive to the distribution of train-
ing data: while they may perform well for large datasets of a limited subclass of shapes (e.g., “jet
airplanes”), we show that training fails with more general 3D shape datasets. Even within a class,
existing methods rely on canonical orientation alignment (see Figure 2) in order to alleviate some
of this difficulty — such orientation are notably (and notoriously) not present in 3D shapes captured
or authored in the wild and, as a result, latent-encoded neural implicits will fail to provide meaning-
ful results for many real-world and practical shape datasets. Fitting latent-encoded neural implicits
to each shape independently complicates shape space interpolation, rendering it difficult though
not impossible (Sitzmann et al., 2020a). In contrast, weight-encoded neural implicits leverage the
power of the neural network function space without the constraints imposed by the requirement of
generalizing across shapes through latent sampling.

Interpolation: trivial non-trivial

2 METHOD

Neural implicits soared in popularity over the last year. While significant attention has been given
to perfecting network architectures and loss functions in the context of latent-encoding and point-
cloud reconstruction, there is relatively little consideration of the conversion process from 3D sur-
face meshes to weight-encoded neural implicits (e.g., both Park et al. (2019) and Sitzmann et al.
(2020b) consider this task briefly). We focus on identifying a setup to optimize weight-encoded
neural implicits for arbitrary shapes robustly with a small number of parameters while achieving a
high surface accuracy. Once successfully converted, we consider how the weight-encoded neural
implicit representation compares to standard 3D model reduction techniques and how choosing this
representation impacts downstream graphics and geometric modeling operations.

2.1 SIGNED DISTANCE FIELD REGRESSION

In general, the value of an implicit function f away from its zero-isosurface can be arbitrary. In shape
learning, many previous methods have considered occupancy where f(Z) outputs the likelihood of Z
being inside of a solid shape (and extract the surface as the 50%-isosurface) Mildenhall et al. (2020);
Mescheder et al. (2019); Littwin & Wolf (2019); Chen & Zhang (2019); Maturana & Scherer (2015);
Wang et al. (2018). We instead advocate that f should approximate the signed distance field (SDF)
induced by a given solid shape. Learning properties aside (see, e.g., (Park et al., 2019)), SDFs are
more immediately useful in graphics and geometry processing applications.

Given a surface S = 9V of a volumetric solid ¥V C R3, the signed distance field gs : R3 5> R

induced by S is a continuous function of space that outputs the distance of a query point & € R?

modulated by 1 depending on whether  is inside or outside of the solid:

-1 ifzxeV,
1 otherwise.

3)

g(2) = signs(@) min 7 7. where signs() = {
pe

Our goal is to regress a feed-forward network fy to approximate the SDF of a given surface S:
fo(Z) = gs(Z). 4
If successfully trained, the weights § € R™ encode a neural implicit representing S.

2.1.1 ARCHITECTURE

Our proposed architecture is a feed-forward fully connected network with IV layers, of hidden size
H. Each hidden layer has ReL.U non-linearities, while the output layer is activated by tanh.

Increasing the depth and width of this network will generally improve accuracy but at the cost of
increasing the memory footprint and, for example, the time required to render the surface. The
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Figure 1: We visualize the role that varying the number of network layers and hidden layer sizes:
(left to right) average reconstruction error, memory footprint and first-frame render time (DeepSDF,
other setups, and our defaults in red, gray, and blue, respectively).

weight-encoded neural implicit’s rendered in Figures 2, 4, and 8 all share a common architecture of
just 8 fully connected layers with a hidden size of 32 (resulting in just 7553 weights, or 59 kB in
memory). Through experimentation on a subset of 1000 meshes from ThingilOk (Zhou & Jacob-
son, 2016), we find that this configuration yields a good balance between reconstruction accuracy,
rendering speed, and memory impact (Figure 1). While maintaining acceptable surface quality, our
default architecture has a 99% reduction in number of parameters and 93% speed up in “time to
render first frame” compared to the default weight-encoding architecture of (Park et al., 2019).

