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Abstract
Adversarial examples are semantically associated
with one class, but modern deep learning archi-
tectures fail to see the semantics and associate
them to another class. As a result, these exam-
ples pose a profound risk to almost every deep
learning model. Our proposed architecture can
recover such examples effectively with more than
4× the magnitude of attacks than the capability of
the state-of-the-art model, despite having lesser
parameters than the VGG-13 model. It is com-
posed of a U-Net with the characteristics of self-
attention & cross-attention, which enhances the
semantics of the image. Our work also encom-
passes the differences in the results between Noise
and Image reconstruction methodologies.

1. Introduction
Adversarial examples are machine learning and deep learn-
ing model inputs that an attacker has purposefully designed
to cause the model to make a mistake. They are similar to
optical illusions for machines. A human is clearly able to
understand the semantic meaning conveyed by an image-
based adversarial example. Neural networks tend to create
exponential number of classification boundaries, which are
very sensitive to perturbation. These examples defeat the
whole purpose of deep learning since even a tiny perturba-
tion in an image can lead to misclassification rendering the
entire infrastructure useless.
These misclassifications could lead to loss of life in safety-
critical applications like self-driving cars, where attackers
may use stickers or paint to construct an adversarial stop
sign. The vehicle would misinterpret as a ’yield’ or other
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signals. Attackers can use targeted attacks to make the
model predict their desired output. Adversarial examples
are tough to fight against since creating a theoretical model
of the adversarial example generation process is challenging.
Some of the most prevalent methods to generate adversarial
examples are Fast Gradient Sign Method (FGSM) (Good-
fellow et al., 2014), and Random with FGSM (R-FGSM)
(Tramèr et al., 2017).

Our work aims at tackling the problem of recovering ad-
versarial examples by generating negative noise and recon-
structing the entire image. Previous work for recovering
adversarial examples (Liao et al., 2018) only recovers a
limited range of attacks which excludes heavily attacked
examples (max perturbation in the current state-of-the-art
method is 16). Some effective techniques (Liao et al., 2018)
are known to be computationally expensive. Our proposed
architecture can reverse a large range of adversarial attacks,
including heavily attacked examples (Max perturbation of
64, 4× more than ever achieved), which have lost their se-
mantic meaning. Our proposed model can be easily added
to an existing application pipeline without changing the
existing models.

Our contributions through this paper include:

• A novel GAN architecture and training methodology
to recover FGSM and R-FGSM adversarial examples
irrespective of the magnitude of the attack, performing
better than previous state-of-the-art on the CIFAR-10
dataset (Krizhevsky et al., 2014).

• A novel training procedure with adversarial training
followed by post-training, which uses hybrid losses.

• The proposed generator has fewer parameters than a
basic classification model like VGG-13 (Simonyan &
Zisserman, 2014).

• Improving the semantics of the image after recov-
ery and attaining recovered-classification accuracy of
98.5% as compared to 93% for original CIFAR-10
examples.
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2. Background
Adversarial examples are generally produced by adding
some calculated noise that is unrecognizable by humans but
is enough to fool a classifier. Various types of adversarial
attacks are: white-box attack where it is assumed that the
attacker has complete information and access to the model,
grey-box attack where the attacker knows the model param-
eters of the target model but does not know that the target
model has an active defensive mechanism, and black-box
attack where the attacker only knows the input and output
of the model and does not have any other information.

Fast Gradient Sign Method: (FGSM) attack is a type of
white-box attack where the attack uses the gradient of the
loss with respect to the input data, then adjusts the input
data to maximize the loss.

advx = x+ ε× sign(∇xJ(θ, x, y)) (1)

In the above formula, advx represents an adversarial image,
‘x’ is input image (Original), ‘y’ input label (Original), ε is
the magnitude of attack, θ is the parameter of the model,
and ‘J’ is the loss function. ∇xJ(θ,x,y) is the gradient of the
loss with respect to ’x’.ε is the metric of the magnitude of
the adversarial attack.

