
Under review as a conference paper at ICLR 2022

GENERALIZING CROSS ENTROPY LOSS WITH A BETA

PROPER COMPOSITE LOSS: AN IMPROVED LOSS FUNC-
TION FOR OPEN SET RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Open set recognition involves identifying data instances encountered during
test time that do not belong to known classes in the training set. The majority of
recent deep learning approaches to open set recognition use a cross entropy loss
to train their networks. Surprisingly, other loss functions are seldom used. In our
work, we explore generalizing cross entropy with a Beta loss. This Beta loss is a
proper composite loss with a Beta weight function. This weight function adds
the flexibility of putting more emphasis on different parts of the observation-
conditioned class probability (i.e. P (Y |X)) range during training. We show
that the flexibility gained through this is Beta loss function produces consistent
improvements over cross entropy loss for open set recognition and produces
state of the art results relative to recent methods.

1 INTRODUCTION

Machine learning systems deployed in the real world often encounter data instances that do not
belong to any of the classes seen during training. For example, autonomous cars with visual
perception systems must handle, to some degree, the unmodeled object classes that could be
encountered. Failure to identify unknown classes not only presents a safety risk, but it also hinders
performance if the input domain changes significantly. Thus, identifying these novel instances is
a critical task for machine learning systems to achieve robustness in the real world, especially in
high-stakes settings (Dietterich, 2017).

Open Set Recognition (OSR) (Scheirer et al., 2013; Boult et al., 2019) attempts to addresses this
problem of identifying instances belonging to previously unseen classes. Deep learning methods
for OSR typically learn a representation such that data instances from novel classes are separable
from known classes under this representation. Almost all of the recent deep learning OSR methods
use a cross entropy loss combined with a function (e.g. softmax or sigmoid) to map unnormalized
logits to probabilities. Surprisingly, other loss functions have not been extensively explored for OSR
despite known issues with the use of cross entropy on representation learning for OSR (Goodfellow
et al., 2015; Bendale & Boult, 2016).

In order to improve on cross entropy, we explore its properties as a special case of a proper
composite loss (Buja et al., 2005; Gneiting & Raftery, 2007; Reid & Williamson, 2010). Proper
composite losses have an integral representation that reveals an implicit weight function over the
observation-conditioned class probability range (i.e. the range of P (Y |X) where Y is the output
and X are the features). As we will show, cross-entropy has a U-shaped weight function that
places higher weight at the extreme ends of the P (Y |X) range. It is unclear if this weight function
is the best option for OSR. To our knowledge, there is no prior work that investigates changing this
weight function to improve OSR.

In our work, we introduce a loss function specifically designed for OSR based on a proper compos-
ite loss with a Beta function used as the weight function. The Beta function is parameterized by α
and β parameters which results in a generalization of the weight function used by cross entropy.
By changing these two parameters, we change the shape of the weight function, thereby creating a
class of loss functions that can be tailored to the specific OSR task.

1

Under review as a conference paper at ICLR 2022

We call this loss a Beta loss and introduce a constrained optimization problem to set its parameters
during training. The flexibility gained in tuning the weight function for a given OSR task results in
consistent gains in performance over cross entropy. In addition, we demonstrate that these gains
result in state of the art performance compared to recent OSR methods.

2 RELATED WORK

Scheirer et al. (2013) provided the first formalization of the OSR problem, including defining
open set risk as the risk of misclassifying data that is far away from the training data. Since then,
the literature on OSR has been extensive (see (Boult et al., 2019) for a survey) and we provide a
brief survey with a focus on recent deep learning methods. One of the first deep learning OSR
techniques is OpenMax (Bendale & Boult, 2016), which rescales activation vectors, particularly the
extreme ones, through a Weibull distribution to reduce the open set risk. Another category of OSR
methods leverage autoencoders for open set detection, including using Extreme Value Theory to
model reconstruction error from class conditioned autoencoders (Oza & Patel, 2019), mapping
classes into multivariate Gaussians in the latent space using a class-conditional VAE (CVAE)
framework Sun et al. (2020) or combining CVAEs with a CapsuleNetwork (Guo et al., 2021). The
Classification-Reconstruction learning for Open-Set Recognition (CROSR) method (Yoshihashi
et al., 2019) trains a deep hierarchical reconstruction net to perform both reconstruction and
supervised classification. Reciprocal Points Learning (RPL) (Chen et al., 2020) introduces the idea
of reciprocal points, which are parts of the embedding space that are not from class k and thus
more similar to the unknown classes. For each class, the RPL algorithm attempts to separate the
space of known instances from the reciprocal points while regularizing this objective with a term
that indirectly reduces the open space risk.

A closely related task to OSR is Out Of Distribution (OOD) detection. The task in OOD detection
is to detect data instances that are not in the training distribution. In past work, this task often
involves detecting data instances that come from a totally different dataset, rather than detecting
unseen classes from the same dataset. A simple OOD technique is to detect open set instances
by thresholding the maximum softmax probability (Hendrycks & Gimpel, 2017). ODIN builds on
Hendrycks & Gimpel (2017) by applying temperature scaling to softmax and adding small perturba-
tions to data instances to improve the max softmax score. Generalized ODIN (G-Odin) (Hsu et al.,
2020) further improves on ODIN by removing the need for OOD data to tune hyperparameters.
We believe that OOD can be cast as a subproblem under the more general OSR framework, and we
refer to the general problem of identifying previously unseen test data as OSR.

The most closely related approach to our work is the focal loss (Lin et al., 2020), which was
originally intended to handle imbalanced classes. The focal loss modifies cross entropy to be
(1−p)γlog (p), where γ is a focusing parameter that focuses training on hard instances that are
misclassified. We will show that our Beta loss is different and substantially outperforms focal loss.

The majority of these prior approaches use cross entropy for the loss function. To our knowledge,
none of the previous work has investigated changing the weight function of cross entropy to
improve OSR. Thus, our work investigates a previously unexplored direction for OSR. Finally, we
mention other strategies from OSR and OOD that are orthogonal to our approach and could be
combined with our work to improve performance even further. These strategies used include
incorporating an auxiliary dataset of outliers (Hendrycks et al., 2019; Liu et al., 2020), using
generative models to create informative synthetic examples that augment the training data (Ge
et al., 2017; Neal et al., 2018; Yue et al., 2021) and using self-supervision to guide the latent
representation learning (Perera et al., 2020; Tack et al., 2020).

3 BACKGROUND

We first introduce the notation that we will use. Vectors and matrices are denoted with boldface
font while scalars are not. Let the training set D = {(X1,Y1,), . . . , (XN ,YN)} be made up of N
training examples. The i th training instance (Xi,Yi) consists of a D-dimensional feature vector
Xi = (X 1

i , . . . , X D
i) and a class label vector Yi = (Y 1

i , . . . ,Y K
i) that is a one-hot encoding vector of

size K , corresponding to the K known classes during training. In this vector, if the i th instance
belongs to class k, then Y k

i = 1 and all other components have value 0. If we refer to features in

2

Under review as a conference paper at ICLR 2022

general, we use the notationX (without the subscript index). Similarly, we use Y to refer to class
labels when we do not refer to a specific instance. Finally, the notation −k indicates "not from
class k".

