
Under review as a conference paper at ICLR 2021

DECOUPLING REPRESENTATION LEARNING FROM
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In an effort to overcome limitations of reward-driven feature learning in deep re-
inforcement learning (RL) from images, we propose decoupling representation
learning from policy learning. To this end, we introduce a new unsupervised
learning (UL) task, called Augmented Temporal Contrast (ATC), which trains a
convolutional encoder to associate pairs of observations separated by a short time
difference, under image augmentations and using a contrastive loss. In online RL
experiments, we show that training the encoder exclusively using ATC matches or
outperforms end-to-end RL in most environments. Additionally, we benchmark
several leading UL algorithms by pre-training encoders on expert demonstrations
and using them, with weights frozen, in RL agents; we find that agents using
ATC-trained encoders outperform all others. We also train multi-task encoders
on data from multiple environments and show generalization to different down-
stream RL tasks. Finally, we ablate components of ATC, and introduce a new data
augmentation to enable replay of (compressed) latent images from pre-trained en-
coders when RL requires augmentation. Our experiments span visually diverse
RL benchmarks in DeepMind Control, DeepMind Lab, and Atari, and our com-
plete code is available at hiddenurl.

1 INTRODUCTION

Ever since the first fully-learned approach succeeded at playing Atari games from screen images
(Mnih et al., 2015), standard practice in deep reinforcement learning (RL) has been to learn visual
features and a control policy jointly, end-to-end. Several such deep RL algorithms have matured
(Hessel et al., 2018; Schulman et al., 2017; Mnih et al., 2016; Haarnoja et al., 2018) and have
been successfully applied to domains ranging from real-world (Levine et al., 2016; Kalashnikov
et al., 2018) and simulated robotics (Lee et al., 2019; Laskin et al., 2020a; Hafner et al., 2020) to
sophisticated video games (Berner et al., 2019; Jaderberg et al., 2019), and even high-fidelity driving
simulators (Dosovitskiy et al., 2017). While the simplicity of end-to-end methods is appealing,
relying on the reward function to learn visual features can be severely limiting. For example, it
leaves features difficult to acquire under sparse rewards, and it can narrow their utility to a single
task. Although our intent is broader than to focus on either sparse-reward or multi-task settings, they
arise naturally in our studies. We investigate how to learn visual representations which are agnostic
to rewards, without degrading the control policy.

A number of recent works have significantly improved RL performance by introducing auxiliary
losses, which are unsupervised tasks that provide feature-learning signal to the convolution neural
network (CNN) encoder, additionally to the RL loss (Jaderberg et al., 2017; van den Oord et al.,
2018; Laskin et al., 2020b; Guo et al., 2020; Schwarzer et al., 2020). Meanwhile, in the field of
computer vision, recent efforts in unsupervised and self-supervised learning (Chen et al., 2020;
Grill et al., 2020; He et al., 2019) have demonstrated that powerful feature extractors can be learned
without labels, as evidenced by their usefulness for downstream tasks such as ImageNet classifica-
tion. Together, these advances suggest that visual features for RL could possibly be learned entirely
without rewards, which would grant greater flexibility to improve overall learning performance. To
our knowledge, however, no single unsupervised learning (UL) task has been shown adequate for
this purpose in general vision-based environments.

1

hiddenurl

Under review as a conference paper at ICLR 2021

In this paper, we demonstrate the first decoupling of representation learning from reinforcement
learning that performs as well as or better than end-to-end RL. We update the encoder weights using
only UL and train a control policy independently, on the (compressed) latent images. This capability
stands in contrast to previous state-of-the-art methods, which have trained the UL and RL objectives
jointly, or Laskin et al. (2020b), which observed diminished performance with decoupled encoders.

