
Deep Gaussian Mixture Ensembles

Yousef El-Laham1 Niccolò Dalmasso1 Elizabeth Fons1 Svitlana Vyetrenko1

1J.P. Morgan AI Research, New York, USA

Abstract

This work introduces a novel probabilistic deep
learning technique called deep Gaussian mixture
ensembles (DGMEs), which enables accurate quan-
tification of both epistemic and aleatoric uncer-
tainty. By assuming the data generating process
follows that of a Gaussian mixture, DGMEs are
capable of approximating complex probability dis-
tributions, such as heavy-tailed or multimodal dis-
tributions. Our contributions include the derivation
of an expectation-maximization (EM) algorithm
used for learning the model parameters, which re-
sults in an upper-bound on the log-likelihood of
training data over that of standard deep ensembles.
Additionally, the proposed EM training procedure
allows for learning of mixture weights, which is not
commonly done in ensembles. Our experimental
results demonstrate that DGMEs outperform state-
of-the-art uncertainty quantifying deep learning
models in handling complex predictive densities.

1 INTRODUCTION

Uncertainty quantification plays a key role in the develop-
ment and deployment of machine learning systems, espe-
cially in applications where user safety and risk assessment
are of paramount importance [Abdar et al., 2021]. While
deep learning (DL) has cemented its superiority in terms
of raw predictive performance for a variety of applications,
the principled incorporation of uncertainty quantification
in DL models remains an open challenge. Since standard
DL models are unable to properly quantify predictive uncer-
tainty, one common challenge for deep learning models is
detecting out-of-distribution (OOD) inputs. It is often the
case that OOD inputs lead a DL model to making erroneous
predictions [Ovadia et al., 2019]. Without uncertainty quan-
tification, one cannot reason about whether an input is OOD

and this can be catastrophic in applications such as machine-
assisted medical decision making [Begoli et al., 2019] or
self-driving vehicles [Michelmore et al., 2018]. Moreover,
uncertainty quantification can also be used as a means to
select samples to label in active learning and for enabling
exploration in reinforcement learning algorithms [Clements
et al., 2019, Charpentier et al., 2022].

Uncertainty in machine learning models is derived from two
different sources: aleatoric uncertainty and epistemic uncer-
tainty [Kendall and Gal, 2017, Hüllermeier and Waegeman,
2019, Valdenegro-Toro and Mori, 2022]. Aleatoric uncer-
tainty derives from measurement process of the data, while
epistemic uncertainty derives from the uncertainty in the
parameters of the machine learning model. A variety of
approaches have been proposed to quantify both types of un-
certainty in DL models from both a Bayesian and frequentist
perspective; we refer the reader to Gawlikowski et al. [2021]
for a comprehensive review. Under the Bayesian paradigm,
the goal is to infer the posterior predictive density of the
target variable given the input features and the training data,
which encodes both types of uncertainty. Unfortunately, ex-
act Bayesian inference algorithms (e.g., Neal 2012) cannot
scale to the parameter space of modern DL architectures
and one often has to resort to mini-batching [Chen et al.,
2014] or forming a rough parametric approximation of the
posterior distribution of the parameters, such as the Laplace
approximation [Daxberger et al., 2021] or stochastic varia-
tional inference [Graves, 2011, Hoffman et al., 2013]. The
drawback of the parametric approach is the inability to ex-
press more complex (e.g., heavy-tailed or multimodal) pre-
dictive distributions. As an example, approximations such as
mean-field variational inference form a Gaussian predictive
distribution that tends to underestimate the true uncertainty
of more complex models.

In recent years, there have been developments in probabilis-
tic DL which exploit the inherent stochasticity in learning
to quantify predictive uncertainty. Examples include tech-
niques such as probabilistic backpropagation [Hernández-
Lobato and Adams, 2015], Monte Carlo dropout (MCD,

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

Gal and Ghahramani 2016), Monte Carlo batch normal-
ization [Teye et al., 2018], deep ensembles (DEs, Laksh-
minarayanan et al. 2017) among others. MCD and DEs
have emerged as state-of-the-art solutions for quantifying
uncertainty in DL models due to their simplicity and effec-
tiveness. MCD utilizes the inherent stochasticity of dropout
(i.e., random masking of neural network weights) to form an
ensemble-based approximation of the predictive distribution
through multiple stochastic forward passes of the model
to account for epistemic uncertainty. Aleatoric uncertainty
is handled as a post-processing step under the assumption
that the underlying data noise is homoscedastic. DEs, on
the other hand, independently train a small ensemble of
dual-output neural networks, where the outputs characterize
the mean and variance of the predictive distribution. Each
network in the ensemble is independently trained to max-
imize the likelihood of the data under the heteroscedastic
Gaussian assumption. At test time, the networks are lin-
early combined into a single Gaussian approximation of the
predictive distribution. Unfortunately, both MCD and DEs
are not adequate solutions for modeling more complex data
distributions (e.g., heavy-tailed or multimodal distributions).

Contributions. Our contribution are as follows:

1. We propose a novel probabilistic DL technique called
deep Gaussian mixture ensembles (DGMEs) for
jointly quantifying epistemic and aleatoric uncertainty.
DGMEs train a weighted deep ensemble using the ex-
pectation maximization algorithm;

2. We show DGMEs optimizes the joint data likeli-
hood directly, unlike deep ensembling that targets a
lower bound of the data likelihood. As a consequence,
DGMEs achieve a superior loss to deep ensembling,
which is corroborated by our experimental results;

3. We empirically show that our model is more expressive
than standard probabilistic DL approaches and can
capture both heavy-tailedness and multimodality.

2 RELATED WORK

Mixture Density Networks. Mixture density networks
(MDNs, Bishop 1994) use a deep neural network to simulta-
neously learn the means, variances and mixture weights of
a Gaussian mixture model. MDNs have been successfully
used in many machine learning applications, such as com-
puter vision [Bazzani et al., 2016], speech synthesis [Zen
and Senior, 2014], probabilistic forecasting [Zhang et al.,
2020], astronomy [D’Isanto and Polsterer, 2018], chem-
istry [Unni et al., 2020] and epidemiology [Davis et al.,
2020], among others. While MDNs are closely related to
DGMEs in terms of uncertainty quantification, they are not
an ensemble technique per se, as the epistemic and aleatoric
uncertainty cannot be disentangled in MDNs. Moreover,
without the ensemble structure, MDNs cannot easily be

trained in a distributed setting, whereas the training of
DGMEs can trivially be parallelized.