Excited by the recent work exploring methods to overcome an MLP’s bias to learn low frequency
signals faster, we performed experiments using both positional encodings (Tancik et al., 2020) and
SIREN activations (Sitzmann et al., 2020b). Both perform well when the network architecture is
sufficiently wide (e.g., H > 64), but introduce surface noise with our more compact architecture.
See Appendix A.3 for detailed experimental setup and findings.

By increasing N and H, our network could in theory (Hornik et al., 1989) learn to emulate any
arbitrary topology shape with infinite precision. In reality, like any representation, there are trade-
offs. The network complexity can be increased over our base configuration for smaller surface
reconstruction errot, or decreased for faster rendering speeds depending on the application. A sample
of geometries produced at a number of configurations can be seen in Figure 1.

2.1.2 INTEGRATED LOSS — IMPORTANCE SAMPLING

Particularly choices of pointwise loss functions have been well explored by previous papers (Park
et al., 2019; Atzmon & Lipman, 2020a;b; Gropp et al., 2020; Sitzmann et al., 2020b), in our ex-
periments we find that a simple absolute difference | fp(Z) — gs(Z)| works well. Defining the total
loss after the fact via ad hoc sampling (near-)surface sample process (Park et al., 2019; Atzmon &
Lipman, 2020a;b) leaves an unclear notion whether the total loss can be expressed as an integral and
hides possibly unwanted bias. We focus instead on how to integrate this pointwise loss over space.

Sampling based on mesh vertices (Littwin & Wolf, 2019; Sitzmann et al., 2020b) reduces accuracy
in the middle of triangle edges and faces and introduces bias near regions of the mesh (inset: Vertex)
with denser vertex distributions regardless of the geometric complexity or saliency of the region.

.. . . high Vertex Surface Ours
Similarly, sampling from Gaussians centered v

on the surface Park et al. (2019); Chen & Zhang I

(2019); Atzmon & Lipman (2020a;b) will place b
over emphasis in regions of high curvature, in R
thin solid/void regions (inset: Surface). i \. )
In contrast to ad hoc samplings, we define the s w
total loss directly as an integral over space,
LO) = [ w(@ 1o(@) - 95(2)] 2 ®
R

where w : R3 — R is a non-negative weighting function with finite integral over R3.

Methods which randomly sample within a bounding box around a given shape (Mescheder et al.,
2019; Tancik et al., 2020) can be understood as choosing w to be the characteristic function of the
box. As Park et al. (2019) already observe, this is wasteful if we care most that f is accurate near
the shape’s surface (i.e., where gs = 0).
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We achieve this directly — without yet invoking sampling — by choosing w exponentially as dis-
tance to S grows, specifically:

w(Z) = e—ﬁlgs(f)l7 (6)
where 8 > 0 can be adjusted from uniform sampling (5 = 0) to 8 — oo for surface-only sampling.

Attempting to sample space and measure the integrand of Eq. (5) directly leads to many samples
having little to no numerical effect during training. For example, if 5 = 30 and we consider a point
unit distance away from the surface, the weighting term itself closes in on machine double precision

~ 9e — 14. By resisting the urge to prematurely sample until after we have written our total
loss function as an integral, we can instead apply importance sampling (Kahn & Harris, 1951) to
construct a proportional approximation:

~ Y |fo(@) — gs(E)], (M

FED,,
where D,, is a distribution over R? with probabilities proportional to w.

We sample from D,, in practice via a simple subset rejection strategy. Starting with a large (e.g.,
10M) pool of uniform samples within a loose bounding sphere around the shape, we re-sample (with
replacement) a smaller (e.g., IM) subset with probability according to w. Further improvements may
be possible by incorporating advanced sampling patterns a la Xu et al. (2020).