Random - Fast Gradient Sign Method: is variant of the
Fast Gradient Sign Method attack is a more efficient attack
compared to the iterative method since this attack requires
a single gradient computation. This attack applies a small
random perturbation before relinearizing the models’ loss to
escape the non-smooth vicinity of the data point. R-FGSM
outperforms FGSM for the same perturbation norm.

xadv = x′ + (ε− α)× sign(∇x′J(x′, ytrue)) (2)

where
x′ = x+ α× sign(N(0d, Id)) (3)

3. Motivation
The current state-of-the-art (Liao et al., 2018) model uses
U-Net architecture and has an extremely large number of
parameters. It was trained to reverse adversarial ImageNet
(Deng et al., 2009) images created using three different clas-
sification models and two attacks, FGSM and IFGSM, with
an ε range of 1-16. Training to reverse attacked ImageNet
300× 300px size images requires immense computational
resources. Since we did not have the required computational
budget we focused on making the GAN (Goodfellow et al.,
2020) model much more efficient in terms of the number
of parameters and reversing a much larger ε distribution on
the CIFAR-10 dataset. The proposed GAN model is trained
to reverse CIFAR-10 adversarial images with an ε range of

1-128, attacked from 3 different models with FGSM and
R-FGSM attacks.

4. Dataset
Adversarial images are needed for both training and testing
of the proposed method. For the training dataset, we used
50k images from the CIFAR-10 training set ( 5k images per
class). Multiple adversarial attacking methods were used to
distort these images and form a training set of adversarial
images. Different attacking methods, including FGSM and
RFGSM, are applied to the following models: Pre-trained
Inception-v3 (Szegedy et al., 2015), Resnet-18 (He et al.,
2015), VGG-13 individually. For each training example, the
perturbation level E is sampled uniformly from integers in
[1, E max], here E max is the maximum possible value of
ε for that experiment.

Dataset of adversarial examples is generated at the time
of GAN training. Every step of the training, a batch of
96 images is split into 32 for each of the three attacking
models. These 32 images are divided into 16-16 for two
attacks FGSM and R-FGSM, for each model. Furthermore,
every image in these 16 images is attacked with a different
ε. Finally, every image in a batch is attacked by a different
model by different method at different epsilon, making the
training stable for the task.

Producing adversarial examples while training step gives
the benefit of not storing a large amount of adversarial data
and, second, making each training image in a batch more
random. The permutation of different adversarial examples
that could be generated is as follows:

50, 000 Images× 3 Models× 2 Attacks× E max

This permutation represents the number of different training
inputs that can be produced which equates to 38.4 million
training images

To prepare the validation set, We used 10k images from
the CIFAR-10 validation set (1k images per class). Then
applied the same method as described above.

For final testing, E max test sets are constructed for every
ε in the range between 1 to E max. They are obtained from
the same clean 10K images from the CIFAR-10 validation
set but using only the FGSM attack.

5. Architecture and Training Procedure
We used Attention U-Net (Oktay et al., 2018) as a base gen-
erator architecture because it automatically learns to focus
on image structures of varying shapes and sizes and can
be easily integrated into standard CNN architectures such
as the U-Net model with minimal computational overhead
while increasing the model prediction accuracy.
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Figure 1. Generator Architecture (Red represents Self Attention
Layer & Pink represents Cross Attention)

Added PixelShuffle rather than ConvTranspose, as it is an
operation used in super-resolution models to implement effi-
cient sub-pixel convolution with a stride of 1/r. Specifically,
it rearranges elements in a tensor shape (*, C x r2, H , W )
to a tensor shape (*, C, H × r, W × r). Outputs of the
PixelShuffle layer are normalized using Batch Normaliza-
tion and then passed through PReLU activation. Parametric
Rectified Linear Unit (PReLU) is proposed to generalize
the traditional rectified unit (ReLU). LeakyReLU was in-
troduced to improve upon ReLU. It multiplies the negative
input by a small value (like 0.01) and keeps the positive
input as it is. PReLU allows the network to learn that small
value during training so that our activation function can
adapt to the other parameters (like weights and biases). The
network can learn the slope parameter using backpropaga-
tion at a negligible increase in the cost of training.