Monte Carlo Dropout. MCD exploits the stochasticity of
dropout training to quantify epistemic uncertainty in DL
models. At test time, stochastic forward passes through a
DL model with dropout produce “approximate” samples
from the underlying posterior predictive distribution, which
are typically summarized using first- and second-order mo-
ments (e.g, mean and variance of the samples). Aleatoric un-
certainty is accounted for in a post-processing step, whereby
the optimal homescedastic variance that maximizes the evi-
dence lower-bound is obtained via cross-validation. MCD’s
popularity can be attributed to its simple implementation,
as no changes to the standard DL training procedure are
required. While vanilla MCD can yield favorable results
in additive Gaussian settings, the method is less effective
when dealing with more complex data generating processes
(e.g., heavy-tailed or multimodal predictive densities). In
this work, we incorporate MCD in our training procedure to
account for epistemic uncertainty (see Section 4.3).

Deep Ensembles. DEs quantify both aleatoric and epis-
temic uncertainty by building an ensemble of independently
trained models under different neural network weight initial-
izations. Combined with adversarial training [Goodfellow
et al., 2014], DEs achieve competitive or better performance
than MCD in most settings in terms of calibration of pre-
dictive uncertainty and in terms of reasoning about OOD
inputs. It has been argued in several works that DEs can
be interpreted as a Bayesian approach, where the learned
weights of each ensemble member correspond to a sample
from the posterior distribution of the network weights [Wil-
son and Izmailov, 2020b]. In recent years, new variations
of deep ensembles have been proposed, such as anchored
DEs [Pearce et al., 2020], deep-split ensembles [Sarawgi
et al., 2020], and hybrid training approaches that combine
DEs with the Laplace approximation [Hoffmann and Elster,
2021]. We emphasize that a key distinction between DEs
and DGMEs is that each sample in DEs is treated as an
i.i.d. sample from a Gaussian distribution, whereas DGMEs
assume that data are distributed according to a Gaussian
mixture. This gives DGMEs the key advantage of being able
to learn more complex data generating processes.

Neural Expectation Maximization. Neural EM is a differ-
entiable clustering technique that combines the principles
of the EM algorithm with neural networks for representa-
tion learning, particularly in the field of computer vision for
perceptual grouping tasks [Greff et al., 2017]. The goal of
neural EM is to group the individual entities (i.e., pixels) of
a given input (i.e., image) that belong to the same object. To
do this, a finite mixture model is used to construct a latent
representation of each image, where each mixture compo-
nent represents a distinct object. A neural network is then
used to transform the parameters of that mixture model into
pixel-wise distributions over the image, allowing for rea-

soning about which object each pixel in the image belongs
to. While neural EM combines the ideas of EM with deep
learning, we emphasize that this is different from our work
which focuses on the accurate quantification of predictive
uncertainty in the supervised learning setting.

3 PROBLEM FORMULATION

Consider a set of training data D = {(xn, yn)}Nn=1, where
xn ∈ Rdx is the feature vector and yn is the output, which
can be real-valued if we are dealing with a regression task
or integer-valued if we are dealing with a classification task.
We would like to train a model that allows us to predict an
output y given its corresponding input vector x.

From a probabilistic perspective, the goal is to determine
the posterior predictive distribution p(y|x,D). We assume
a statistical model pθ(y|x) ≜ p(y|x, θ) that relates each
output to its corresponding feature vector through a set of
parameters θ ∈ Θ. Then, the predictive distribution can be
determined as

p(y|x,D) =

∫
Θ

pθ(y|x)p(θ|D)dθ. (1)

While this integral is generally intractable, it can be approx-
imated using a Monte Carlo average, where samples are
taken from the posterior p(θ|D). Let Y = {y1, . . . , yN}
and let X = {x1, . . . , xN}. According to Bayes theorem,
the posterior distribution p(θ|D) is

p(θ|D) =
p(Y |X, θ)p(θ)

p(Y |X)
, (2)

where p(Y |X, θ) =
∏N

n=1 pθ(yn|xn) is called the data like-
lihood under the i.i.d. assumption, p(θ) is the prior distribu-
tion of θ, and p(Y |X) =

∫
Θ
p(Y |X, θ)p(θ)dθ is called the

marginal likelihood. The posterior can only be computed
analytically when p(θ) is a conjugate prior for the likelihood
function p(Y |X, θ). For deep learning models, an analytical
solution to the posterior cannot be determined and one must
resort to an approximation of the predictive distribution.

Goal. The goal is to acquire an approximation of the pos-
terior predictive distribution. Ideally, samples from the ap-
proximation form consistent estimators of key moments of
the predictive distribution that allow one to (i) formulate
predictions, (ii) identify the underlying stochastic risk asso-
ciated with the prediction (e.g., aleatoric uncertainty), and
(iii) reason about the model’s uncertainty in the presence of
the OOD data (i.e., epistemic uncertainty).

4 DEEP GAUSSIAN MIXTURE
ENSEMBLES

In this work, we propose DGMEs to effectively learn a
mixture distribution that accurately represents the true con-

ditional density of the labels given the features. Since Gaus-
sian mixtures are universal approximators for smooth prob-
ability density functions [Bacharoglou, 2010, Goodfellow
et al., 2016], modeling the conditional density pθ(y|x) as
a Gaussian mixture allows for learning more complex dis-
tributions, such as skewed, heavy-tailed, and multimodal
distributions. Under the assumption that our data follows a
mixture distribution with K mixture components, the condi-
tional density of a particular example (x, y) is given by:

pθ(y|x) =
K∑

k=1

πkpk(y|x, θk), (3)

where θk ∈ Θk ⊆ Rdθ denotes the underlying parameters
of the k-th mixture and πk denotes the weight of the k-
th mixture and represents the probability that the example
(x, y) is distributed according to pk(y|x, θk). Throughout
the rest of the text, we refer to all unknown parameters in the
mixture as θ = {π1, θ1, ..., πK , θK}. Hereafter, we consider
the problem of learning the parameters of the mixture in (3)
in the context of regression. We discuss a possible extension
to classification in the Supplementary Material, Section C.