Our main enabling contribution is a new unsupervised task tailored to reinforcement learning, which
we call Augmented Temporal Contrast (ATC). ATC requires a model to associate observations from
nearby time steps within the same trajectory (Anand et al., 2019). Observations are encoded via
a convolutional neural network (shared with the RL agent) into a small latent space, where the
InfoNCE loss is applied (van den Oord et al., 2018). Within each randomly sampled training batch,
the positive observation, ot+k, for every anchor, ot, serves as negative for all other anchors. For
regularization, observations undergo stochastic data augmentation (Laskin et al., 2020b) prior to
encoding, namely random shift (Kostrikov et al., 2020), and a momentum encoder (He et al., 2020;
Laskin et al., 2020b) is used to process the positives. A learned predictor layer further processes the
anchor code (Grill et al., 2020; Chen et al., 2020) prior to contrasting. In summary, our algorithm is
a novel combination of elements that enables generic learning of the structure of observations and
transitions in MDPs without requiring rewards or actions as input.

We include extensive experimental studies establishing the effectiveness of our algorithm in a vi-
sually diverse range of common RL environments: DeepMind Control Suite (DMControl; Tassa
et al. 2018), DeepMind Lab (DMLab; Beattie et al. 2016), and Atari (Bellemare et al., 2013). Our
experiments span discrete and continuous control, 2D and 3D visuals, and both on-policy and off
policy RL algorithms. Complete code for all of our experiments is available at hiddenurl. Our
empirical contributions are summarized as follows:

Online RL with UL: We find that the convolutional encoder trained solely with the unsupervised ATC
objective can fully replace the end-to-end RL encoder without degrading policy performance. ATC
achieves nearly equal or greater performance in all DMControl and DMLab environments tested and
in 5 of the 8 Atari games tested. In the other 3 Atari games, using ATC as an auxiliary loss or for
weight initialization still brings improvements over end-to-end RL.

Encoder Pre-Training Benchmarks: We pre-train the convolutional encoder to convergence on ex-
pert demonstrations, and evaluate it by training an RL agent using the encoder with weights frozen.
We find that ATC matches or outperforms all prior UL algorithms as tested across all domains,
demonstrating that ATC is a state-of-the-art UL algorithm for RL.

Multi-Task Encoders: An encoder is trained on demonstrations from multiple environments, and is
evaluated, with weights frozen, in separate downstream RL agents. A single encoder trained on four
DMControl environments generalizes successfully, performing equal or better than end-to-end RL
in four held-out environments. Similar attempts to generalize across eight diverse Atari games result
in mixed performance, confirming some limited feature sharing among games.

Ablations and Encoder Analysis: Components of ATC are ablated, showing their individual effects.
Additionally, data augmentation is shown to be necessary in DMControl during RL even when
using a frozen encoder. We introduce a new augmentation, subpixel random shift, which matches
performance while augmenting the latent images, unlocking computation and memory benefits.

2 RELATED WORK

Several recent works have used unsupervised/self-supervised representation learning methods to
improve performance in RL. The UNREAL agent (Jaderberg et al., 2017) introduced unsupervised
auxiliary tasks to deep RL, including the Pixel Control task, a Q-learning method requiring predic-
tions of screen changes in discrete control environments, which has become a standard in DMLab
(Hessel et al., 2019). CPC (van den Oord et al., 2018) applied contrastive losses over multiple time
steps as an auxiliary task for the convolutional and recurrent layers of RL agents, and it has been
extended with future action-conditioning (Guo et al., 2018). Recently, PBL (Guo et al., 2020) sur-
passed these methods with an auxiliary loss of forward and backward predictions in the recurrent
latent space using partial agent histories. Where the trend is of increasing sophistication in auxiliary
recurrent architectures, our algorithm is markedly simpler, requiring only observations, and yet it
proves sufficient in partially observed settings (POMDPs).