Compared to uniform sampling, weighting by our choice of w leads to faster convergence and re-
duced surface reconstruction when validating against a subset of 1000 geometries from ThingilOk
(96 epochs with surface error of 0.00231). Compared to the sampling of Park et al. (2019), we match
convergence speed (86 epochs each) and demonstrate a ~ 5% improvement in surface error.

Perhaps the most valuable property of our im- ) i )
portance sampling scheme to be its ﬂex1b111ty Ground truth Standard sampling ~ Region-based sampling
Our method has effectively removed all unin- <
tended bias present in previous approaches, and
enables complete user control on intended bias
to the sampling process. The importance met-
ric, w(Z), can be modified to explicitly bias im-
portance toward regions of high curvature, minimum feature size (emulating the hidden bias of Park
etal. (2019)), or near user annotations (see inset where w(Z) is additionally scaled according to user
selection). This flexibility allows for greater use of the network’s capacity on areas important to the

user, without increasing overall network complexity or radically changing the sampling protocol.

2.2 ROBUST LOSS FUNCTION FOR MESHES IN THE WILD

The input S should be the boundary of a solid region V C R3: that is, a closed, consistently oriented,
non-self-intersecting surface. Ignoring “two-sided” meshes that are not intended to represent the
boundary of a solid shape (e.g., clothing), many if not most meshes found online which intend
to represent a solid shape would not qualify these strict pre-conditions. Zhou & Jacobson (2016)
observe that nearly 50% of ThingilOk’s solid
models for 3D printing fail one criteria or an-
other. The failure point in terms of our equa-
tions so far is the definition of the signing func-
tion sign(Z) in Eq. (3) which relies on deter-
mining whether a point Z lies inside V.

Original geometry Visual hull Winding number
reconstruction reconstruction

II

To determine insideness, previous approaches
either require watertight inputs , use error-prone

with,slice plane

Voxe} ﬁood-ﬁlhng (Mescheder et al., 2019) or sy d[{nSI n?dld Wi gdn u }(}O?ust s nled

1npu l’l’lCS 1stance 11e. numboer 11e 1stance 11€;
use inaccurate v1§ual hulls as a proxy (Park i &
et al., 2019) (see inset where visual hill sign- p w .

ing can be shown to “close off” internal struc- ; ‘?‘*’ k ‘
ture. Virtox (left) under CC BY. ). Alterna- /
tively, Atzmon & Lipman (2020a;b) advocate : (‘ 4

for a loss function based on unsigned distances.
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This introduces unnecessary initialization and convergence issues, that can be avoided if we assume
that the input mesh intentionally oriented to enclose a solid region (as is the case for nearly all of
Thingil0k), but may suffer from open boundaries, self-intersections, non-manifold elements, etc.
Under these assumptions, the generalized winding number (Jacobson et al., 2013) computes correct
insideness for solid meshes and gracefully degrades to a fractional value for messy input shapes (see
inset). Using the tree-based fast winding numbers of Barill et al. (2018) and a bounding volume hi-
erarchy for (unsigned) distances, we can construct our 1M-point sample set efficiently and optimize
weights 6 for even the most problematic meshes (see inset) in an average of 90 seconds per shape.

2.3 EFFICIENT VISUALIZATION

Our weight-encoded neural implicit representation can be treated as its classical counterpart (SDF)
and rendered efficiently using sphere-tracing (Hart, 1996). Sphere tracing is a common technique
for rendering implicit fields where rays are initialized in the image plane and iteratively “marched”
along by a step size equal to the signed distance function value at the current location. The ray
is declared to have hit the surface when sufficiently close (< €). For more details, see Morgan
McGuire’s comprehensive notes at casual-effects.com.