To effectively model this mixture, we make the following
assumptions:

Assumption 4.1. The mixture weights (π1, . . . , πK) ∈ SK

do not depend on the input features, where SK denotes the
K-dimensional probability simplex.

Assumption 4.2. The conditional density pk(y|x, θk) is a
Gaussian distribution whose parameters are modeled via
parameterized functions (neural networks) dependent on x:

pk(y|x, θk) = N (y;µθk(x), σ
2
θk
(x)), (4)

where θk denote the parameters of functions µθk(·) and
σ2
θk
(·) that output the mean and variance of the k-th mix-

ture, respectively. Importantly, these functions are assumed
to share parameters, just as in the original work on DEs
[Lakshminarayanan et al., 2017].

Under the above assumptions, learning the mixture repre-
sentation of pθ(y|x) is equivalent to learning the parameters
θ to maximize the data likelihood of the training examples
D = {(xn, yn)}Nn=1.

4.1 LEARNING THE MIXTURE PARAMETERS

We obtain the maximum likelihood (ML) estimate or maxi-
mum a posteriori (MAP) estimate of the unknown parame-
ters θ using the EM algorithm. Let Y = {y1, . . . , yN} and
X = {x1, . . . , xN}. Furthermore, let Z = {z1, . . . , zN},
where each zn ∈ {1, . . . ,K} is a latent variable that denotes
membership assignment of the training example (xn, yn) to
a particular mixture component, where πk ≜ Pθ(zn = k)
is the probability that the example (xn, yn) belongs to the

k-th component. Assuming that the training examples are
independent and identically distributed, we can write the
joint likelihood as

pθ(Y, Z|X) =

N∏
n=1

K∏
k=1

π
I(zn=k)
k N (yn;µθk(xn), σ

2
θk
(xn))

I(zn=k),

with corresponding log-likelihood of

log pθ(Y,Z|X) =

N∑
n=1

K∑
k=1

I(zn = k)(log πk + ℓθk(xn, yn))

where ℓθk(x, y) = log
(
N (y;µθk(x), σ

2
θk
(x))

)
. Our goal is

to solve the following optimization problem:

θ⋆ = argmax
θ

log pθ(Y |X) (5)

= argmax
θ

log
(
EZ|X,Y,θ [pθ(Y,Z|X)]

)
, (6)

which we numerically solve using the EM algorithm. In the
following, we describe both the expectation step (E-Step)
and maximization step (M-Step) as it relates to our model.
As a note, all results presented hereafter also apply to the
more general problem of obtaining the MAP estimate of the
parameters θ.1

E-Step: We update the posterior probabilities of each zn
given the parameters θ and the example (xn, yn) for each
n, denoted by γk,n ≜ Pθ(zn = k|xn, yn). This can be done
directly using Bayes’ theorem:

γk,n =
pk(yn|xn, θk)Pθ(zn = k)∑K
j=1 pj(yn|xn, θj)Pθ(zn = j)

(7)

=
πkN (yn;µθk(xn), σ

2
θk
(xn))∑K

j=1 πjN (yn;µθj (xn), σ2
θj
(xn))

(8)

M-Step: The parameters θ are updated in the maximiza-
tion step by maximizing the expected joint log-likelihood
Q(θ, θ′) ≜ EZ|X,Y,θ′ [log pθ(Y,Z|X)] given the previous
parameter values θ′, which is equivalent to doing lower-
bound maximization on the true log-likelihood [Minka,
1998]. The function Q(θ, θ′) can be readily determined as:

Q(θ, θ′) =

N∑
n=1

K∑
k=1

γk,n(log(πk) + ℓθk(xn, yn)). (9)

The optimization of the mixture weights (π1, . . . , πK) can
be carried out analytically and done independently of opti-
mizing the mixture parameters {θ1, . . . , θK}:

(π⋆
1 , . . . , π

⋆
K) = argmax

(π1,...,πK)∈SK

Q(θ, θ′), (10)

1That is, the maximizer of log p(Y, θ|X) = log pθ(Y |X) +
log p(θ), where p(θ) is the prior distribution of the mixture param-
eters.

Algorithm 1 Deep Gaussian Mixture Ensembles (DGMEs)

1: Inputs:
• Training dataset D = {(xn, yn)}Nn=1

• Number of mixture components K
• Number of EM steps J

2: Initialize mixture parameters:
• Sample θ

(0)
k ∼ p(θ) for all k.

• Set π(0)
k = 1

K for all k.
3: for j = 1, . . . , J do
4: E-Step: Update posterior probabilities γ(j)

k,n accord-

ing to (8) with mixture weights π(j−1)
k and mixture

parameters θ(j−1)
k for all k and n.

5: M-Step: Update mixture weights π(j)
k and parame-

ters θ(j)k for all k as

π
(j)
k =

1

N

N∑
n=1

γ
(j)
k,n

and

θ
(j)
k = argmax

θk∈Θk

N∑
n=1

γ
(j)
k,nℓθk(xn, yn)

6: end for
7: Return: π⋆

k = π
(J)
k and θ⋆k = θ

(J)
k for all k.

where for each k

π⋆
k =

1

N

N∑
n=1

γk,n. (11)

Since the mixture parameters are assumed to be parame-
terised by neural networks, their optimization must be car-
ried out using stochastic optimization. It is easy to see that
the optimization of each θk can be done independently as:

θ⋆k = argmax
θk∈Θk

N∑
n=1

γk,nℓθk(xn, yn) (12)

= argmin
θk∈Θk

N∑
n=1

γk,n

(
log σ2

θk
(xn) +

(yn − µθk(xn))
2

σ2
θk
(xn)

)
(13)

This optimization step can be thought as training a deep
ensemble, where each sample (xn, yn) is weighted by γk,n
in its negative log-likelihood contribution.