2

hiddenurl

Under review as a conference paper at ICLR 2021

ST-DIM (Anand et al., 2019) introduced various temporal, contrastive losses, including ones that
operate on “local” features from an intermediate layer within the encoder, without data augmenta-
tion. CURL (Laskin et al., 2020b) introduced an augmented, contrastive auxiliary task similar to
ours, including a momentum encoder but without temporal contrast. Mazoure et al. (2020) provided
extensive analysis pertaining to InfoNCE losses on functions of successive time steps in MDPs,
including local features in their auxiliary loss (DRIML) similar to ST-DIM, and finally conducted
experiments using global temporal contrast of augmented observations in the Procgen (Cobbe et al.,
2019) environment. Most recently, MPR (Schwarzer et al., 2020) combined data augmentation with
multi-step, convolutional forward modeling and a similarity loss to improve DQN agents in the Atari
100k benchmark. Hafner et al. (2019; 2020); Lee et al. (2019) proposed to leverage world-modeling
in a latent-space for continuous control. A small number of model-free methods have attempted to
decouple encoder training from the RL loss as ablations, but have met reduced performance relative
to end-to-end RL (Laskin et al., 2020b; Lee et al., 2020). None have previously been shown effec-
tive in as diverse a collection of RL environments as ours (Bellemare et al., 2013; Tassa et al., 2018;
Beattie et al., 2016).

Finn et al. (2016); Ha & Schmidhuber (2018) are example works which pretrained encoder features
in advance using image reconstruction losses such as the VAE (Kingma & Welling, 2013). Devin
et al. (2018); Kipf et al. (2019) pretrained object-centric representations, the latter learning a for-
ward model by way of contrastive losses; Yan et al. (2020) introduced a similar technique to learn
encoders supporting manipulation of deformable objects by traditional control methods. MERLIN
(Wayne et al., 2018) trained a convolutional encoder and sophisticated memory module online, de-
tached from the RL agent, which learned read-only accesses to memory. It used reconstruction and
one-step latent-prediction losses and achieved high performance in DMLab-like environments with
extreme partial observability. Our loss function may benefit those settings, as it outperforms similar
reconstruction losses in our experiments. Decoupling unsupervised pretraining from downstream
tasks is common in computer vision (Hénaff et al., 2019; He et al., 2019; Chen et al., 2020) and has
favorable properties of providing task agnostic features which can be used for training smaller task-
specific networks, yielding significant gains in computational efficiency over end-to-end methods.

3 AUGMENTED TEMPORAL CONTRAST

Figure 1: Augmented Temporal Contrast—
augmented observations are processed
through a learned encoder fθ , compressor,
gφ and residual predictor hψ , and are
associated through a contrastive loss with
a positive example from k time steps later,
processed through a momentum encoder.

Our unsupervised learning task, Augmented Temporal
Contrast (ATC), requires a model to associate an obser-
vation, ot, with one from a specified, near-future time
step, ot+k. Within each training batch, we apply stochas-
tic data augmentation to the observations (Laskin et al.,
2020b), namely random shift (Kostrikov et al., 2020),
which is simple to implement and provides highly effec-
tive regularization in most cases. The augmented obser-
vations are encoded into a small latent space where a con-
trastive loss is applied. This task encourages the learned
encoder to extract meaningful elements of the structure of
the MDP from observations.

Our architecture for ATC consists of four learned com-
ponents - (i) a convolutional encoder, fθ, which pro-
cesses the anchor observation, ot, into the latent image
zt = fθ(AUG(ot)), (ii) a linear global compressor, gφ
to produce a small latent code vector ct = gφ(zt), (iii)
a residual predictor MLP, hψ , which acts as an implicit
forward model to advance the code pt = hψ(ct) + ct,
and (iv) a contrastive transformation matrix, W . To pro-
cess the positive observation, ot+k into the target code
c̄t+k = gφ̄(fθ̄(AUG(ot+k)), we use a momentum encoder
(He et al., 2019) parameterized as a slowly moving av-
erage of the weights from the learned encoder and com-
pressor layer:

θ̄ ← (1− τ)θ̄ + τθ ; φ̄← (1− τ)φ̄+ τφ . (1)

3

Under review as a conference paper at ICLR 2021

The complete architecture is shown in Figure 1. The convolutional encoder, fθ, alone is shared with
the RL agent.