We trivially adapt traditional sphere-tracing by initializing the starting position of each ray to be
its first (if any) intersection with the similarity transformed unit sphere, since all weight-encoded
neural implicits are normalized to lay within. As rays of the image will converge different times,
we employ a dynamic batching method that composes batches of points for inference based on a
mask buffer which tracks rays that have converged to the surface or reached the maximum number
of steps. Local shading requires the surface normal at the hit point. For SDFs, the unit normal
vector is immediately revealed as the spatial gradient (i.e., 0 fy/0F). This can be computed by finite
differences or back propagation through the network.

3 IMPLEMENTATION AND RESULTS

We implement weight-encoded neural implicit networks in Tensorflow (Abadi et al. (2015)) with
point sampling and mesh processing implemented in libigl (Jacobson et al. (2016)). We train our
model for up to 10% epochs and allow early stopping for quickly converging geometries. We use
the ADAM optimizer (Kingma & Ba (2014)) with a fixed learning rate of 10~%. These settings
generalized well across a wide range of geometries (see Figures 4 and 5).

3.1 SURFACE VISUALIZATION AND CSG

We implement sphere-marching visualization and shading kernels in CUDA, using CUTLASS (Kerr
et al. (2018)) linear algebra libraries for efficient matrix multiplication at inference-time.

We achieve an average display frame rate of 34 Hz — for the large subset of the ThingilOk dataset
we visualize — when rendering a single neural implicit at 512 X 512 resolution on an Nvidia P100
GPU. This a significant performance improvement over previous learnt implicit inference and dis-
play pipelines, attributed in large part to our compact representation. Liu et al. (2020) present a
specialized renderer capable of a 1 Hz display rate, however at the price of many conservative opti-
mizations: these include overstepping along all rays by a factor of 50%, increasing the convergence
criteria (early stopping), and implementing a coarse-to-fine display strategy. While these additional
optimizations could further improve our rendering speed (at the cost of reduced visual quality), we
opt to rely on a simpler (and very efficient) standard sphere-marching SDF renderer.

Indeed, as our representation is a learnt representation of the SDF, we also inherit other important
benefits of traditional implicit function repre- . pres 8
sentations. Weight-encoded neural implicits & - -

admit robust shape manipulation and modifi-
cation using constructive solid geometry oper-
ations (CSG) — by directly modifying the in- v
ferred distance values (see inset and accompa- — i
nying video). Weight-encoded neural implicits admit SIMD evaluatlon and, given thelr compact—
ness, many neural implicits can be rendered in parallel at interactive rates on modern GPUs.

.
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3.2 STABILITY AND SCALE

Training deep neural networks on large geometric datasets can be cumbersome and time consuming.
For our weight-encoded neural implicit representation to be effective, we must be able to convert any
3D shape into its weight-encoded form in a reasonable amount of time. Due to our relatively simple
base network architecture (8 layers of 32 neu- ;
rons each) we find that we can overfit our model N <

to any 3D shape in 90 seconds, on average. DeepSDF / — =t
As this requires only 59 kB of memory, we "’;F\k '{5\) 0-10°
can train many models/shapes concurrently on i, -2 e ;

modern GPUs without approaching any prac-

D < ~a
tical memory limitations — this ease of train- Ous = = < =— O,

ing is uncommon to other learning-based shape . . .
representations. Converting the entirety of the Figure 2: Unlike our representation, DeepSDF re-

10,000 models in the Thingi10k dataset Zhou & construction quality degrades quickly for geome-
Jacobson (2016) on an Nvidia Titan RTX only tries not aligned to default, per-class orientations.
took 16 hours on a single GPU, or four hours See accompanying video for animation.

on four Nvidia Titan RTX cards.