4.2 IMPLEMENTATION DETAILS

Our implementation of DGMEs trained via the EM algo-
rithm is summarized in Algorithm 1. To initialize the en-
semble, the parameters of each network in the ensemble are

randomly initialized, while the mixture weights are assumed
to be equal. The algorithm is run for J steps or alternatively
until some stopping criterion is met. The E-Step for updat-
ing the posterior probabilities is computed directly for each
sample in the training set. In the M-Step, the updates for
the mixture weights are also carried out analytically, but
for mixture component parameters θk we use the stochastic
optimization to numerically solve for the updates, as an an-
alytical solution is not available. At round j, we initialize
each network to θ

(j−1)
k and then run the Adam optimizer for

E epochs to minimize the weighted negative log-likelihood
in (13), where the weights are given by γ

(j)
k,n for all n. Fi-

nally, we note that the computational complexity of each
EM step is equivalent to that of DEs and the overall time
complexity scales linearly with the number of EM steps.

4.3 QUANTIFYING EPISTEMIC UNCERTAINTY

It is important to highlight that up until this point, we have
not explicitly considered epistemic uncertainty in DGMEs.
This is because the operation of training DGMEs accord-
ing to Algorithm 1 yields a single set of parameters of the
assumed Gaussian mixture model.2 To account for model
uncertainty, we need to account for the uncertainty in the
parameters of the mixture (i.e., the mixture weights and/or
the weights of the ensemble neural networks). One simple
way to do this is to apply MCD to the training procedure
of DGMEs — although we emphasize other techniques
can be applied to account for epistemic uncertainty (e.g.,
Laplace approximation or a variational approximation to the
posterior parameters).

Let ak = [ak,1, . . . , ak,dθ
]⊺ ∈ {0, 1}dθ denote a ran-

dom binary vector of the same size as each θk and let
pd ∈ [0, 1] denote a fixed dropout probability. Also, let
θ⋆ = {π⋆

1 , θ
⋆
1 , . . . , π

⋆
K , θ⋆K} denote the parameters learned

by running Algorithm 1 with dropout incorporated in the
training in the M-Step. For a given mixture component k,
samples from the approximate posterior distribution of θk
learned via dropout can be obtained via the following proce-
dure:

ak,i ∼ Bernoulli(pd), i = 1, . . . , dθ,

θk = ak ⊙ θ⋆k,

where ⊙ denotes a Hadamard (or element-wise) product. It
follows that a sample from the predictive distribution can

2This point highlights the intrinsic difference in training DEs
versus training DGMEs. DGMEs do not have a “Bayesian" in-
terpretation, because the EM algorithm used to train them only
outputs a single set of possible parameters for the DGMEs (i.e.,
the corresponding posterior distribution of the weights is a Dirac
measure centered at the learned parameter values).

directly be obtained as follows:

k ∼ Categorical(π1, . . . , πK), (14)
ak,i ∼ Bernoulli(pd), i = 1, . . . , dθ, (15)
θk = ak ⊙ θ⋆k, (16)
y ∼ pk(y|x, θk). (17)

In this procedure, one first samples the mixing component
k via (14). Then, one draws a sample from the approximate
posterior distribution of the parameters of the k-th mixture
via (15)-(16). Finally, a prediction can be sampled via (17).
We refer the reader to the Supplementary Material, Section
E for details on the validity of this sampling procedure.

4.4 THEORETICAL INSIGHTS

In this section we provide insights into the connection be-
tween DGMEs and DEs, along with general results on con-
vergence of our training procedure using DGMEs. We refer
the reader to the Supplementary Material, Section A for
details on the proofs of each propositions.

Proposition 4.3 shows that maximizing the data likelihood
directly as in DGMEs achieves an equal or better likeli-
hood than maximizing each ensemble member’s likelihood
separately as in DEs.

Proposition 4.3. Under the assumption that πi = 1/K for
i = 1, ..,K − 1, maximizing the Gaussian mixture data like-
lihood directly achieves better or equal joint likelihood than
maximizing each ensemble member’s likelihood separately.

Proof Sketch. The result can be obtained by using Jensen’s
inequality on the joint log-likelihood of equation (5) along
with the assumption.

Next, Proposition 4.8 combines recent results on neural
network convergence in regression by Arora et al. [2019]
and Farrell et al. [2021] with classical EM analysis [Wu,
1983] to give intuition on why DGMEs should converge
towards the maximum of the data likelihood3.

Assumption 4.4 (Non-flatness of the weighted log-likeli-
hood). Given a DGMEs with K mixtures, in each EM round
t there exists an ϵt,k such that:

N∑
n=1

γk,n (ℓθ∗(xn, yn)− ℓθ(t)(xn, yn)) ≥
ϵt,k
K

,

3We note Proposition 4.8 covers a specific setup, in which
mean and variance function estimation is performed separately
by using a shared pre-trained feature extraction layer and that the
true data generating process is identifiable with a mixture model to
begin with. A more thorough investigation on both using a separate
neural network from mean and variance, as well as the under- or
over-specified case, is outside of the scope of this paper.

where θ∗k = argmaxθ∈Θ

∑N
n=1 γk,nℓθ(xn, yn). Let ϵ =

mint∈T,k∈K ϵt,k.

Assumption 4.5 (Smoothness of the true mean function).
Let µ(x) : X → R be the true mean function and let
X ⊂ X . Assume there exists some β ∈ N+ such that
µ(x) ∈ Wβ,∞(X), where Wβ,∞(X) is a (β,∞)-Sobolev
ball.

Assumption 4.6 (Smoothness of the true variance function).
Let σ(x) : X → R+ be the true variance function and let
X ⊂ X . Let H∞ be the Graham matrix as defined by Arora
et al. [2019, Equation 12], and assume that there exists
an M ∈ R such that σ(x)T (H∞)σ(x)T ≤ M for some
M ∈ R.

Assumption 4.7 (Non-degenerate weights). In each EM
iteration, the weights are positive and bounded away from
zero, e.g., π(t)

i > ξ
(t)
i > 0.