We employ the InfoNCE loss (Gutmann & Hyvärinen, 2010; van den Oord et al., 2018) using log-
its computed bilinearly, as l = ptWc̄t+k. In our implementation, every anchor in the training
batch utilizes the positives corresponding to all other anchors as its negative examples. Denoting
an observation indexed from dataset O as oi, and its positive as oi+, the logits can be written as
li,j+ = piWc̄j+; our loss function in practice is:

LATC = −EO

[
log

exp li,i+∑
oj∈O exp li,j+

]
. (2)

4 EXPERIMENTS

4.1 EVALUATION ENVIRONMENTS AND ALGORITHMS

We evaluate ATC on three standard, visually diverse RL benchmarks - the DeepMind control suite
(DMControl; Tassa et al. 2018), Atari games in the Arcade Learning Environment (Bellemare et al.,
2013), and DeepMind Lab (DMLab; Beattie et al. 2016). Atari requires discrete control in arcade-
style games. DMControl is comprised of continuous control robotic locomotion and manipulation
tasks. In contrast, DMLab requries the RL agent to reason in more visually complex 3D maze
environments with partial observability.

We use ATC to enhance both on-policy and off-policy RL algorithms. For DMControl, we use RAD-
SAC (Laskin et al., 2020a; Haarnoja et al., 2018) with the augmentation of Kostrikov et al. (2020),
which randomly shifts the image in each coordinate (by up to 4 pixels), replicating edge pixel values
as necessary to restore the original image size. A difference from prior work is that we use more
downsampling in our convolutional network, by using strides (2, 2, 2, 1) instead of (2, 1, 1, 1) to
reduce the convolution output image by 25x.1 For both Atari and DMLab, we use PPO (Schulman
et al., 2017). In Atari, we use feed-forward agents, sticky actions, and no end-of-life boundaries for
RL episodes. In DMLab we used recurrent, LSTM agents receiving only a single time-step image
input, the four-layer convolution encoder from Jaderberg et al. (2019), and we tuned the entropy
bonus for each level. In the online setting, the ATC loss is trained using small replay buffer of recent
experiences.

We include all our own baselines for fair comparison and provide complete settings in an appendix.
Unless otherwise noted, each curve represents a minimum of 3 random seeds. The bold lines show
the average, and the lightly shaded area around each curve represents the maximum extent of the
best and worst seeds at each checkpoint.

4.2 ONLINE RL WITH ATC

DMControl In the online setting, we found ATC to be capable of training the encoder by itself
(i.e., with encoder fully detached from any RL gradient update), achieving essentially equal or better
scores versus end-to-end RL in all six environments we tested, Figure 2. In CARTPOLE-SWINGUP-
SPARSE, where rewards are only received once the pole reaches vertical, ATC training enabled the
agent to master the task significantly faster. The encoder is trained with one update for every RL
update to the policy, using the same batch size, except in CHEETAH-RUN, which required twice the
ATC updates.

DMLab We experimented with two kinds of levels in DMLab: EXPLORE GOAL LOCATIONS,
which requires repeatedly navigating a maze whose layout is randomized every episode, and
LASERTAG THREE OPPONENTS, which requires fast reflexes to pursue and tag enemies at a dis-
tance. We found ATC capable of training fully detached encoders while achieving equal or better
performance than end-to-end RL. Results are shown in Figure 3. Both environments exhibit spar-

1For our input image size 84 × 84, the convolution output image is 7 × 7 rather than 35 × 35. Perfor-
mance remains largely unchanged, except for a small decrease in the HALF-CHEETAH environment, but the
experiments run significantly faster and use less GPU memory.