Converting the ThingilOk dataset from mesh format to weight-

encoded neural implicit format reduces the overall storage from

38.85 GB to 590 MB — a 1:66 compression rate. While a "o =
DeepSDF network Park et al. (2019) trained on the same dataset T
could compress this dataset to an impressive 7 MB footprint, -
the latent-decoded geometries it produces are of comparably e

lower quality. This comparison is representative, as ThingilOk =

is a real-world mesh dataset of objects obtained “in the wild”. >
The dataset neither contains geometries aligned to a common o
frame of reference nor comprises objects nearing no semblance “\

of inter-class categorization. These two properties make it diffi- il
cult for any latent-encoded neural implicit network to converge

to a reasonable result during training. Figure 3: Latent-encoded SDFs
(red) struggle to reconstruct

“unique” features (grey, plane’s
tail) despite training on a single

We further support these claims using two experiments. First,
we attempt to train DeepSDF on the ThingilOk dataset, and sec-
ond we experiment with DeepSDF’s ability to reconstruct shapes  .|1¢q of objects (planes). Our
with slight perturbations from the shapenet (Chang et al., 2015) representation (blue) does not.
common shape orientation. Here, DeepSDF does not converge gpvillamil under CC BY.

on the 10,000 model Thingi10k dataset, producing incoherent re-

constructions when exploring the latent space of shapes it has learned. Moreover, if we further limit
DeepSDF to training with a single class of objects, it is not able to reconstruct features on the tails
of the inter-class distribution (inset, right). Secondly, we evaluate DeepSDF’s ability to reconstruct
geometries not aligned to the common orientation. Here, we retain single-class DeepSDF training
and reconstruct the same input shape at orientations differing from the default (Figure 2). This test
validates latent-encoding’s reliance on having consistently aligned datasets, immediately precluding
their use with large, real-world datasets.

3.3 REPRESENTATION COMPACTNESS

All of the shapes in Figure 4 were rendered with weight-encoded neural implicits generated using
our base network architecture, resulting in a total of 7553 weights for each shape’s implicit function.
At just 59 kB of memory we find that our lightweight representation can capture complex geometric
topologies at high resolution compared to uniform signed distance grids or adaptively decimated
meshes with similar memory footprints.

The comparisons in Figure 8 use geometry converted to a weight-encoded neural implicit in our
base configuration, visualized next to the rendered result of a uniformly sampled SDF grid with
203 samples as well as with the original mesh adaptively decimated (Garland & Heckbert, 1997)
down to 7600 floats (i.e., vertex and face data). Compared to decimated meshes (our base-
line non-uniform format), we observe that weight-encoded neural implicits have similar surface
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quality but with smoother reconstructions due
to the continuous (versus piecewise linear) na-
ture of the implicit. Compared to SDFs stored
on a grid (our baseline uniform format) we ob-
serve far better quality at equal memory. Fur-
thermore, we notice that our approach better
captures high frequency surface detail com-
pared to both these representations, often pro-
ducing results that more closely match the cur-
vature of the original shape.

We measure our method’s robustness by con- L
verting the ThingilOk ((Zhou & Jacobson, F1gur§ 4: ThingilOk models compressed to 59kB,
2016)) dataset and measuring the average sur- reducing the dataset from 38.85 GB to 590 MB.

face error (1/N vazl | fo(pi)]) and training loss. We report mean training loss for errors between
the true and predicted SDF values at points sampled using our importance metric (Section 2.1.2).
This surface error is the sum of errors at points along the shape’s 0O-isocontour. These metrics
measure both the error at the surface and within the shape’s bounding volume. Errors within the
bounding volume decrease rendering performance and/or lead to hole artifacts in the shape during
visualization. Surface errors are more evident after meshing the implicit SDF using, i.e., marching
cubes. We sample 10° surface points when measuring surface error, and compute loss against a
training set of 1M points. We visualize results on the entire ThingilOk dataset in Figure 5. We find
that, at our base configuration, 93% of the 10° ThingilOk shapes reach a surface error below 0.003,
and no model exceeds 0.01 (worst case of 0.0097; see Fig. 6).