Proposition 4.8. Under assumptions 4.4, 4.5, 4.6 and 4.7,
let the mean and variance in each ensemble model be es-
timated via a separate 2-layer deep ReLu network from a
common feature extraction layer. Then the DGMEs EM algo-
rithm convergences to a non-stationary point that maximizes
the data likelihood with high probability.

Proof Sketch. The result follows if one shows that Q(θ; θ(j))
is an increasing function of the EM steps j (Wu 1983),
for parameter values θ(j) that are not stationary points of
Q(θ; θ(j)). In the DGMEs case, this corresponds to proving
that the weighted log-likelihood in each ensemble increases
at every round j. The result follows by combining assump-
tions on the non-flatness of the weighted log-likelihood
(A.3), the smoothness of true mean function (A.4) and the
smoothness of the true variance function (A.5) with the re-
sults obtained about convergence of deep ReLU networks
by Farrell et al. [2021] and Arora et al. [2019] respectively.

Finally, Proposition 4.9 connects DGMEs and DEs, showing
DEs is equivalent to a single-EM-step of DGMEs under
specific neural network weights initialization. As shown
in Proposition 4.8, the EM training of DGME improves
the function Q at each iteration t, i.e., Q

(
θ(t+1), θ(t)

)
≥

Q
(
θ(t), θ(t)

)
. Hence, the final joint DGME likelihood will

be larger or equal to the joint likelihood achieved by DE.

Proposition 4.9. If the weights of each ensemble member
are initialized to 0 with fixed bias terms, a single EM step
for DGMEs is equivalent to perform DEs.

Proof Sketch. The initialization schema implies that mixture
membership is equal across samples in the first expectation
round of the EM. Hence, the first M-step consists in training
K separate networks with each log-likelihood contribution
being weighted equally.

5 EXPERIMENTS

We evaluate the empirical performance of DGMEs via three
different numerical experiments. We compare our method
to the MDNs [Bishop, 1994], MCD [Gal and Ghahramani,
2016], and DEs [Lakshminarayanan et al., 2017]. MCD
and DEs are widely considered to be state-of-the-art solu-
tions for quantifying predictive uncertainty in deep learning
models and have repeatedly been used as baselines for devel-
oping new techniques. Additional results and figures can be
found in the Supplementary Material, Section B. A summary
table qualitatively comparing DGMEs to the benchmarks
can be found in the Supplementary Material, Section D.

5.1 TOY REGRESSION

Consider the following model:

yn = unx
3
n + ϵn, (18)

where un ∈ {−1, 1} with pu ≜ P (un = −1) and
ϵn ∼ p(ϵ) for all n = 1, . . . , N . We generate N = 800
training samples from this model for the training set, where
the input values xn range from -4 to 4. For each consid-
ered setting, we use a learning rate of η = 0.01, a batch
size of 32, and E = 80 epochs to resolve the stochastic
optimization problem in the M-step. For each method, we
utilize a dropout probability pd = 0.1 to account for epis-
temic uncertainty. Additionally, we generate data from this
toy model under three different noise settings to demon-
strate the flexibility and expressive power of DGMEs as
compared to other baselines. Unless otherwise stated, we
assume K = 5 networks in each mixture model-based ap-
proaches (i.e., MDNs, DEs, and DGMEs). Experimental
results are described below for each noise scenario. Addi-
tional experimental results and ablation studies are provided
in the Supplementary Material, Section B.1.

Case 1 - Gaussian Noise: We set pu = 0 and assume
that the noise is zero-mean and Gaussian distributed with
variance of 9. This is analogous to the setup utilized in
Hernández-Lobato and Adams [2015]. Figure 3 (Supple-
mentary Material, Section B.1.5) shows the performance of
DGMEs as compared to the baselines, where we observe
that it outperforms MDNs and obtains comparable results
to MCD and DEs.

Case 2 - Heavy-tailed Noise: We set pu = 0 and assume
that the noise distributed according to a zero-mean Student-t
distribution with ν = 3 degrees of freedom with variance
of 9. Figure 1 shows the histogram of samples from the
predictive distribution of both a training and a test input with
their corresponding sample (excess) kurtosis. We observe
that on the training examples (i.e., purple histograms), only
MDNs and DGMEs are able to learn the heavy-tailedness
of the noise, as both MCD and DEs obtain a kurtosis close

MDN MCD DE DGME
D

en
si

ty
D

en
si

ty

Figure 1: Histogram of samples from the predictive distributions for a single training example (top panel) and for a single
test example (bottom panel) from the heavy-tailed toy regression example, shown with corresponding sample kurtosis
value κ. DGMEs generally estimate heavier tailed predictions for both training and test samples, while baseline approaches
samples are closer to following a Gaussian distribution.

MDN

D
en

si
ty

DE DGME

Figure 2: Predictive distribution plots for the bimodal Gaussian toy regression example. DEs cannot capture the multimodality
of the noise, while MDNs and DGMEs can. Furthermore, DGMEs approximate the mixture weights of the noise accurately
(ground truth: π1 = 0.7 and π2 = 0.3).

to 0. Unlike the baseline approaches, which are unable to
learn the tail behavior in the test example, we observe that
DGMEs is the best method at capturing the heavy-tailedness
of the test examples, as it gives the largest corresponding
kurtosis.

Case 3 - Bimodal Gaussian Noise: We set pu = 0.3 and
assume that the noise is zero-mean and Gaussian distributed
with variance of 9. For this example, we only compare
the mixture-based approaches assuming K = 2 compo-
nents. Figure 2 shows the predictive density for the corre-
sponding 99% credible interval for each mixture in each ap-
proach, where for DGMEs we also show the learned mixture
weights of each component. We observe that only MDNs
and DGMEs are able to capture the bimodality of the data,
with DGMEs also accurately capturing the mixture weight

proportions. DEs instead overestimates the heteroscedastic
variance in each network. This is due to the fact that DEs
train each ensemble member independently under the as-
sumption of Gaussian likelihood. We also show that DGMEs
can robustly estimate this bimodality, even if the assumed
number of mixture components is larger than 2 (see Supple-
mentary Material, Section B.1.3).