4

Under review as a conference paper at ICLR 2021

0 2
Env Steps ×105

0

200

400

600

800

1000

Re
tu

rn

Ball-in-Cup: Catch

0 2 4
×105

0

200

400

600

800
Cartpole: Swingup

0.0 0.5 1.0
×106

0

200

400

600

800
Cartpole: Swingup Sparse

0.0 0.5 1.0
×106

0

200

400

600

Cheetah: Run

0 2 4
×105

0

200

400

600

800

1000
Walker: Walk

0.0 0.5 1.0
×106

0

50

100

150

Hopper: Hop
Encoder
Training

ATC
RL

Figure 2: Online encoder training by ATC, fully detached from RL training, performs as well as end-to-end
RL in DMControl, and better in sparse-reward environments (environment steps shown, see appendix for action
repeats). Each curve is 10 random seeds.

sity which is greater in the “large” version than the “small” version, which our algorithm addresses,
discussed next.

In EXPLORE, the goal object is rarely seen, especially early on, making its appearance difficult
to learn. We therefore introduced prioritized sampling for ATC , with priorities corresponding to
empirical absolute returns: p ∝ 1 + Rabs, where Rabs =

∑n
t=0 γ

t|rt|, to train more frequently
on more informative scenes.2 Whereas uniform-ATC performs slightly below RL, uniform-ATC
outperforms RL and nearly matches using ATC (uniform) as an auxiliary task. By considering
the encoder as a stand-alone feature extractor separate from the policy, no importance sampling
correction is required.

In LASERTAG, enemies are often seen, but the reward of tagging one is rarely achieved by the
random agent. ATC learns the relevant features anyway, boosting performance while the RL-only
agent remains at zero average score. We found that increasing the rate of UL training to do twice as
many updates3 further improved the score to match the ATC-auxiliary agent, showing flexibility to
address the representation-learning bottleneck when opponents are dispersed.

0.0 12.5 25.0
Agent Steps ×106

0

20

40

60

Re
tu

rn

Explore Large
Encoder
Training
(Explore)

ATC
ATC-pri
RL+ATC
RL

0.0 12.5 25.0
×106

0

50

100

150

Explore Small

0.0 12.5 25.0
×106

0.0

0.5

1.0

1.5

2.0

Lasertag Large

0.0 12.5 25.0
×106

0

5

10

15
Lasertag Small

Encoder
Training
(Lasertag)

ATC
ATC-2x
RL+ATC
RL

Figure 3: Online encoder training by ATC, fully detached from the RL agent, performs as well or better than
end-to-end RL in DMLab (1 agent step = 4 environment steps, the standard action repeat). Prioritized ATC
replay (EXPLORE) or increased ATC training (LASERTAG) addresses sparsities to nearly match performance of
RL with ATC as an auxiliary loss (RL+ATC). Each curve is 3 random seeds.

Atari We tested a diverse subset of eight Atari games, shown in Figure 4. We found detached-
encoder training to work as well as end-to-end RL in five games, but performance suffered in
BREAKOUT and SPACE INVADERS in particular. Using ATC as an auxiliary task, however, im-
proves performance in these games and others. We found it helpful to anneal the amount of UL
training over the course of RL in Atari (details in an appendix). Notably, we found several games,
including SPACE INVADERS, to benefit from using ATC only to initialize encoder weights, done
using an initial 100k transitions gathered with a uniform random policy. Some of our remaining
experiments provide more insights into the challenges of this domain.

4.3 ENCODER PRE-TRAINING BENCHMARKS

To benchmark the effectiveness of different UL algorithms for RL, we propose a new evaluation
methodology that is similar to how UL pre-training techniques are measured in computer vision (see

2In EXPLORE GOAL LOCATIONS, the only reward is +10, earned when reaching the goal object.
3Since the ATC batch size was 512 but the RL batch size was 1024, performing twice as many UL updates

still only consumed the same amount of encoder training data as RL. We did not fine-tune for batch size.