During testing, there are an additional U classes not seen during training that data instances can
be drawn from. The OSR task is to classify whether a data instance belongs to one of the K known
classes or whether the instances come from an unseen class.

3.1 PROPER COMPOSITE LOSSES

We briefly provide an explanation of proper composite losses, following the presentation by Reid &
Williamson (2010) with some minor notational modifications. For more details, we refer the reader
to (Reid & Williamson, 2010; Buja et al., 2005). To simplify the explanation of proper composite
losses, for the entirety of Section 3.1, Y is a binary output variable taking value 0 or 1 (rather than
dealing with the K -component class label vector Y).

Proper losses Let η(X ,θ) = P (Y = 1|X ,θ) be the class probability function. Here, θ are the
parameters of the model for the class probability function. We will drop θ from the notation when
it is not important for the discussion and simply denote the class probability function as η(X).
We make η an explicit function of the featuresX to emphasize that it takes features as input.

We want an estimate of the class probability η(X) from training data by fitting a model q(X) using
a loss function `(Y , q(X)), where Y = {0,1} is a binary response variable. The loss function `(Y ,V)
can be defined in terms of two partial loss functions `1(V) = `(1,V) and `0(V) = `(0,V) for when
the ground truth label is 1 and 0 respectively. Specifically `(Y ,V) = �y = 1�`1(V)+�y = 0�`0(V).
For example, the log loss used in binary cross entropy is defined as `(Y ,η(X)) =−Y l og (η(X)−
(1−Y)log (1−η(X)) with partial losses `1(η(X)) =−log (η(X)) and `0(η(X)) =−log (1−η(X)).

Given a loss function, we can define the point-wise risk as:

L(η(X),V) = EY ∼η(X)[`(Y ,V)] = η(X)`1(V)+ (1−η(X))`0(V)

The point-wise risk is the expectation of the loss with the labels Y being drawn from a Bernoulli
distribution with parameter η(X). Let η(X) be the true value of the class probability conditioned
onX . A proper loss (also known as a proper scoring rule in Statistics) is a loss `(Y ,V) with the
property that the point-wise risk L(η(X), η̂(X)) is minimized by η̂(X) = η(X) and is said to be
Fisher consistent (Gneiting & Raftery, 2007).

Proper losses have an integral representation that reveals the use of a weight function (Shuford
et al., 1966; Savage, 1971; Schervish, 1989). In order to describe this integral, we first define the
cost-weighted misclassification loss, with cost parameter c ∈ (0,1) as:

`c (0, η̂(X)) = c�η̂(X) ≥ c� (1)

`c (1, η̂(X)) = (1− c)�η̂(X) < c� (2)

Equation 1 is the cost of a false positive (i.e. c) while Equation 2 is the cost of a false negative (i.e.
(1− c)).

With this definition, a proper loss `(Y , η̂(X)) can be represented as a weighted integral of cost-
weighted misclassification losses (Theorem 6 of Reid & Williamson (2010)):

`(Y , η̂(X)) =
∫ 1

0
`c (Y , η̂(X))w(c)dc (3)

In Equation 3, w(c) is a weight function w : (0,1) 7→ [0,∞) that satisfies
∫ 1−ε
ε w(c)dc <∞,∀ε> 0. A

more intuitive representation of this property can be found in the corollary to Theorem 6 in Reid
& Williamson (2010), which illustrates the effect of the weight function on the partial losses:

`1(η̂(X)) =
∫ 1

η̂(X)
(1− c)w(c)dc (4)

`0(η̂(X)) =
∫ η̂(X)

0
cw(c)dc (5)

3

Under review as a conference paper at ICLR 2022

Thus, if certain values of c produce high weight according to w(c), they will have more influence
on the partial losses, thereby emphasizing the importance of these values. Since the range of c
is the same as that of P (Y |X), we can view w(c) as focusing in different parts of this probability
range. A large variety of commonly used loss functions can be produced by changing the weight
function (see Table 1 of Reid & Williamson (2010)). The key to our approach will be specializing
this weight function to the specific task of OSR.

Proper Composite Losses An inverse link functionΨ−1(q(X)) is often needed to map the real-
valued output of a model (i.e. q(X)) to the range [0,1]. For example, in logistic regression
q(X) =βTX where the inverse link function for log loss is the sigmoid functionΨ−1(p) = 1

1+e−p ,
with forward link being the logistic functionΨ(p) = log (p

1−p). A loss function that uses an inverse
link function is called a composite loss because it composes the inverse link function with q(X)
i.e. η(X) =Ψ−1(q(X)). We denote a composite loss as `Ψ(Y ,V) = `(Y ,Ψ−1(V)), along with partial
composite losses `Ψ1 (V) and `Ψ0 (V).

Making a composite loss proper requires accounting for the effects of the link function on the
partial losses. IfΨ is a strictly monotone link function and `Ψ1 (V) and `Ψ0 (V) are differentiable
partial losses, then Theorem 10 of Reid & Williamson (2010) states that `Ψ is a proper composite
loss if and only if:

−`Ψ′
1 (η̂(X))

1− η̂(X)
= `Ψ

′
0 (η̂(X))

η̂(X)
= w(η̂(X))

Ψ′(η̂(X))
(6)

for all η̂(X) ∈ (0,1). Equation 6 shows that once the weight function and the link function are
specified, then the partial loss functions are also specified (except for additive constants). More
importantly, the weight and link function pairing has implications on the convexity of the loss
function (see Sections 15 and 16 of Buja et al. (2005) and Section 6 of Reid & Williamson (2010)).

3.2 THE BETA FAMILY OF PROPER COMPOSITE LOSSES

Buja et al. (2005) show how to create a family of proper losses by using a Beta function as the
weight function. The beta function is parameterized by α and β and has the following form:

w(c) = cα−1(1− c)β−1 (7)

Using Equations 4 and 5, the corresponding partial loss functions are:

`1(q) =
∫ 1

q
cα−1(1− c)βdc (8)

`0(q) =
∫ q

0
cα(1− c)β−1dc (9)

Setting α and β to specific values produces many commonly used losses such as boosting loss,
cross entropy, squared error loss and misclassification loss. For instance, setting α= 0 and β= 0
produces `0(q) =−log (1−q) and `1(1−q) =−log (q), which results in binary cross entropy. When
α and β are integer multiples of 1

2 , the integrals in Equations 9 and 8 have closed form expressions.

Section 15 of Buja et al. (2005) describes conditions for convex loss functions involving the
Beta family for weight functions and scaled logistic linksΨ−1(V) = 1

1+e−V /σ where σ is a scaling
parameter. We restate an important corollary from that section as a theorem below.

