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Abstract

Limited access to previous data is challenging when using Gaussian process (GP) models
for sequential learning. This results in inaccuracies in posterior, hyperparameter learning,
and inducing variables. The recently proposed ‘dual’ sparse GP model enables inference
of variational parameters in such a setup. In this paper, using the dual GP, we tackle the
problem arising due to a lack of access to previous data for estimating hyperparameters
of a sparse Gaussian process. We propose utilizing the concept of ‘memory’. To pick
representative memory, we develop the ‘Bayesian leverage score’ built on the ridge leverage
score. We experiment and perform an ablation study with a sequential learning data set,
split MNIST, to showcase the usefulness of the proposed method.
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1. Introduction

Uncertainty quantification is essential in sequential decision making problems where un-
certainty is essential for exploration, i.e. model based reinforcement learning or Bayesian
optimization. Gaussian process (GP) models are a popular modelling technique for such
problems. However, performing exact online inference in GP models requires access to all
the data, which is infeasible when data grows. Sparse GP methods are typically used for re-
ducing complexity, but also they assume full access to the training data. These methods are
infeasible in the sequential learning setting where access to past data is limited and hyper-
parameters cannot be learned with access to full data. There have been various techniques
proposed for these problems. Csaté and Opper (2002) use expectation propagation for
posterior inference and a projection method to obtain a sparse representation, but cannot
estimate hyperparameters. Bui et al. (2017) extend to hyperparameters and generalize to
a-divergence, but perform slow gradient based optimization for non-conjugate likelihoods.

In this paper, we show that the recently proposed ‘dual’ SVGP method of Adam et al.
(2021); Chang et al. (2020) is a powerful backbone for the sequential setting (Chang et al.,
2022). To tackle inaccuracy arising due to forgetting previous tasks, we propose to add
‘memory’ of past data helping with learning. Furthermore, we show that the dual parame-
ters naturally define a new metric called Bayesian leverage score (BLS), a generalisation of
ridge leverage score, that can be used for picking memory. The proposed use of memory is
similar to recent approaches for continual deep learning (Nguyen et al., 2018; Titsias et al.,
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Figure 1: Ablation study on split MNIST. (a) Evolution of test accuracy of the model con-
ditioned on the training set as we move data from training set to test set on the
basis of BLS vs. randomly. (b) Digits from train-set with highest BLS. (c) Evo-
lution of test accuracy as the memory size is increased. (d) Points from memory.

2020; Pan et al., 2020), but here memory selection is done via an extension of the traditional
leverage score (Alaoui and Mahoney, 2015).

2. Methods

Gaussian process models define a prior over functions f ~ GP(0, ) that is characterized
by a covariance kernel function kg(x, X/), where @ are hyper parameters associated with
the kernel. Given a set of data D, = {(x;,y;)}I";, we define a likelihood p(y; | f;) where
f; = f(x;). One of the prominent methods to reduce complexity and deal with non-Gaussian
likelihoods is the sparse variational GP (SVGP) where the function is defined on a set of m
inducing variables Z, where m < n and the approximate posterior is defined as ¢(m, V).
The induced posterior of the function is: qu(f) = N(f; Am*, Ky — AKJAT + AV*AT),
where Ky is an n x n matrix with x(x;,x;) as the ijth entry, A = K\, K !. Ky, and
K, are defined similarly to Kxx. Adam et al. (2021) showed that the optimal variational
parameters (m*, V*) are:

m*=V*A* and V*=[K_ !+ A" (1)

where the dual parameters (A*, A*) are obtained using natural gradient updates which
leads to faster and better convergence (Chang et al., 2020; Khan and Lin, 2017). In a
sequential learning setup, the model does not have access to all the data, D = {Dg1d, Dnew }-
The dual framework in Adam et al. (2021) can be adapted to sequential learning of A* and
A* by performing variational updates just on Dpeyw, leading to AL, and Aj.,. Given the
dual parameters are natural parameters of the approximate likelihood terms, we can sum
Anew T Aglq to obtain an estimate of A* and same for A*. In practice the updates work well
and is the variational approach to Csaté and Opper (2002). In this paper, we are interested
in learning hyperparameters 6 of kernel and likelihood under the dual framework. We do
this by employing memory, this is contrary to existing methods which involves extra KL
regularization terms Bui et al. (2017).