5.2 REGRESSION ON REAL DATASETS

We evaluate the performance of DGMEs in regression
against MDNs, MCD and DEs on a set of UCI regression
benchmark datasets [Dua and Graff, 2017]; see Supplemen-
tary Material, Section B.2, for further details on the datasets.
We use the experimental setup used in Hernández-Lobato
and Adams [2015], with each dataset split into 20 train-test

TEST RMSE

Dataset MDNs MCD DEs DGMEs (J=1) DGMEs (J=2) DGMEs (J=5) DGMEs (J=10)

Boston housing 2.79 ± 0.84 2.97 ± 0.85 3.28 ± 1.00 3.11 ± 0.94 3.00 ± 0.90 2.87 ± 0.86 2.83 ± 0.91
Concrete 5.21 ± 0.56 5.23 ± 0.53 6.03 ± 0.58 5.67 ± 0.57 5.36 ± 0.51 5.20 ± 0.59 5.14 ± 0.58
Energy 0.71 ± 0.14 1.66 ± 0.19 2.09 ± 0.29 2.01 ± 0.29 1.79 ± 0.24 1.22 ± 0.25 1.07 ± 0.41
Kin8nm 0.08 ± 0.00 0.10 ± 0.00 0.09 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 0.07 ± 0.00 0.07 ± 0.00
Power plant 4.12 ± 0.17 4.02 ± 0.18 4.11 ± 0.17 4.12 ± 0.16 4.10 ± 0.15 4.07 ± 0.15 4.05 ± 0.13
Wine 0.66 ± 0.04 0.62 ± 0.04 0.64 ± 0.04 0.63 ± 0.04 0.64 ± 0.04 0.64 ± 0.04 0.66 ± 0.05
Yacht 0.96 ± 0.36 1.11 ± 0.38 1.58 ± 0.48 0.98 ± 0.38 0.85 ± 0.36 0.83 ± 0.40 0.70 ± 0.26

Table 1: Average RMSE of test examples for regression experiments on real datasets. DGMEs obtain competitive or better
performance in terms of RMSE on the majortity of datasets as compared to the baselines.

TEST NLL

Dataset MDNs MCD DEs DGMEs (J=1) DGMEs (J=2) DGMEs (J=5) DGMEs (J=10)

Boston housing 2.62 ± 0.43 2.46 ± 0.25 2.41 ± 0.25 2.34 ± 0.19 2.33 ± 0.22 2.41 ± 0.25 2.46 ± 0.31
Concrete 3.11 ± 0.26 3.04 ± 0.09 3.06 ± 0.18 3.04 ± 0.11 3.00 ± 0.12 2.95 ± 0.13 2.94 ± 0.14
Energy 1.18 ± 0.30 1.99 ± 0.09 1.38 ± 0.22 1.71 ± 0.19 1.48 ± 0.15 1.20 ± 0.23 1.20 ± 0.40
Kin8nm -1.18 ± 0.04 -0.95 ± 0.03 -1.20 ± 0.02 -1.20 ± 0.02 -1.23 ± 0.03 -1.24 ± 0.02 -1.25 ± 0.02
Power plant 2.81 ± 0.04 2.80 ± 0.05 2.79 ± 0.04 2.82 ± 0.03 2.81 ± 0.03 2.81 ± 0.03 2.79 ± 0.03
Wine 1.01 ± 0.10 0.93 ± 0.06 0.94 ± 0.12 0.95 ± 0.11 0.96 ± 0.11 0.96 ± 0.12 1.10 ± 0.09
Yacht 1.18 ± 0.17 1.55 ± 0.12 1.18 ± 0.21 1.07 ± 0.22 0.75 ± 0.22 0.60 ± 0.29 0.49 ± 0.29

Table 2: Average NLL of test examples for regression experiments on real datasets. DGMEs obtain competitive or better
performance in terms of NLL on the majority of datasets as compared to the baselines.

folds. We use the same network architecture across each
dataset: an MLP with a single hidden layer and ReLU ac-
tivations, containing 50 hidden units. For each dataset we
train for E = 40 total epochs with a batch size of 32 and a
learning rate of η = 0.001. To be consistent with previous
evaluations, we used K = 5 networks in our ensemble and
provide results for DGMEs for different numbers of EM
steps J ∈ {1, 2, 5, 10}. Our results are shown in Tables
1 and 2, where we evaluate the root-mean-squared error
(RMSE) and the negative log-likelihood (NLL) on the test
set averaged over the different folds, respectively. In the
same table, we also report the results for MDNs, MCD and
DEs. Experimental results for MCD and DEs can also be
found in their respective papers [Gal and Ghahramani, 2016,
Lakshminarayanan et al., 2017]. Note that in this experi-
ment, we do not apply dropout to MDNs and DGMEs and
only account for the uncertainty obtained from training the
models to maximize the NLL of the samples according to
the Gaussian mixture assumption in (3).

We observe that in this experiment DGMEs are able to ob-
tain competitive (or better) performance with respect to
the baseline methods. For certain datasets, we observe that
increasing the number of EM steps greatly improves the per-
formance (e.g., Concrete, Energy, Power Plant, and Yacht).
We can see that this is not generally true for all datasets:
for example, for the Boston housing dataset, increasing the
number of EM steps begins to degrade the performance of
the model in terms of NLL. We emphasize that performance

can further be improved by incorporating dropout in the
training procedure, where the dropout probability pd can be
selected using cross-validation on each train-test split.

5.3 FINANCIAL TIME SERIES FORECASTING

For the final experiment, we focus on the task of one-step-
ahead forecasting for financial time series. In particular,
using historical daily price data from Yahoo finance 4, we
formulate a one-step ahead forecasting problem using a
long short-term memory (LSTM) network [Hochreiter and
Schmidhuber, 1997]. The input to the network is a time
series that represents the closing price of a particular stock
over the past 30 trading days. The target output is the next
trading day’s closing price. We assess performance of the
model using two metrics: (1) the NLL of the test set, and (2)
the RMSE score on the test set. We evaluate each method
on three different datasets:

• GOOG - stable market regime: We use training data
from the Google (GOOG) stock from the period of Jan
2019 - July 2022 and test on GOOG stock data from
the period of August 2022 - January 2023.