Theorem 1 Proper losses in the Beta family and scaled logistic links result in convex composite
losses iff α,β ∈ [−1,0] and σ> 0.

4 METHODOLOGY

Our aim is to validate the Beta family of proper composite losses for the task of Open Set Recogni-
tion. We apply the Beta family to high dimensional datasets, of images, under the framework of
deep neural networks for classification.

4

Under review as a conference paper at ICLR 2022

Figure 1: A diagram of the architecture used for Beta loss with a σ=sigmoid inverse link function.

4.1 THE NEURAL NETWORK ARCHITECTURE

Figure 1 illustrates the neural network architecture that we use in our experiments. The archi-
tecture uses a CNN as its backbone and has K heads, corresponding to the K known classes in
our training set, connected to a common latent embedding layer. These K heads correspond to
K one-vs-all predictions, with the kth output predicting class-k membership of the input and a
given output’s prediction is unaffected by the value of any other output log i t−k . The output of the
kth head is computed by applying the logistic inverse link function (i.e. σ(X) = (1+exp(−X))−1)
to the kth logit, resulting in the output P (Y k = 1|X) =σ(l og i t k).

This architecture is much simpler than some of the other deep architectures used for OSR. As
we will show in Section 5, a simpler architecture with our novel loss function outperforms OSR
methods with more sophisticated architectures.

4.2 BETA LOSS

During training, each output contributes a one-vs-all loss term to the overall loss. This one-vs-all
loss term is calculated using the Beta weight function (Equation 7) combined with a scaled logistic
link function with σ= 1, which results in a sigmoid function. The partial losses `0(q) and `1(q) are
shown in Equations 9 and 8. If we keep α,β ∈ [0,1], then according to Theorem 1, this weight-link
function combination results in a convex loss for a given output k.

The overall Beta loss (Equation 10) sums up the one-vs-all losses over all the K outputs. Since the
sum of convex functions is also convex, the overall Beta loss is also convex.

Lbet a(Y ,X ,θ) =− 1

N

N∑
i=1

K∑
k=1

Y k
i `1(1− η̂k (X ,θ))+ (1−Y k

i)`0(η̂k (X ,θ)) (10)

In Equation 10, η̂k (X ,θ) is the prediction of P (Y k
i = 1|X ,θ) from the output of the neural network.

The Beta loss could involve values ofα and β that are not multiples of 1
2 and thus do not have close

form expressions for `1 and `0. Fortunately, the integrals are one-dimensional and approximating
these integrals to an arbitrary precision can be done by applying a simple numerical integration
technique like the trapezoidal rule. However, in some cases, a large number of trapezoids may
be needed to achieve the desired precision due to the rapid changes at the endpoints of the
partial losses for a large number of classes K . To mitigate the problem of high memory usage,
we have experimented with training a multi-layer perceptron to approximate the integral; the
approximation is promising and we will explore it more fully in future work.

Selecting α and β Selecting the values of α and β before seeing the data can be challenging.
Naively optimizing α, β and the neural network parameters θ simultaneously will produce a
meaningless loss function as the optimization will minimize the loss by flattening the weight
function towards zero in as many places as possible; in effect, this will cause α and β to approach
∞.

In order to understand the effects ofα andβ, we used CIFAR10 as a development dataset and apply
a posthoc grid search over the two parameters to see their effect on AUC on an OOD task with
CIFAR10 data as inliers (see Section 4.6). Table 1 provides a brief overview of our grid search for

5

Under review as a conference paper at ICLR 2022

Figure 2: (Left): The Beta weight function for a few values of α and β. (Right): The derivative of
partial loss `0 (the plot for the derivative of `1 is similar but reflected). Beta losses with lower
values of α and β place much more emphasis on instances that are close to 0 (i.e. close to correct
predictions) than Focal and Log loss.

the cases where α=β. In general, our experiments showed that values near α,β=−0.4 produce
the highest AUC values on CIFAR10.

Figure 2 (left) shows a plot of the weight function for a few select parameters of α and β. A plot of
the derivative of the partial loss function `0 (Figure 2 (right)) is also instructive as it shows how
Beta functions with parameters close to -0.5 skew the curve shape to be higher towards 0, which
effectively increases the area under the curve towards the left for the integral. This shape effectively
places more weight on examples that are close to correct i.e. having η̂(X) = P (Y k

i = 1|X) be close
to 0 for an instance with true label 0. In effect, this weight function emphasizes "core" instances
for that class.

We use this information to create a constrained optimization problem that learns the neural net-
work parameters θ as well as the values forα andβ. First, we constrain the values ofα,β ∈ [−1,0] to
preserve the convexity requirements from Theorem 1. Second, we add an L1 norm regularization
term that penalizes α and β from deviating too much from -1. Without this regularization term,
the optimization will always return α= 0 and β= 0 since these values minimize the objective. The
λ parameter handles the tension between tethering the α and β parameters to -1 and minimizing
the objective, thereby resulting in α and β parameters in-between the endpoints.

mi nα,β,θ Lbet a(Y ,X ,θ)+λ∗ (|α+1|+ |β+1|)
s.t. −1 ≤α≤ 0,−1 ≤β≤ 0

(11)

To set the value of λ, we again perform posthoc tuning on CIFAR10 for the same OOD task to get
the value of λ that yields the best AUC for the Beta loss algorithm under investigation (see Table 2).
We then apply this value of λ (tuned over CIFAR10) to the other datasets in our evaluation.

4.3 BASELINE METHODS AND DETECTION FUNCTIONS

We compare our OSR results with a large variety of methods, including: Sigmoid (binary cross
entropy with a sigmoid link), Softmax (cross entropy followed applied over softmax), Focal Loss
(Lin et al., 2020), Openmax (Bendale & Boult, 2016), G-Openmax (Ge et al., 2017), OSRCI (Neal
et al., 2018), CROSR (Yoshihashi et al., 2019), C2AE (Oza & Patel, 2019), GFROR (Perera et al., 2020),
CGDL (Sun et al., 2020), RPL (Chen et al., 2020), CVCap (Guo et al., 2021), G-Odin (Hsu et al.,
2020), and CSI (Tack et al., 2020). For Sigmoid, Softmax, Focal loss, G-Odin and CSI, we ran these
algorithms ourselves and report the AUC averaged over 5 random splits. For the other algorithms,
we present results as reported in Table 1 from Guo et al. (2021).

α=β 0.0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0
AUC 0.952 0.955 0.990 0.979 0.990 0.989 0.988 0.981 0.980 0.986 0.978

Table 1: The AUC for different values of α and β on the AUC of CIFAR-10, averaged over the OOD
datasets. Due to space constraints, we only include results for α=β.