Generally, models are made deep with more hidden layers to
increase their prediction accuracy, essentially giving more
parameters for the model to learn. Usually, 3-4 layers of
convolutional layers are used at every stage of U-Net archi-
tecture. We instead used a single convolutional layer with a
kernel size of 3 but used self-attention (Yang et al., 2019) at
the decoding layers. The output of the Attention U-Net is
passed through a self-attention layer followed by a residual
cross attention connection.

5.1. Training Procedure

The model is trained using an adversarial procedure with
three different loss functions: L1 loss (pixel-level loss),
Adversarial loss from discriminator (MSELoss), and Classi-
fication loss from pre-trained CIFAR-10 Classifier (CrossEn-
tropyLoss).
Even after adversarial training, there are tiny perturbations
present in the generated image when compared to the origi-
nal image; these perturbations may make the model yield
the wrong prediction as these are progressively amplified
by every passing layer of the network, known as the error
amplification effect. The top layers of deep neural networks
cause misclassification due to small perturbation. Training
the model to minimize the difference of these top-level fea-
tures can result in better predictions. These perturbations

can be removed by post-training methodology, where the
generator trained by the adversarial procedure is guided by
a loss function known as perceptual loss or feature matching
loss.
Our experiments concluded that using two stages of training
(adversarial training followed by post training) gives better
results compared to including feature loss at stage one (ad-
versarial training, which made the training unstable), GAN
training was much more stable and converged faster.

6. Image vs Noise Reconstruction
Our work focuses on the differences in the results by the
Image and Noise reconstruction procedure. GAN can be
trained to reconstruct the original image with the input of an
adversarial attacked image or can be trained to anticipate the
negative noise, resulting in an original image when added
to the adversarial image. Previous research works agree
that noise reconstruction produces a better result when com-
pared to image reconstruction, including the authors of the
current state-of-the-art model for ImageNet image recovery.
On the contrary, our results show that image reconstruction
can still be the preferred choice depending upon the pur-
pose of model implementation. Understanding the trade-off
between these approaches is now more important than be-
fore because this is the fundamental choice while dealing
with Diffusion Models (Ho et al., 2020), which has shown
to work better than GAN. We have demonstrated the ad-
vantages and disadvantages of both approaches in Table
1

Table 1. Performance comparison for 3 methods
Epsilon Noise Reconstruction Image Reconstruction Image Reconstruction-2

Inception-v3 VGG-13 Inception-v3 VGG-13 Inception-v3 VGG-13
0 92.71% 92.26% 92.21% 92.25% 92.52% 92.92%
4 91.27% 88.88% 88.87% 88.72% 90.19% 89.69%
8 93.47% 88.5% 92.29% 89.04% 92.45% 89.66%

16 93.91% 88.3% 93.86% 89.02% 93.58% 89.69%
32 8.02% 26.98% 57.92% 72.57% 56.43% 74.18%

The result of column Image reconstruction-2 represents the
scenario of image reconstruction with adversarial loss in
post-training. The discriminator is not involved in post-
training in the other two methods, hence only the feature
loss as the training criterion.