• RCL - market shock regime: We use training data
from the Royal Caribbean (RCL) stock from the period
of Jan 2019 - April 2020 and test on RCL stock data
from the period of May 2020 - September 2020.

4https://finance.yahoo.com/

https://finance.yahoo.com/

Test RMSE

Dataset MDNs MCD DEs MultiSWAG DGMEs

GOOG 2.74± 0.06 3.86± 0.16 2.73± 0.03 2.71± 0.05 2.71± 0.04
RCL 15.01± 4.71 16.19± 10.18 14.92± 1.44 11.73± 0.45 14.49± 2.73
GME 11.14± 7.75 2.70± 0.47 3.21± 0.46 2.00± 0.06 3.19± 0.33

Table 3: Average RMSE of the test examples for the financial
forecasting experiment.

Test NLL

Dataset MDNs MCD DEs MultiSWAG DGMEs

GOOG 2.46± 0.03 2.98± 0.01 2.44± 0.01 2.54± 0.00 2.43± 0.02
RCL 18.83± 17.82 6.12± 3.93 5.94± 0.80 6.21± 0.18 5.00± 0.76
GME 6.01± 3.85 2.46± 0.16 2.66± 0.13 2.14± 0.03 2.61± 0.31

Table 4: Average NLL of the test examples for the financial
forecasting experiment.

• GME - high volatility regime: We use the training
data from the Gamestop (GME) stock during the “bub-
ble" period of Nov 2020 - Jan 2022 and test on GME
stock data following that period.

We ran each of the previously tested baselines and DGMEs
on the three scenarios previously described. Additionally,
we also test the MultiSWAG approach highlighted in Wilson
and Izmailov [2020a], due to its effectiveness in quantifying
epistemic uncertainty, which is of particular importance
for the market shock regime [Chandra and He, 2021]. We
train each model on each dataset for 5 independent runs and
report the mean and standard error of both the test NLL and
the test RMSE in Tables 3 and 4, where we have bolded
the best performing method in each experiment according
to the mean value of the metric. For details on selection of
hyperparameters of each of the methods, we refer the reader
to the Supplementary Material, Section B.3.

The results indicate that for the GOOG dataset, DGMEs
achieve, on average, the best NLL and RMSE score. In
the case of the RCL dataset, we observe an interesting re-
sult. DGMEs attain the best performance in terms of NLL,
but MultiSWAG does best in terms of RMSE. We believe
DGMEs outperform in terms of NLL because the likeli-
hood function assumed by DGMEs is a true Gaussian mix-
ture, while the MultiSWAG approach is applying stochastic
weight averaging Gaussian (SWAG) independently on mul-
tiple networks under the Gaussian likelihood assumption.
This gives DGMEs the advantage in terms of learning the
complex nature of the RCL dataset. On the other hand, we
have found that since MultiSWAG is accounting for un-
certainty using SWAG, it appears to make model training
more stable (hence the smaller standard error on each of
the metrics) and better accounts for epistemic uncertainty.
This could possible explain why the RMSE score is lower
than that of DGMEs and with smaller standard error. For
the GME dataset, MultiSWAG outperforms DGMEs con-
sistently, and with tighter standard error bars. As a final

remark, we emphasize that in our paper, we have accounted
for epistemic uncertainty in DGMEs using dropout, but
other methods could have been used (such as variational
inference, Laplace approximation, or SWAG). Based on the
results of this experiment, we highlight the possibility of
incorporating SWAG in the training of DGMEs as a better
way to account for epistemic uncertainty (as opposed to
dropout).

6 CONCLUSIONS

This paper proposes DGMEs, a novel probabilistic DL
ensemble method for jointly quantifying epistemic and
aleatoric uncertainty. Unlike deep ensembling, DGMEs op-
timizes the data likelihood directly and is able to capture
complex behavior in the predictive distribution (e.g., heavy-
tailedness and multimodality) by modeling the conditional
distribution of the data as a Gaussian mixture. Our experi-
ments show that DGMEs can capture more complex distribu-
tional properties than a variety of probabilistic DL baselines
in regression settings and obtain competitive performance
on detecting OOD samples in classification settings. As next
steps, alternative mechanisms for handling the epistemic un-
certainty can be considered. For example, one can instead
form a variational approximation to the posterior of each
mixture component, thereby forming a Gaussian mixture
approximation to the posterior parameters of the ensemble.
Additionally, a more thorough analysis on the classification
setting can be considered. Rather than using a mixture of
categorical distributions to model the predictive density, one
can use a mixture of Dirichlet distributions to account for
uncertainty in the class probabilities, similar in line to the
work of Hobbhahn et al. [2022]. Finally, DGMEs can be ap-
plied to improve the efficiency of active learning algorithms
and exploration strategies in reinforcement learning.

Acknowledgments. This paper was prepared for informa-
tional purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Co. and its affiliates (“JP Morgan”),
and is not a product of the Research Department of JP
Morgan. JP Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness,
accuracy or reliability of the information contained herein.
This document is not intended as investment research or in-
vestment advice, or a recommendation, offer or solicitation
for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for
evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or
to any person, if such solicitation under such jurisdiction or
to such person would be unlawful.

References

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana
Rezazadegan, Li Liu, Mohammad Ghavamzadeh, Paul
Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra
Acharya, et al. A review of uncertainty quantification in
deep learning: Techniques, applications and challenges.
Information Fusion, 76:243–297, 2021.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ru-
osong Wang. Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural net-
works. In International Conference on Machine Learning,
pages 322–332. PMLR, 2019.

Athanassia Bacharoglou. Approximation of probability
distributions by convex mixtures of gaussian measures.
Proceedings of the American Mathematical Society, 138
(7):2619–2628, 2010.

Loris Bazzani, Hugo Larochelle, and Lorenzo Torresani.
Recurrent mixture density network for spatiotemporal
visual attention. arXiv preprint arXiv:1603.08199, 2016.

Edmon Begoli, Tanmoy Bhattacharya, and Dimitri Kusne-
zov. The need for uncertainty quantification in machine-
assisted medical decision making. Nature Machine Intel-
ligence, 1(1):20–23, 2019.

Christopher M Bishop. Mixture density networks. 1994.