6

Under review as a conference paper at ICLR 2022

λ 0.01 0.05 0.1 0.5 1 5 10
Sigmoid β 0.953 0.967 0.982 0.988 0.992 0.975 0.974
Softmax β 0.987 0.989 0.990 0.990 0.991 0.979 0.970
G-Odin β 0.993 0.979 0.985 0.990 0.987 0.981 0.971
CSI β 0.966 0.966 0.967 0.966 0.962 0.964 0.960

Table 2: A posthoc sensitivity analysis of the effect of Beta loss λ on various algorithms’ AUC for
CIFAR-10, averaged over the five OOD datasets.

Previous methods (Neal et al., 2018; Hendrycks & Gimpel, 2017) that use softmax simply use the
probability of the max predicted class to detect open set instances, but we find using L2 norm of
the latent representation z, S(x) = ||C N N (x)||2 improves performance. Unless otherwise noted,
our experiments use the L2 metric as the detecting function for all methods.

For both Generalized ODIN and CSI, we use their proposed functions for OSR as we found these
metrics were consistently better than L2. Generalized ODIN uses the largest f (x) i.e. the largest
logit of the K classes before the learned temperature is applied. CSI simply uses the max softmax
probability, S(x) = ar g max

y
P (y |x), averaged over four rotations of an input image.

4.4 REPLACING LOSS FUNCTIONS IN EXISTING METHODS WITH BETA LOSS

We also investigate replacing the cross entropy loss in existing OSR methods with Beta loss.
Although this swap of loss functions may violate the theoretical assumptions of the Beta loss, it
gives us an idea of the effect of the Beta loss while keep the rest of the algorithm in tact. In addition
to cross entropy plus softmax, we replace cross entropy with Beta loss in two state of the art OSR
techniques: G-Odin (Hsu et al., 2020) and CSI (Tack et al., 2020).

G-Odin is an OOD method that normalizes the final prediction layer of a CNN from f (x) =W x +b
to f (x) = W x+b

||W ||||x|| for each class, which is normalized again by a single predictive logit g (x) =
si g moi d(Wg x +bg), and finally followed by a softmax activation. Although they also propose an
image preprocessing strategy to improve OSR, we found that preprocessing produced consistently
worse results than simply using f (x) as an outlier score.

CSI is a self-supervised method for learning a rich embedded representation of a dataset by
contrasting a given sample with distributionally-shifted augmentations of itself. While their
method generalizes to unsupervised learning, we use their supervised implementation, which
fine tunes on the labels of a given dataset.

Other OSR methods from Section 4.3 do not have a standard classification loss that can be easily
swapped with our Beta loss. For example, CVCap (Guo et al., 2021) used class labels by minimizing
the KL-divergence between a class-conditional representation and a target fixed representation.

To determine the value of λ for the Beta loss versions of Softmax, G-Odin, and CSI, we perform a
posthoc sensitivity analysis on λ over the CIFAR10 dataset. As with Sigmoid, we then select the λ
value that produces the best AUC on CIFAR10 and apply it to the other datasets in our evaluation.
Table 2 shows that the value of lambda that maximizes AUC for CIFAR10 is not always the same for
different methods.

4.5 EXPERIMENTAL SETUP

For all baseline methods, we use identical hyper-parameter settings and models to the original
papers. Experiments described in Section 4.4 follow identical training procedures to the original
papers for CSI and G-Odin and only replaced the cross entropy loss with Beta loss. For all of our
other experiments, we use a DenseNet (Huang et al., 2017) and follow all the training procedures
described by the original work. We use a batch size 64 for 300 epochs with a weight decay of 0.0001
for all weights except on the logits. Models are trained with Stochastic gradient desecent, using a
mometum of 0.9, learning rate 0.1, with a learning rate schedule at 50% and 75% epochs. Finally,
all weights are initialized with He-initialization (He et al., 2015).

7

Under review as a conference paper at ICLR 2022

For our high resolution mars datasets, we use transfer learned models, which have been shown
to elicit strong performance even on small datasets Huh et al. (2016). We use baseline publicly
downloadable pre-trained models: a Resnet-50 (Targ et al., 2016) trained on ImageNet. This model
is trained similarly to the DenseNet, but only needed 30 epochs to converge.

4.6 DATASETS

OSR For our small-sized experiments, we use multiple common benchmark datasets, all of
which are 32×32 RGB images. For some experiments we use different splits of the training set for
alternate analysis, following the setup described in (Neal et al., 2018). CIFAR6 randomly selects 6
classes as inliers to be trained on, with the other 4 considered unknown. CIFAR10+ and CIFAR50+
select the 4 non-animal classes as inlier, then uses the more diverse CIFAR100 to select outliers 10
and 50 animal classes, respectively, are randomly selected. We also use SVHN and TinyImageNet
datasets, where 6 and 20 classes are selected from the 10 and 200 possible classes.

OOD We evaluate models trained on the entirety of both cifar10 and cifar100 datasets, and we
compare these models against a variety of outlier datasets such as: cropped Imagenet, resized
Imagenet, cropped LSUN, resized LSUN, iSUN and SVHN. While we report the averaged AUCs, full
results, as well as results on the fixed versions of the resized datasets, are available in the appendix.

Mars We also use a recently released large-sized labeled dataset of Mars Surface images, from
the Mars Science Laboratory (MSL) (Grotzinger et al., 2012) and Mars satellite images collected by
the High Resolution Imaging Experiment (HiRISE) instrument onboard the Mars Reconnaissance
Orbiter (McEwen et al., 2007). Both datasets (Wagstaff et al., 2021) are high-resolution at 227×227,
with RGB and greyscale images respectively. The Rover dataset contains 2,900 images taken on the
surface of the planet Mars, split into 19 classes. The Mars satellite dataset contains 10,815 images
sorted 8 classes. We consulted a domain expert from NASA to split the dataset into meaningful
openset tasks. For the Rover dataset, we set the “artifact” class (images of low quality or contain
missing data) to be unknown and the rest to be inlier. We also split the dataset by “solday”, where
only classes occurring during the first 100 martian days of data collection are used as inliers
(K = 14 classes), and the rest are used as outliers. Finally the orbital dataset sets “impact ejecta”
and “spider” are used as outliers due to their low occurrence in the full dataset.

5 RESULTS AND DISCUSSION

OSR has a variety of metrics used for determining the effectiveness of different methods. The most
popular being area under the receiver operating characteristic curve (AUC) (Boult et al., 2019).
AUC provides a calibration-free measure and characterizes the performance for a given score by
varying the discrimination threshold between inlier data and openset data. Other metrics exists
such as true negative rate at 95% true positive rate (TNR@TPR95), which forces inlier recall to be
directly at 95%. While having a high TNR is more challenging than a high AUC, we find the results
to be highly correlated. Another metric is F-score, which combines outliers as a K +1 class and
measures the accuracy. We do not find this metric to be meaningful as it requires a threshhold for
choosing outliers, and conflates the difficulties of the OSR task with strict classification. Therefore,
we report only AUCs in our main text. TNRs and accuracy are reported in the supplementary
material.