5

Under review as a conference paper at ICLR 2021

0.0 12.5 25.0
×106

1000

2000

alien

0.0 12.5 25.0
×106

0

100

200

300

breakout

0.0 12.5 25.0
×106

250

500

750

1000 gravitar

0.0 12.5 25.0
×106

2000

4000

6000
ms_pacman

Encoder
Training
ATC
RL+ATC
RL: ATC-init
RL

0.0 12.5 25.0
Agent Steps ×106

20

0

20

Sc
or

e

pong

0.0 12.5 25.0
×106

0
5

10
15
20 ×103 qbert

0.0 12.5 25.0
×106

1000

2000

seaquest

0.0 12.5 25.0
×106

1000

2000
space_invaders

Figure 4: Online encoder training using ATC, fully detached from the RL agent, works well in 5 of 8 games
tested (1 agent step = 4 environment steps, the standard action repeat). 6 of 8 games benefit significantly from
using ATC as an auxiliary loss or for weight initialization. Each curve is 8 random seeds.

e.g. Chen et al. (2020); Grill et al. (2020)): (i) collect a data set composed of expert demonstrations
from each environment; (ii) pre-train the CNN encoder with that data offline using UL; (iii) evaluate
by using RL to learn a control policy while keeping the encoder weights frozen. This procedure
isolates the asymptotic performance of each UL algorithm for RL. For convenience, we drew expert
demonstrations from partially-trained RL agents, and every UL algorithm trained on the same data
set for each environment. Our RL agents used the same post-encoder architectures as in the online
experiments. Further details about pre-training by each algorithm are provided in an appendix.

DMControl We compare ATC against two competing algorithms: Augmented Contrast (AC),
from CURL (Laskin et al., 2020b), which uses the same observation for the anchor and the positive,
and a VAE (Kingma & Welling, 2013), for which we found better performance by introducing a
time delay to the target observation (VAE-T). We found ATC to match or outperform the other
algorithms, in all four test environments, as shown in Figure 5. Further, ATC is the only one to
match or outperform the reference end-to-end RL across all cases.

0 1 2 3
Env Steps ×105

0

200

400

600

800

1000

Re
tu

rn

Ball-in-Cup: Catch

0 2 4
×105

0

200

400

600

800

Cartpole: Swingup

0 2 4 6
×105

0

200

400

600
Cheetah: Run

0 2 4
×105

0

200

400

600

800

1000 Walker: Walk
Encoder
Pre-Training

ATC (ours)
None (RL)
AC (CURL)
VAE-T
None (rand)

Figure 5: RL in DMControl, using encoders pre-trained on expert demonstrations using UL, with weights
frozen—across all domains, ATC outperforms prior methods and the end-to-end RL reference. Each curve is a
mininum of 4 random seeds.

0.0 12.5 25.0
Agent Steps ×106

0

50

100

150

Re
tu

rn

Explore Small

0.0 12.5 25.0
×106

0

5

10

15

Lasertag Small
Encoder
Pre-Training

ATC (ours)
CPC
PixelControl
None (RL)

Figure 6: RL in DMLab, using pre-trained en-
coders with weights frozen–in LASERTAG espe-
cially, ATC outperforms leading prior UL algo-
rithms.

DMLab We compare against both Pixel Control
(Jaderberg et al., 2017; Hessel et al., 2019) and
CPC (van den Oord et al., 2018), which have been
shown to bring strong benefits in DMLab. While
all algorithms perform similarly well in EXPLORE,
ATC performs significantly better in LASERTAG,
Figure 6. Our algorithm is simpler than Pixel Con-
trol and CPC in the sense that it uses neither actions,
deconvolution, nor recurrence.

Atari We compare against Pixel Control, VAE-T,
and a basic inverse model which predicts actions
between pairs of observations. We also compare

6

Under review as a conference paper at ICLR 2021

against Spatio-Temporal Deep InfoMax (ST-DIM), which uses temporal contrastive losses with “lo-
cal” features from an intermediate convolution layer to ensure attention to the whole screen; it was
shown to produce detailed game-state knowledge when applied to individual frames (Anand et al.,
2019). Of the four games shown in Figure 7, ATC is the only UL algorithm to match the end-to-end
RL reference in GRAVITAR and BREAKOUT, and it performs best in SPACE INVADERS.