Rohitash Chandra and Yixuan He. Bayesian neural networks
for stock price forecasting before and during covid-19
pandemic. Plos one, 16(7):e0253217, 2021.

Bertrand Charpentier, Ransalu Senanayake, Mykel Kochen-
derfer, and Stephan Günnemann. Disentangling epistemic
and aleatoric uncertainty in reinforcement learning. arXiv
preprint arXiv:2206.01558, 2022.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic
gradient hamiltonian monte carlo. In International con-
ference on machine learning, pages 1683–1691. PMLR,
2014.

William R Clements, Bastien Van Delft, Benoît-Marie
Robaglia, Reda Bahi Slaoui, and Sébastien Toth. Estimat-
ing risk and uncertainty in deep reinforcement learning.
arXiv preprint arXiv:1905.09638, 2019.

Christopher N Davis, T Deirdre Hollingsworth, Quentin
Caudron, and Michael A Irvine. The use of mixture
density networks in the emulation of complex epidemi-
ological individual-based models. PLoS computational
biology, 16(3):e1006869, 2020.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer,
Runa Eschenhagen, Matthias Bauer, and Philipp Hen-
nig. Laplace redux-effortless bayesian deep learning.
Advances in Neural Information Processing Systems, 34:
20089–20103, 2021.

Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017. URL http://archive.ics.uci.
edu/ml.

Antonio D’Isanto and Kai Lars Polsterer. Photometric red-
shift estimation via deep learning-generalized and pre-
classification-less, image based, fully probabilistic red-
shifts. Astronomy & Astrophysics, 609:A111, 2018.

Max H Farrell, Tengyuan Liang, and Sanjog Misra. Deep
neural networks for estimation and inference. Economet-
rica, 89(1):181–213, 2021.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In international conference on machine learn-
ing, pages 1050–1059. PMLR, 2016.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi,
Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxiang
Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana
Roscher, et al. A survey of uncertainty in deep neural
networks. arXiv preprint arXiv:2107.03342, 2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT press, 2016.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

Alex Graves. Practical variational inference for neural net-
works. Advances in neural information processing sys-
tems, 24, 2011.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber.
Neural expectation maximization. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017.

José Miguel Hernández-Lobato and Ryan Adams. Proba-
bilistic backpropagation for scalable learning of bayesian
neural networks. In International conference on machine
learning, pages 1861–1869. PMLR, 2015.

Marius Hobbhahn, Agustinus Kristiadi, and Philipp Hennig.
Fast predictive uncertainty for classification with bayesian
deep networks. In Uncertainty in Artificial Intelligence,
pages 822–832. PMLR, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9:1735–80, 12 1997.

Matthew D Hoffman, David M Blei, Chong Wang, and
John Paisley. Stochastic variational inference. Journal of
Machine Learning Research, 2013.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Lara Hoffmann and Clemens Elster. Deep ensembles from
a bayesian perspective. arXiv preprint arXiv:2105.13283,
2021.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and
epistemic uncertainty in machine learning: A tutorial in-
troduction. 2019.

Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? Advances
in neural information processing systems, 30, 2017.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. Advances in neural infor-
mation processing systems, 30, 2017.

Rhiannon Michelmore, Marta Kwiatkowska, and Yarin
Gal. Evaluating uncertainty quantification in end-
to-end autonomous driving control. arXiv preprint
arXiv:1811.06817, 2018.

Thomas Minka. Expectation-maximization as lower
bound maximization. Tutorial published on the web
at http://www-white. media. mit. edu/tpminka/papers/em.
html, 7(2), 1998.

Radford M Neal. Bayesian learning for neural networks,
volume 118. Springer Science & Business Media, 2012.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David
Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lak-
shminarayanan, and Jasper Snoek. Can you trust your
model’s uncertainty? evaluating predictive uncertainty
under dataset shift. Advances in neural information pro-
cessing systems, 32, 2019.

Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Un-
certainty in neural networks: Approximately bayesian
ensembling. In International conference on artificial
intelligence and statistics, pages 234–244. PMLR, 2020.

Utkarsh Sarawgi, Wazeer Zulfikar, Rishab Khincha, and Pat-
tie Maes. Why have a unified predictive uncertainty? dis-
entangling it using deep split ensembles. arXiv preprint
arXiv:2009.12406, 2020.

Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian
uncertainty estimation for batch normalized deep net-
works. In International Conference on Machine Learning,
pages 4907–4916. PMLR, 2018.

Rohit Unni, Kan Yao, and Yuebing Zheng. Deep convo-
lutional mixture density network for inverse design of
layered photonic structures. ACS Photonics, 7(10):2703–
2712, 2020.

Matias Valdenegro-Toro and Daniel Saromo Mori. A deeper
look into aleatoric and epistemic uncertainty disentan-
glement. In 2022 IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW),
pages 1508–1516. IEEE, 2022.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learn-
ing and a probabilistic perspective of generalization. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Pro-
cessing Systems, volume 33, pages 4697–4708. Curran
Associates, Inc., 2020a.

Andrew G Wilson and Pavel Izmailov. Bayesian deep
learning and a probabilistic perspective of generaliza-
tion. Advances in neural information processing systems,
33:4697–4708, 2020b.

CF Jeff Wu. On the convergence properties of the em algo-
rithm. The Annals of statistics, pages 95–103, 1983.

Heiga Zen and Andrew Senior. Deep mixture density net-
works for acoustic modeling in statistical parametric
speech synthesis. In 2014 IEEE international conference
on acoustics, speech and signal processing (ICASSP),
pages 3844–3848. IEEE, 2014.

Hao Zhang, Yongqian Liu, Jie Yan, Shuang Han, Li Li, and
Quan Long. Improved deep mixture density network
for regional wind power probabilistic forecasting. IEEE
Transactions on Power Systems, 35(4):2549–2560, 2020.

	Introduction
	Related Work
	Problem Formulation
	Deep Gaussian Mixture Ensembles
	Learning the Mixture Parameters
	Implementation Details
	Quantifying Epistemic Uncertainty
	Theoretical Insights

	Experiments
	Toy Regression
	Regression on Real Datasets
	Financial Time Series Forecasting

	Conclusions