4 LIMITATIONS AND FUTURE WORK

Our default architecture will Training Loss Surface Error
fail to satisfyingly approxi- " 2000
mate very topologically or ge- ., 1500
ometrically complex shapes.
While increasing the size of 1000 I II 1000
the network will generally al- I

. . ) . 500
leviate this (see Figure 6), it
would be interesting to con- ll- 0
sider cascading or adaptively 8500
sized networks. Our L' loss
function encourages the net- gjoyre 5: Loss and surface error distributions over the entirety of
work to rpatch th; values of a o Thingi10k dataset.
shape’s signed distance field,
but not necessarily its derivatives (cf. Gropp et al. (2020); Sitzmann et al. (2020b)). True SDFs
satisfy an Eikonal equation (|0g/dZ| = 1) and this property is sometimes important for downstream
tasks. For future work, we would like to investigate whether Eikonal satisfaction can be ensured
exactly by construction. With respect to single-shape accuracy, latent-encodings work well in spe-
cialized scenarios (e.g., large-networks trained on canonically aligned specialized classes). With
respect to shape-space learning, latent-encodings lie in a simpler continuous space than weights,
which suffer from transposition and reordering non-injectivities (i.e., multiple weight vectors repre-
sent the same implicit). Nevertheless, weight-encodings allow us to faithfully prepare large diverse
datasets of 'real-world’ shapes into a vectorizeable representation. We have shown this is simply not
possible with existing latent-encodings. We include the full ThingilOk dataset converted to weight-
encoded neural implicits vectors as a data release’. This vectorized data is ripe for meta-learning
future work. Indeed, concurrent work is already exploring this direction Sitzmann et al. (2020a).
We hope our consideration of weight-encoded neural implicits as a first-class shape representation
encourages their use in computer graphics, geometry processing, machine learning, and beyond.
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A APPENDIX

A.1 THE WEIGHT-ENCODED NEURAL IMPLICIT FILE FORMAT

Our compact weight-encoded neural implicit is designed to be effortlessly consumed and integrated
into existing graphics and geometry processing pipelines. For each trained model, the chosen archi-
tecture and similarity transformaton matrix (since all geometries are normalized to the unit sphere)
are written as the first bytes before encoding the learned weights 6 into an HDFS5 format file.

For a fixed architecture, the instructions to evaluate the estimated SDF is the same for any point
and any shape. This SIMD property allows multiple geometries to be evaluated in parallel. The
fixed storage profiles and memory layout of our learned implicit functions provide consistent query
and rendering speeds. We store our model weights using the HDF5 format. This allows easy in-
tegration into Tensorflow (below) which can load our model natively. We additionally support the
loading of arbitrary weight-encoded neural implicit through the “High Five” HDF5 C++ library
(https://github.com/BlueBrain/HighFive) for rendering and meshing.
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import tensorflow as tf
import numpy as np

# load model "key” dictating architecture. SIMD.
sdfModel = tf.keras.models. model_from_json (open(’key.json’))

# load specific weight for Standford bunny geometry
sdfModel.load _weights (’bunny.h5")

# generate 128x128x128 grid for SDF queries
K = np.linspace(-1.0,1.0,128)
grid = [[x,y,z] for x in K for y in K for z in K]

# infer SDF at each point
S = sdfModel. predict(grid)

A.2 ERROR DRIVEN CONVERSION

We fix the architecture during the Thingil0k dataset conversion, resulting in a constant and compact
memory footprint. If, however, maintaining a target surface reconstruction quality is of more impor-
tance to a fixed memory cost, we can instead shift to an error driven surface fitting approach (much
like classical approaches (Ohtake et al., 2005)), scaling network architecture complexity based on
the input geometry. As each generated weight-encoded neural implicit encodes its own architec-
ture, such an approach results in smaller architectures for simpler geometries and larger ones for
topologically-complex geometries. We visualize the effect of error driven optimization in Figure 6,
where we perform a simple grid search until reaching a user-desired surface error threshold.