Table 3 shows the main results. All experiments are averaged over five random splits of known and
unknown classes for both OSR (Neal et al., 2018) and OOD detection (Hendrycks & Gimpel, 2017).
We draw attention to three elements. First, adding Beta Loss to each to a given method results in a
very consistent improvement in performance for almost all tasks. Second, we achieve start-of-the-
art results by using CSI with Beta loss for most OSR tasks, and we achieve start-of-the-art results
by using Generalized Odin with Beta Loss on the standard OOD datasets. Lastly, using Beta Loss
with the inverse logistic link function, in a one-vs-all classification setting, results in significant
improvements over using standard binary cross entropy (Sigmoid β vs Sigmoid).

Table 4 shows the results of applying Beta Loss to the mars datasets. Here we find these datasets to
be much more challenging. While no one method achieves the best results for all three mars-OSR
tasks, adding Beta loss to a given method generally results in a performance increase, including

8

Under review as a conference paper at ICLR 2022

Svhn Cifar6 Cifar10+ Cifar50+
Tiny

Imagenet
Cifar10

avg
Cifar100

avg
Softmax 0.886 0.677 0.816 0.805 0.577 - -

Openmax 0.894 0.695 0.817 0.796 0.576 - -
G-Openmax 0.896 0.675 0.827 0.819 0.58 - -

OSRCI 0.91 0.699 0.838 0.827 0.586 - -
CROSR 0.899 - - - 0.589 - -
C2AE 0.892 0.711 0.81 0.803 0.581 - -

GFROR 0.955 0.831 - - 0.657 - -
CGDL 0.896 0.681 0.794 0.794 0.653 - -

RPL 0.931 0.784 0.885 0.881 0.624* - -
CVCap 0.956 0.835 0.888 0.889 0.558* - -
Focal* 0.915 0.830 0.891 0.883 0.636 0.949 0.877

Softmax* 0.931 0.838 0.924 0.917 0.646 0.971 0.890
Sigmoid* 0.890 0.806 0.857 0.855 0.612 0.934 0.730
G-Odin* 0.932 0.859 0.931 0.933 0.641 0.990 0.970

CSI* 0.958 0.857 0.967 0.963 0.623 0.977 0.896
Sigmoid β 0.927 0.843 0.939 0.933 0.625 0.989 0.751
Softmax β 0.935 0.837 0.942 0.940 0.646 0.991 0.971
G-Odin β 0.937 0.853 0.935 0.937 0.646 0.992 0.973

CSI β 0.958 0.874 0.975 0.967 0.628 0.988 0.923

Table 3: Full results of AUC averaged over 5 random splits. A Beta loss (indicated with a β) shows a
consistent improvement over log loss for nearly every dataset with pure classification loss. These
results are mainly significant (see the supplement for full standard deviations, TNR at TPR95, and
OOD results). The top third of the table is as reported in (Guo et al., 2021), including the empty
cells. * denotes our own runs of the experiment.

a substantial increase of about 0.1 AUC in the case of Softmax β on Artifact. Note that the λ
parameter was not tuned on the mars datasets and we may experience an even larger improvement
with tuning of λ.

Artifact HiRISE Solday
Sigmoid 0.604 0.627 0.529
Softmax 0.655 0.654 0.583
G-Odin 0.843 0.608 0.523
Sigmoid β 0.615 0.634 0.596
Softmax β 0.759 0.640 0.588
G-Odin β 0.850 0.655 0.532

Table 4: AUC of Mars tasks averaged over 5 trials. Beta loss generally provides a consistent
improvement over the baseline loss functions.

6 CONCLUSION

We have introduced a new loss function for OSR called the Beta loss, which generalizes cross
entropy loss. The Beta loss is a proper composite loss with an associated weight function over
the P (Y |X) range that can be tailored to a specific OSR task. This additional flexibility produces
consistent increases in AUC over cross entropy and these increases yield state of the art results
relative to recent OSR algorithms.

For future work, we will explore other link functions aside from the logistic link function that still
preserve the convexity of the proper composite loss function. It remains an open question if there
are other weight and link function combinations that are more effective for OSR than Beta loss.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1563–1572, 2016.

T. E. Boult, S. Cruz, A. Dhamija, M. Gunther, J. Henrydoss, and W. Scheirer. Learning and the
unknown: Surveying steps toward open world recognition. Proceedings of the AAAI Conference
on Artificial Intelligence, 33(01):9801–9807, 2019.

A. Buja, W. Stuetzle, and Y. Shen. Loss functions for binary class probability estimation and
classification: Structure and applications. Technical report, University of Pennsylvania, Nov
2005.

G. Chen, L. Qiao, Y. Shi, P. Peng, J. Li, T. Huang, S. Pu, and Y. Tian. Learning open set network with
discriminative reciprocal points. In Proc. of European Conference in Computer Vision (ECCV),
pp. 507–522, 2020.

T. G. Dietterich. Steps toward robust artificial intelligence. AI Magazine, 38(3):3–24, 2017.

Z. Ge, S. Demyanov, and R. Garnavi. Generative openmax for multi-class open set classification.
In Proc. of British Machine Vision Conference (BMVC), 2017.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of
the American Statistical Association, 102(477):359–378, March 2007.

I. Goodfellow, J. Shelns, and C. Szegedy. Explaining and harnessing adversarial examples. In
Proceedings of the International Conference on Learning Representations, 2015.

John P Grotzinger, Joy Crisp, Ashwin R Vasavada, Robert C Anderson, Charles J Baker, Robert
Barry, David F Blake, Pamela Conrad, Kenneth S Edgett, Bobak Ferdowski, et al. Mars science
laboratory mission and science investigation. Space science reviews, 170(1):5–56, 2012.

Yunrui Guo, Guglielmo Camporese, Wenjing Yang, Alessandro Sperduti, and Lamberto Ballan.
Conditional variational capsule network for open set recognition. CoRR, abs/2104.09159, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. Proceedings of International Conference on Learning Representa-
tions, 2017.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=HyxCxhRcY7.

Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes imagenet good for transfer
learning? arXiv preprint arXiv:1608.08614, 2016.

S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network representations
revisited. In Proceedings of the 36th International Conference on Machine Learning, PMLR 97,
pp. 3519–3529, 2019.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2):318–327, 2020.
doi: 10.1109/TPAMI.2018.2858826.

10

https://openreview.net/forum?id=HyxCxhRcY7
https://openreview.net/forum?id=HyxCxhRcY7

Under review as a conference paper at ICLR 2022

W. Liu, X. Wang, J. Owens, and Y. Li. Energy-based out-of-distribution detection. In Advances in
Neural Information Processing Systems 33, 2020.

Alfred S McEwen, Eric M Eliason, James W Bergstrom, Nathan T Bridges, Candice J Hansen, W Alan
Delamere, John A Grant, Virginia C Gulick, Kenneth E Herkenhoff, Laszlo Keszthelyi, et al.
Mars reconnaissance orbiter’s high resolution imaging science experiment (hirise). Journal of
Geophysical Research: Planets, 112(E5), 2007.

Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set learning
with counterfactual images. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 613–628, 2018.

P. Oza and V. M. Patel. C2ae: Class conditioned autoencoder for open-set recognition. In Proc. of
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2302–2311, 2019.

Pramuditha Perera, Vlad I. Morariu, Rajiv Jain, Varun Manjunatha, Curtis Wigington, Vicente
Ordonez, and Vishal M. Patel. Generative-discriminative feature representations for open-
set recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11814–11823, June 2020. doi: 10.1109/CVPR42600.2020.01183.

M. D. Reid and R. C. Williamson. Composite binary losses. Journal of Machine Learning Research,
11:2387–2422, Dec 2010.

L. J. Savage. Elicitation of personal probabilities and expectations. J. of the American Statistical
Association, 66(336):783–801, 1971.

W. J. Scheirer, A. Rocha, A. Sapkota, and T. E. Boult. Towards open set recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35(7):1757–1772, 2013.

M. J. Schervish. A general method for comparing probability assessors. The Annals of Statistics, 17
(4):1856–1879, 1989.

E. Shuford, A. Albert, and H. E. Massengill. Admissible probability measurement procedures.
Psychometrika, 31(2):125–145, June 1966.

X. Sun, Z. Yang, C. Zhang, K.-V. Ling, and G. Peng. Conditional gaussian distribution learning
for open set recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 13480–13489, 2020.

J. Tack, S. Mo, J. Jeong, and J. Shin. Csi: Novelty detection via contrastive learning on distribution-
ally shifted instances. In Advances in Neural Information Processing Systems 33, 2020.

Sasha Targ, Diogo Almeida, and Kevin Lyman. Resnet in resnet: Generalizing residual architectures.
arXiv preprint arXiv:1603.08029, 2016.

Kiri Wagstaff, Steven Lu, Emily Dunkel, Kevin Grimes, Brandon Zhao, Jesse Cai, Shoshanna B Cole,
Gary Doran, Raymond Francis, Jake Lee, et al. Mars image content classification: Three years of
nasa deployment and recent advances. arXiv preprint arXiv:2102.05011, 2021.

Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi You, Makoto Iida, and Takeshi Naemura.
Classification-reconstruction learning for open-set recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4016–4025, 2019.

Zhongqi Yue, Tan Wang, Qianru Sun, Xian-Sheng Hua, and Hanwang Zhang. Counterfactual zero-
shot and open-set visual recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 15404–15414, 2021.

11

Under review as a conference paper at ICLR 2022

A FULL EXPERIMENTAL RESULTS

The complete results of all over experiments, averaged over the 5 splits can be found in Tables
6, 7, 8, 9 and 10. Tables 6 and 7 contain all the AUCs and TNR metrics, respectively, for OOD
experiments, both for CIFAR10 and CIFAR100. Tables 8 and 9 contain all the AUCs and TNR metrics,
respectively, for OSR experiments. Finally, all the average accuracies for both OSR experiments,
CIFAR10 and CIFAR100 can be found in Table 10.

A.1 LATENT SPACE COMPARISONS

linear CKA rbf kernel CKA
test 0.716 0.764
train 0.758 0.806

Table 5: Comparing the latent representation of a baseline sigmoid model with a beta-weighted
sigmoid model λ= 1 on the cifar10 dataset.

We were also curious as to how much the latent space changes when the loss function changes from
binary cross entropy to the Beta loss, with both techniques using a sigmoid function as the inverse
link function. To answer this question, we applied the Centered Kernel Alignment (CKA) similarity
index (Kornblith et al., 2019) to the latent representations obtained from the two techniques of
baseline sigmoid and sigmoid with Beta loss. For each, we got the feature representation of all
50,000 data instances chosen from the training set and another 10,000 instances from the test set.
Table 5 shows the results of CKA applied between both trainings and test datasets. Linear CKA
produced similarity indices of 0.716 (test) and 0.758 (training) while RBF kernel CKA produced
similarity indices of 0.764 (test) and 0.806 (training). These results indicate that while most of the
latent representations are similar, the relatively smaller amount of latent space changes caused by
training with Beta loss do have an impact on OSR performance.

12

Under review as a conference paper at ICLR 2022

in
d

at
a

m
et

h
o

d
Im

ag
en

et
Im

ag
en

et
re

si
ze

Im
ag

en
et

re
si

ze
fi

xe
d

LS
U

N
LS

U
N

re
si

ze

LS
U

N
re

si
ze

fi
xe

d
iS

U
N

sv
h

n

ci
fa

ra
ll

fo
ca

l
0.

94
9±

.0
13

0.
94

5±
.0

15
0.

90
7±

.0
04

0.
94

8±
.0

14
0.

97
1±

.0
07

0.
89

8±
.0

12
0.

96
0±

.0
12

0.
92

2±
.0

16

ci
fa

ra
ll

si
gm

o
id

0.
93

6±
.0

14
0.

93
6±

.0
18

0.
87

5±
.0

06
0.

93
2±

.0
07

0.
96

2±
.0

14
0.

86
8±

.0
10

0.
95

0±
.0

16
0.

88
7±

.0
41

ci
fa

ra
ll

so
ft

m
ax

0.
97

6±
.0

07
0.

97
3±

.0
10

0.
93

0±
.0

02
0.

97
9±

.0
06

0.
98

1±
.0

08
0.

91
1±

.0
09

0.
97

9±
.0

10
0.

93
7±

.0
52

ci
fa

ra
ll

go
d

in
0.

98
5±

.0
02

0.
98

5±
.0

03
0.

94
4±

.0
02

0.
98

9±
.0

01
0.

99
1±

.0
02

0.
93

0±
.0

07
0.

99
0±

.0
02

0.
99

8±
.0

01

ci
fa

ra
ll

C
SI

0.
98

3±
.0

13
0.

96
9±

.0
30

0.
93

9±
.0

39
0.

98
1±

.0
08

0.
98

1±
.0

14
0.

93
6±

.0
30

0.
97

8±
.0

05
0.

97
3±

.0
25

ci
fa

ra
ll

si
gm

o
id
β

0.
98

8±
.0

02
0.

98
6±

.0
03

0.
92

3±
.0

04
0.

99
1±

.0
01

0.
99

0±
.0

01
0.

91
5±

.0
10

0.
99

0±
.0

01
0.

99
0±

.0
07

ci
fa

ra
ll

go
d

in
β

0.
98

9±
.0

04
0.

98
9±

.0
04

0.
94

4±
.0

01
0.

99
0±

.0
01

0.
99

3±
.0

01
0.

93
6±

.0
01

0.
99

3±
.0

01
0.

99
9±

.0
00

ci
fa

ra
ll

so
ft

m
ax
β

0.
98

2±
.0

03
0.