0.0 12.5 25.0
Agent Steps×106

0
50

100
150
200
250

Sc
or

e

breakout

0.0 12.5 25.0
×106

200

400

600

800

gravitar

0.0 12.5 25.0
×106

0

5000

10000

15000

qbert

0.0 12.5 25.0
×106

500

1000

1500

space_invaders
Encoder
Pre-Training

ATC (ours)
PixelControl
VAE-T
ST-DIM
Inverse
None (RL)
None (rand)

Figure 7: RL in Atari, using pre-trained encoders with weights frozen—ATC outperforms several leading,
prior UL algorithms and exceeds the end-to-end RL reference in 3 of the 4 games tested.

4.4 MULTI-TASK ENCODERS

In the offline setting, we conducted initial explorations into the capability of ATC to learn multi-task
encoders, simply by pre-training on demonstrations from multiple environments. We evaluate the
encoder by using it, with frozen weights, in separate RL agents learning each downstream task.

DMControl Figure 8 shows our results in DMControl, where we pretrained using only the four
environments in the top row. Although the encoder was never trained on the HOPPER, PENDULUM,
nor FINGER domains, the multi-task encoder supports efficient RL in them. PENDULUM-SWINGUP
and CARTPOLE-SWINGUP-SPARSE stand out as challenging environments which benefited from
cross-domain and cross-task pre-training, respectively. The pretraining was remarkably efficient,
requiring only 20,000 updates to the encoder.

0 2
×105

0

500

1000
Ball-in-Cup: Catch

0 2 4
×105

0

250

500

750
Cartpole: Swingup

0.0 2.5 5.0
×105

0

200

400

600
Cheetah: Run

0 2 4
×105

0

500

1000 Walker: Walk

0.0 0.5 1.0
Env Steps ×106

0

250

500

750

Re
tu

rn

Cartpole: Swingup Sparse

0 1
×106

0

50

100

150
Hopper: Hop

0 1
×106

0
250
500
750

Pendulum: Swingup

0 2 4
×105

0

500

1000
Finger: Spin

Encoder
Pre-Training

4-Task
None (RL)

Figure 8: Separate RL agents using a single encoder with weights frozen after pre-training on expert demon-
strations from the four top environments. The encoder generalizes to four new environments, bottom row,
where sparse reward tasks especially benefit from the transfer. Each curve is minimum 4 random seeds.

Atari Atari proved a more challenging domain for learning multi-task encoders. Learning all
eight games together in Figure 11, in the appendix, resulted in diminished performance relative to
single-game pretraining in three of the eight. The decrease was partially alleviated by widening
the encoder with twice as many filters per layer, indicating that representation capacity is a limiting
factor. To test generalization, we conducted a seven-game pre-training experiment where we test the
encoder on the held-out game. Most games suffered diminished performance (although still perform
significantly higher than a frozen random encoder), confirming the limited extent to which visual
features transfer across these games.

7

Under review as a conference paper at ICLR 2021

0.0 12.5 25.0
Agent Steps ×106

0

50

100

150

200

250

Sc
or

e

breakout
Encoder
Pre-Training

Con: T=16
Con: T=4
Con: T=1
Sim: T=16
Sim: T=1

Figure 9: BREAKOUT benefits from
contrasting against negatives from sev-
eral neighboring time steps.

Stacked inputs UL (with shift)Random RL-trained UL (without shift)

Figure 10: An example scene from BREAKOUT, where a low-
performance UL encoder (without shift) focuses on the paddle.
Introducing random shift and sequence data makes the high-
performance UL encoder (full ATC) focus near the ball, as does
the encoder from a fully-trained, end-to-end RL agent.