Based on our conversion of the ThingilOk dataset, we find that a majority of models are well rep-
resented using our base configuration (Fig. 5) — if desired, geometries that fall within the tails of
the complexity distribution can be retrained with larger architectures, again until we reach a desired
surface fidelity. This decision can be further informed by whether SIMD and fixed memory access
patterns are beneficial to the underlying application.

Original Decimated Increased

Figure 6: With only 7553 parameters, our base weight-encoded neural implicit format can lack
the representative power to converge on highly complex geometries (similar to decimated mesh
with same memory footprint). Increasing the network capacity to equal the memory impact of the
original mesh results in near perfect reconstructions. tbuser (left) under CC BY.

A.3 SIREN AND FOURIER FEATURES

In an effort to improve the reconstruction quality of our weight-encoded neural implicits we ex-
plored recent work focused on improving MLPs ability to represent high frequency signals. We ex-
perimented with three methods: namely we investigated using the SIREN (Sitzmann et al., 2020b)
activations, positional encoding (Mildenhall et al., 2020), and Fourier features (Tancik et al., 2020).
Each of these approaches have lead to impressive resuts for high-fidelity reconstructions of 3D sur-
faces mitagating the known problem that MLPs learn low frequency signals faster (Rahaman et al.,
2019).

11



Under review as a conference paper at ICLR 2021

Mildenhall et al. (2020) define their positional encodings as,

v(p) = (sin(2°mp), cos(2°7p), ..., sin(2E L ap), cos(2E "L wp)) 8)

where 7 is a mapping from R into the higher dimensional space R?.

While Tancik et al. (2020) expands on this approach with random gaussian features yielding the
mapping function,

A(p) = (cos(2m Bp), sin(27Bp)) )

where each entry in B € R™*4 is sampled from N (0, 02), and o is left as a hyperparameter specific
to each problem.

We evaluate both of these approaches by mapping each axis (x,y,z) of our sampled points to the
higher dimensional space. We find that when the network architecture is of sufficient width these
mappings work exceptionally well. We evaluated using « with various L configurations ranging
from 4 to 10. Unfortunatly, we find that our light weight (and intentionally underparamerterized)
architecture struggles to learn from the augmented input signal. We visualize the affect of positional
encodings when L = 10 in Figure 7. Similarly, we see drastic degredation of quality when em-
ploying A for mapping to a default embedding size of 256 (not shown as we were unable to march).
These approaches are clearly practical methods for reconstructing high-fidelity surfaces, but with
our focus on minimizing the number of parameters the cost of mapping to a higher dimension input
is too high.

Our experimental setup for evaluating Sitzmann et al. (2020b) periodic activation consisted of mod-
ifying an existing tensorflow (Abadi et al., 2015) implementation to accept our spatial queries as
input and signed distances as target. We train the SIREN model to 200 epochs with a learning rate
of 5¢=5 and the same loss as our own configuration. Interestingly, we find that the SIREN model
produces smoother approximations of the armadillo’s surface (see Figure 7) but lacks fine detail.
Once again, when increasing our model complexity to just 8 layers of 64 hidden units, we start to
see the benefits of the periodic activation yielding much better approximations of the surface then
our relu activation. For our base configuration of just 7553 parameters we choose to continue us-
ing RELU activation, but where high-fidelity weight-encoding neural implicits are required, SIREN
should be employed.

Ground truth  Sitzmann et al. Mildenhall et al. Ours
(2020) (2020)

AN —

Figure 7: Results of using Mildenhall et al. (2020) and Sitzmann et al. (2020b)

A.4 REPRESENTATION COMPACTNESS
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Figure 8: Our learnt weight-encoded neural implicit format (right) can be shown to better approx-
imate the original surface (grey, inset) compared to adaptive decimation of the original triangle
mesh Garland & Heckbert (1997) (left) and uniform signed distance grid (middle) with equal mem-
ory impact. gpvillamil (skull), Makerbot (whale), morenaP (frog), artec3d (dragon), JuliaTruch-
sess(octopus) under CC BY.
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