97
8±

.0
05

0.
92

6±
.0

01
0.

98
9±

.0
01

0.
98

1±
.0

04
0.

90
2±

.0
02

0.
98

1±
.0

04
0.

99
8±

.0
01

ci
fa

ra
ll

C
SI
β

0.
99

3±
.0

02
0.

98
2±

.0
09

0.
94

2±
.0

36
0.

99
6±

.0
02

0.
98

6±
.0

05
0.

94
3±

.0
28

0.
98

6±
.0

05
0.

98
4±

.0
14

ci
fa

r1
00

fo
ca

l
0.

87
6±

.0
20

0.
85

6±
.0

33
0.

76
3±

.0
04

0.
85

7±
.0

11
0.

88
8±

.0
28

0.
70

2±
.0

03
0.

87
1±

.0
27

0.
91

6±
.0

21

ci
fa

r1
00

si
gm

o
id

0.
73

8±
.0

49
0.

69
8±

.0
66

0.
72

5±
.0

04
0.

75
1±

.0
15

0.
73

3±
.0

62
0.

67
1±

.0
06

0.
70

6±
.0

64
0.

75
6±

.0
40

ci
fa

r1
00

so
ft

m
ax

0.
87

4±
.0

27
0.

84
0±

.0
54

0.
77

7±
.0

07
0.

93
9±

.0
05

0.
87

3±
.0

35
0.

71
3±

.0
06

0.
85

2±
.0

44
0.

96
3±

.0
13

ci
fa

r1
00

go
d

in
0.

96
8±

.0
03

0.
97

2±
.0

04
0.

79
5±

.0
05

0.
95

5±
.0

07
0.

96
9±

.0
06

0.
71

4±
.0

10
0.

96
9±

.0
05

0.
98

7±
.0

01

ci
fa

r1
00

C
SI

0.
95

3±
.0

04
0.

81
8±

.0
44

0.
80

2±
.0

01
0.

96
2±

.0
04

0.
85

9±
.0

37
0.

74
6±

.0
11

0.
87

3±
.0

31
0.

91
2±

.0
14

ci
fa

r1
00

si
gm

o
id
β

0.
67

3±
.0

82
0.

65
8±

.0
60

0.
66

7±
.0

06
0.

87
0±

.0
29

0.
69

9±
.0

60
0.

60
5±

.0
04

0.
68

0±
.0

62
0.

92
8±

.0
27

ci
fa

r1
00

so
ft

m
ax
β

0.
85

8±
.0

17
0.

79
8±

.0
25

0.
77

3±
.0

04
0.

94
1±

.0
05

0.
83

9±
.0

24
0.

69
9±

.0
07

0.
81

0±
.0

30
0.

97
1±

.0
07

ci
fa

r1
00

go
d

in
β

0.
97

4±
.0

06
0.

97
7±

.0
07

0.
79

5±
.0

02
0.

94
8±

.0
07

0.
97

9±
.0

11
0.

70
0±

.0
13

0.
97

7±
.0

09
0.

98
6±

.0
02

ci
fa

r1
00

C
SI
β

0.
96

8±
.0

04
0.

86
5±

.0
28

0.
81

1±
.0

01
0.

98
7±

.0
03

0.
88

5±
.0

25
0.

75
3±

.0
11

0.
88

1±
.0

29
0.

95
1±

.0
08

Ta
b

le
6:

Fu
ll

A
U

C
re

su
lt

s
o

n
ci

fa
r1

0
an

d
ci

fa
r1

00
O

O
D

d
et

ec
ti

o
n

d
at

as
et

s
av

er
ag

ed
ov

er
5

sp
li

ts
w

it
h

st
an

d
ar

d
d

ev
ia

ti
o

n
s.

13

Under review as a conference paper at ICLR 2022

in
d

at
a

m
et

h
o

d
Im

ag
en

et
Im

ag
en

et
re

si
ze

Im
ag

en
et

re
si

ze
fi

xe
d

LS
U

N
LS

U
N

re
si

ze

LS
U

N
re

si
ze

fi
xe

d
iS

U
N

sv
h

n

ci
fa

ra
ll

fo
ca

l
0.

70
4±

.0
99

0.
68

0±
.0

99
0.

56
4±

.0
17

0.
72

6±
.0

72
0.

83
4±

.0
48

0.
48

7±
.0

70
0.

77
6±

.0
66

0.
51

1±
.1

18

ci
fa

ra
ll

si
gm

o
id

0.
73

5±
.1

02
0.

73
3±

.1
18

0.
44

1±
.0

08
0.

73
5±

.0
89

0.
83

0±
.1

05
0.

42
5±

.0
17

0.
78

9±
.1

14
0.

43
1±

.0
86

ci
fa

ra
ll

so
ft

m
ax

0.
87

6±
.0

39
0.

85
6±

.0
62

0.
61

2±
.0

18
0.

89
1±

.0
39

0.
89

8±
.0

51
0.

51
0±

.0
45

0.
88

4±
.0

64
0.

71
2±

.2
17

ci
fa

ra
ll

go
d

in
0.

92
2±

.0
16

0.
92

5±
.0

20
0.

69
7±

.0
12

0.
94

6±
.0

09
0.

95
8±

.0
12

0.
61

6±
.0

37
0.

95
2±

.0
14

0.
99

4±
.0

02

ci
fa

ra
ll

C
SI

0.
91

5±
.0

83
0.

85
5±

.1
23

0.
67

6±
.1

16
0.

87
2±

.0
75

0.
90

1±
.0

70
0.

66
6±

.0
92

0.
92

7±
.2

49
0.

84
9±

.1
44

ci
fa

ra
ll

si
gm

o
id
β

0.
94

0±
.0

10
0.

92
9±

.0
16

0.
59

0±
.0

24
0.

95
0±

.0
06

0.
95

1±
.0

06
0.

53
0±

.0
50

0.
95

1±
.0

07
0.

95
0±

.0
39

ci
fa

ra
ll

so
ft

m
ax
β

0.
90

1±
.0

21
0.

87
6±

.0
33

0.
59

1±
.0

09
0.

94
3±

.0
08

0.
89

8±
.0

26
0.

47
6±

.0
17

0.
89

4±
.0

26
0.

99
0±

.0
08

ci
fa

ra
ll

go
d

in
β

0.
95

2±
.0

24
0.

95
4±

.0
27

0.
70

1±
.0

05
0.

95
2±

.0
06

0.
97

7±
.0

05
0.

65
0±

.0
05

0.
97

3±
.0

05
0.

99
7±

.0
01

ci
fa

ra
ll

C
SI
β

0.
97

4±
.0

09
0.

91
4±

.0
47

0.
69

3±
.1

36
0.

99
2±

.0
04

0.
93

6±
.0

25
0.

68
1±

.0
86

0.
93

5±
.0

22
0.

91
8±

.0
82

ci
fa

r1
00

fo
ca

l
0.