From the results of Table 1, Noise reconstruction slightly
gives higher accuracy but lacks robustness when dealing
with an adversarial attack of higher E max, which lies out-
side the training distribution. We hypothesize that construct-
ing noise works better than constructing images from per-
turbed images due to the bound on predictions. The range
of the pixel values the generator has to predict while cre-
ating noise is much smaller [-E max, E max]. For image
reconstruction, the generator has to encode all the relevant
information and then reconstruct the image from the encod-
ing. In this scenario, the generator has to predict the values



Robust Recovery of Adversarial Examples

0 5 10 15 20 25 30
Epsilon

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 A
fte

r R
ec

ov
er

y

Image With Discriminator Inception
Image With Discriminatorm Robustness
Image Without Discriminator Inception
Image Without Discriminator Robustness
Noise Without Discriminator Inception
Noise Without Discriminator Robustness

Figure 2. Performance Comparison of 3 methods

for each pixel in the range of 0 - 255 ([-1,1] since the use of
Tanh), which is a larger scale than that of constructing noise,
as perturbation added is only between E [-16,16], the pixel
values of negative noise will also lie between this range.

This advantage of producing noise does not work well when
trained to reverse data with higher perturbation. For exam-
ple, ε = 128, but at the same time, these perturbed examples
cannot be termed as adversarial examples but classified as
rubbish class examples (Goodfellow et al., 2014). We hy-
pothesize that reversing images with high perturbation is
much easier because training loss is higher as the difference
between perturbed data and original data is much higher,
making training converge much faster.

The benefit of reconstructing the image is that the network
becomes more robust for various ε outside the training dis-
tribution. After observing the recovery accuracy on ε =
32, which is way out of the ε range used for training, the
image reconstruction method yields up to 75% reclassifica-
tion accuracy. In contrast, the noise reconstruction method
yields up to 30% reclassification accuracy. This difference
is due to how image reconstruction differs from noise recon-
struction. In the case of the image reconstruction method,
the encoder can still extract partial semantic information
about the image, which is consequently used to reconstruct
it. While noise reconstruction has not been trained to predict
the scale of pixel values that will reverse the attack, which
in this case is in between [-32,32], and the network was only
trained to predict a range between [-16, 16].

7. Results
After being trained for the range of 128 ε, our generator re-
constructed the attacked images. When tested on Inception-
v3 and for robustness tested on VGG-13, these images gave
staggering results, as seen in Table 2. Both the models were
able to successfully classify the reconstructed images where
in some cases, the models’ results (25 ε - 98.5%) were better
than what the models performed on original images (93.1%).

This proves that the generator can reverse the images and
enhance the semantic meaning of the images, resulting in
a performance boost in models. The results shows that the
architecture can generalize and is robust.

Table 2. White Box Attacks
Epsilon Exposed VGG-13 VGG-13 Exposed Inception-v3 Inception-v3

5 43.18% 86.46% 11.24% 90.32%
10 38.89% 89.64% 5.96% 96.32%
20 24.86% 90.86% 7.52% 98.13%
25 18.34% 90.44% 8.21% 98.5%
35 12.65% 87.36% 8.83% 98.4%
50 10.69% 77.37% 9.18% 96.83%
65 10.40% 67.19% 9.26% 91.85%

Black-Box attacks were performed with the adversaries as
DenseNet-121 (Huang et al., 2018) and VGG-11; after the
recovery, they were reclassified by Inception-v3. In Table 3,
Exposed 1 and Recovered 1 represent the attacking model as
DenseNet-121 and similarly for VGG-11. All the accuracy
represents the classification accuracies of Inception-v3.

Table 3. Black Box Attacks
Epsilon Exposed 1 Recovered 1 Exposed 2 Recovered 2

5 70.22% 79.82% 64.84% 77.78%
10 53.88% 79.26% 46.85% 76.35%
20 27.51% 79.01% 24.96% 76.63%
25 20.61% 77.40% 19.39% 75.46%
35 14.76% 68.86% 14.69% 66.16%
50 11.03% 59.18% 12.04% 57.28%
65 9.67% 55.66% 10.78% 54.32%

8. Conclusion
A novel architecture and training procedure is devised where
the adversarial images are recovered with enhancing the se-
mantics of the original image making the models classify
better than classification capacity for original images. This
architecture is capable of recovering images on a large mag-
nitude of attacks. The architecture will be validated on
ImageNet on availability of higher compute resources.
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