Dual-SVGP with Memory: The idea is to reconstruct the ELBO as if we had access
to all the data but now only have M C Dgq. Fortunately, the dual SVGP elbo is already in
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a separated form. Meaning that the posterior and hyperparameters are separated, leading
to a better bound for hyperparameter learning Adam et al. (2021). Our sequential updates
of A* and A* also means we have an approximate KL calculation based on the pseudo
data conversion of the dual parameters highlighted in Eq. (2). We do however not have
access to the variational expectation term for the Dyjq, we therefore use the memory M to
approximate this term as follows:

Ziebnew IE:qu(fi) [logp(yi | fz)] + S Zieﬂ/{ IE:qu(fi) [logp(yi | fZ)] + lOg zZ - Il“—-‘:q(u) DOg N(S’ | u, 2)]7

Dy 1 lg(w) [ po(w)]

(2)
where § = Ky A7, S = K, A Ky, log 2 = —Llog [£+ Ky, — 15T 2+ K, 'y +c,
and S = Z?\lj, Nnold 1S the number of data points seen in previous batches, and n is the
number of data points stored in memory. We use this as an objective for hyperparameter
learning. However, in the non-stationary continual learning problems, we are also interested
in optimizing inducing variable Z. Gradient based methods fail for this and therefore we
resort to pivoted Cholesky (Fine and Scheinberg, 2001) technique shown to do well in the

online setting in Maddox et al. (2021) and offline setting in Burt et al. (2020).

Bayesian Leverage Score (BLS): The memory point selection is therefore key to our
method being able to learn appropriate hyper parameters. Our belief here is that memory
should be selected such that it is representative of the data distribution. We build on
the ridge leverage score (RLS, Alaoui and Mahoney, 2015), which is used for selecting an
effective subset for ‘sketching’ in kernel ridge regression. We extend it to the Bayesian,
non-conjugate case, and use this to define a distribution over input points from which we
sample the memory points. The ridge leverage score is defined as the diagonal of Kyx (Kxx+
AI)~!) where \ is the ridge parameter of kernel ridge regression (Alaoui and Mahoney,
2015). By representing the dual parameters as (q; = Ey, |y,)[Vy, logp(yil fi)], Bi =
Ep(f”yn)[V% logp(yi | fi)]), we can write the posterior of an approximate GP regression
model as:

0.(£ | mf, V§) o N(F | 0, Ko) [Ty €2 01, 3)
where §; := o /] + mys; and my; is the prediction mean at ;. An interpretation for the
role of 8] as a local curvature: it is the noise precision for the Gaussian approximation
of the i likelihood. Following this interpretation, we define a leverage score for our VI
setting with respect to the approrimate GP regression model Eq. (3). We refer to this as
the Bayesian leverage score (BLS):

h?ls = [Kxx(Kxx + dlag(ﬁ;l))il]” = /B:U;k‘,i,i' (4)

This score measures the sensitivity of the predictions with respect to each data example. Its
interpretation is similar to that of RLS: high-leverage inputs are those that are difficult to
predict (high predictive variance v, ;) but carry a large amount of signal (low noise variance
1/B4.). For Gaussian likelihoods, BLS reduces to RLS, but it extends the applicability to
non-Gaussian likelihoods. Intuitively, the BLS score indicates how difficult the example was
for the model, similar to the RLS score; we illustrate this for MNIST digits in Fig. 1(a).
In Eq. (4) we detail the full GP calculation which is infeasible for large data sets, how-
ever we can swap the 8 and v;” for their sparse GP counterparts greatly reducing the
computational complexity and making the BLS feasible for large data sets.
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Figure 2: (a) Progression of overall accuracy on split MNIST. Training starts with @ vs.
and each task introduces new digits while testing on all classes thus far. The
overall accuracy drops when introducing a new task, but recovers and does not
suffer from forgetting. (b) Test accuracy on split MNIST over all tasks thus far.

3. Experiments

Split MNIST (Zenke et al., 2017) is a continual learning data set and a variant of MNIST
where training data comes in five batches of two digits each. Performance is measured by
multi-class classification accuracy on all digits seen thus far. The model at each step has
access only to the current batch of the classification task and thus should learn incrementally
on different tasks without forgetting about the previous ones. Previous work (Bui et al.,
2017)fails (Fig. 2) in such a setup as it forgets about the previous tasks (Bui et al. (2017).
Our proposed model is able to retain information about previous tasks with only a marginal
drop in accuracy when the new task is introduced (cf. Fig. 2).

We show that BLS is a valid metric as it determines examples of difficulty. We perform
the same continual learning experiment on split MNIST, but this time we select data points
from our training set and move them to the test set. Points are chosen either randomly or
based on the BLS score. We then retrain the model on the reduced training set and test on
the increased testing set. Randomly selecting has a small negative effect on performance.
However, using the BLS score is detrimental, showing the importance of the examples for
the model that are moved to the test set. Fig. 1(b) shows digits with the highest BLS
score. Another ablation study showcases the size of memory needed and how it affects the
model accuracy. We train our sequential model with different memory sizes using BLS and
report test accuracy (Fig. 1(c)). As expected, the accuracy increases with memory size,
but remarkably a memory size of just 5% achieves optimal performance. Fig. 1(d) shows
samples from memory after the model has observed all the tasks.

4. Conclusion

The lack of access to previous data for a sequential sparse GP model is problematic for
hyperparameter learning. In this paper, we solve this problem by introducing the concept
of memory. This approach is novel and different from previous work, which attempts to
replace missing data with additional regularization terms in the ELBO (Bui et al., 2017). We
further derive a novel Bayesian leverage score, for selecting memory, and show its usefulness
in a sequential learning data set, split MNIST.
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