39
9±

.0
52

0.
33

9±
.0

79
0.

20
8±

.0
10

0.
33

6±
.0

26
0.

40
7±

.0
99

0.
11

6±
.0

11
0.

35
0±

.0
83

0.
56

4±
.1

51

ci
fa

r1
00

si
gm

o
id

0.
29

5±
.0

75
0.

24
0±

.0
82

0.
19

4±
.0

09
0.

29
2±

.0
50

0.
26

4±
.0

89
0.

10
5±

.0
06

0.
22

4±
.0

84
0.

27
2±

.0
96

ci
fa

r1
00

so
ft

m
ax

0.
43

6±
.0

88
0.

35
6±

.1
28

0.
23

1±
.0

10
0.

71
5±

.0
21

0.
40

7±
.0

82
0.

11
8±

.0
04

0.
37

0±
.0

83
0.

80
5±

.0
58

ci
fa

r1
00

go
d

in
0.

81
2±

.0
18

0.
83

9±
.0

22
0.

26
5±

.0
11

0.
75

6±
.0

35
0.

81
8±

.0
39

0.
10

2±
.0

12
0.

82
1±

.0
32

0.
93

4±
.0

09

ci
fa

r1
00

C
SI

0.
71

3±
.0

20
0.

28
5±

.0
76

0.
29

8±
.0

07
0.

76
8±

.0
26

0.
39

7±
.0

80
0.

14
2±

.0
20

0.
38

9±
.0

72
0.

52
1±

.0
66

ci
fa

r1
00

si
gm

o
id
β

0.
17

2±
.0

75
0.

11
3±

.0
46

0.
12

6±
.0

13
0.

56
2±

.0
52

0.
15

0±
.0

31
0.

06
8±

.0
06

0.
11

7±
.0

24
0.

69
1±

.0
92

ci
fa

r1
00

so
ft

m
ax
β

0.
36

8±
.0

72
0.

21
6±

.0
57

0.
22

7±
.0

08
0.

71
4±

.0
20

0.
27

3±
.0

53
0.

10
5±

.0
04

0.
22

7±
.0

53
0.

84
8±

.0
41

ci
fa

r1
00

go
d

in
β

0.
85

1±
.0

35
0.

87
2±

.0
42

0.
26

5±
.0

05
0.

73
2±

.0
32

0.
88

6±
.0

65
0.

09
2±

.0
14

0.
88

1±
.0

49
0.

92
7±

.0
13

ci
fa

r1
00

C
SI
β

0.
82

2±
.0

30
0.

32
0±

.0
84

0.
30

4±
.0

07
0.

93
5±

.0
17

0.
41

2±
.0

74
0.

16
7±

.0
19

0.
40

9±
.0

75
0.

68
7±

.0
58

Ta
b

le
7:

Fu
ll

T
N

R
at

T
P

R
95

%
re

su
lt

s
o

n
ci

fa
r1

0
an

d
ci

fa
r1

00
O

O
D

d
et

ec
ti

o
n

d
at

as
et

s
av

er
ag

ed
ov

er
5

sp
lit

s
w

it
h

st
an

d
ar

d
d

ev
ia

ti
o

n
s.

14

Under review as a conference paper at ICLR 2022

method svhn cifar6 cifar10+ cifar50+ TinyImagenet
focal 0.915±.019 0.830±.028 0.891±.012 0.883±.006 0.636±.018

sigmoid 0.890±.012 0.806±.030 0.857±.028 0.855±.022 0.612±.021

softmax 0.941±.009 0.848±.018 0.924±.006 0.917±.008 0.646±.024

godin 0.932±.009 0.859±.027 0.931±.015 0.933±.003 0.651±.016

CSI 0.958±.006 0.857±.036 0.967±.007 0.963±.001 0.623±.018

sigmoid β 0.927±.006 0.843±.024 0.939±.016 0.933±.007 0.625±.022

softmax β 0.935±.008 0.837±.020 0.942±.018 0.940±.006 0.646±.025

godin β 0.928±.010 0.859±.022 0.936±.009 0.936±.006 0.646±.020

CSI β 0.958±.008 0.874±.021 0.975±.007 0.967±.001 0.628±.019

Table 8: Full AUC results on OSR tasks averaged over 5 splits with standard deviations.

method svhn cifar6 cifar10+ cifar50+ tinyimagenet
focal 0.630±.067 0.327±.047 0.477±.047 0.452±.046 0.089±.010

sigmoid 0.635±.020 0.322±.048 0.455±.044 0.446±.036 0.074±.021

softmax 0.706±.029 0.371±.055 0.576±.026 0.558±.027 0.099±.022

godin 0.700±.023 0.366±.071 0.636±.073 0.655±.016 0.102±.012

CSI 0.760±.048 0.423±.064 0.822±.040 0.802±.008 0.086±.008

sigmoid β 0.645±.032 0.348±.037 0.698±.054 0.667±.031 0.088±.006

softmax β 0.672±.034 0.328±.056 0.699±.065 0.690±.022 0.086±.011

godin β 0.704±.026 0.379±.046 0.646±.055 0.656±.028 0.096±.015

CSI β 0.741±.067 0.466±.048 0.868±.039 0.844±.006 0.083±.008

Table 9: Full TNR at TPR 95% results on OSR tasks averaged over 5 splits with standard deviations.

method svhn cifar6
cifar10+
cifar50+

Tiny
Imagenet

cifar10
all-classes cifar100

focal 0.972±.003 0.959±.010 0.968±.001 0.507±.043 0.949±.002 0.763±.003

sigmoid 0.974±.003 0.964±.009 0.971±.003 0.473±.038 0.952±.001 0.743±.003

softmax 0.972±.002 0.962±.009 0.969±.001 0.535±.046 0.950±.001 0.766±.002

godin 0.971±.004 0.962±.009 0.968±.001 0.516±.040 0.950±.001 0.758±.002

CSI 0.973±.005 0.958±.004 0.975±.001 0.500±.002 0.936±.008 0.787±.002

sigmoid β 0.969±.004 0.953±.010 0.962±.001 0.512±.040 0.940±.001 0.556±.010

softmax β 0.969±.003 0.952±.010 0.964±.001 0.516±.037 0.940±.001 0.755±.004

godin β 0.972±.004 0.960±.011 0.969±.001 0.529±.039 0.953±.000 0.761±.000

CSI β 0.970±.003 0.957±.006 0.976±.001 0.498±.001 0.932±.002 0.780±.002

Table 10: Full accuracy results of our experiments on all OSR datasets the with standard deviations.

15

	Introduction
	Related Work
	Background
	Proper Composite Losses
	The Beta family of proper composite losses

	Methodology
	The Neural Network Architecture
	Beta Loss
	Baseline methods and Detection functions
	Replacing loss functions in existing methods with Beta loss
	Experimental Setup
	Datasets

	Results and Discussion
	Conclusion
	Full experimental results
	Latent Space comparisons