4.5 ABLATIONS AND ENCODER ANALYSIS

Random Shift in ATC In offline experiments, we discovered random shift augmentations to be
helpful in all domains. To our knowledge, this is the first application of random shift to 3D visual
environments as in DMLab. In Atari, we found performance in GRAVITAR to suffer from random
shift, but reducing the probability of applying random shift to each observation from 1.0 to 0.1
alleviated the effect while still bringing benefits in other games, so we used this setting in our main
experiments. Results are shown in Figure 12 in an appendix.

Random Shift in RL In DMControl, we found the best results when using random shift during
RL, even when training with a frozen encoder. This is evidence that the augmentation regularizes
not only the representation but also the policy, which first processes the latent image into a 50-
dimensional vector. To unlock computation and memory benefits of replaying only the latent images
for the RL agent, we attempted to apply data augmentation to the latent image. But we found
the smallest possible random shifts to be too extreme. Instead, we introduce a new augmentation,
subpixel random shift, which linearly interpolates among neighboring pixels. As shown in Figure 13
in the appendix, this augmentation restores performance when applied to the latent images, allowing
a pre-trained encoder to be entirely bypassed during policy training updates.

Temporal Contrast on Sequences In BREAKOUT alone, we discovered that composing the UL
training batch of trajectory segments, rather than individual transitions, gave a significant benefit.
Treating all elements of the training batch independently provides “hard” negatives, since the en-
coder must distinguish between neighboring time steps. This setting had no effect in the other Atari
games tested, and we found equal or better performance using individual transitions in DMControl
and DMLab. Figure 9 further shows that using a similarity loss (Grill et al., 2020) does not capture
the benefit.

Encoder Analysis We analyzed the learned encoders in BREAKOUT to further study this abla-
tion effect. Similar to Zagoruyko & Komodakis (2016), we compute spatial attention maps by
mean-pooling the absolute values of the activations along the channel dimension and follow with
a 2-dimensional spatial softmax. Figure 10 shows the attention of four different encoders on the
displayed scene. The poorly performing UL encoder heavily utilizes the paddle to distinguish the
observation. The UL encoder trained with random shift and sequence data, however, focuses near
the ball, as does the fully-trained RL encoder. (The random encoder mostly highlights the bricks,
which are less relevant for control.) In an appendix, we include other example encoder analyses
from Atari and DMLab which show ATC-trained encoders attending only to key objects on the
game screen, while RL-trained encoders additionally attend to potentially distracting features such
as game score.

5 CONCLUSION

Reward-free representation learning from images provides flexibility and insights for improving
deep RL agents. We have shown a broad range of cases where our new unsupervised learning
algorithm can fully replace RL for training convolutional encoders while maintaining or improving

8

Under review as a conference paper at ICLR 2021

online performance. In a small number of environments–a few of the Atari games–including the
RL loss for encoder training still surpasses our UL-only method, leaving opportunities for further
improvements in UL for RL.

Our preliminary efforts to use actions as inputs (into the predictor MLP) or as prediction outputs
(inverse loss) with ATC did not immediately yield strong improvements. We experimented only
with random shift, but other augmentations may be useful, as well. In multi-task encoder training,
our technique avoids any need for sophisticated reward-balancing (Hessel et al., 2019), but more
advanced training methods may still help when the required features are in conflict, as in Atari, or
if they otherwise impact our loss function unequally. On the theoretical side, it may be helpful to
analyze the effects of domain shift on the policy when a detached representation is learned online.

One obvious application of our offline methodology would be in the batch RL setting, where the
agent learns from a fixed data set. Our offline experiments showed that a relatively small number
of transitions are sufficient to learn rich representations by UL, and the lower limit could be further
explored. Overall, we hope that our algorithm and experiments spur further developments leveraging
unsupervised learning for reinforcement learning.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon
Hjelm. Unsupervised state representation learning in atari. In Advances in Neural Information
Processing Systems, 2019.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig Petersen. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. arXiv:2002.05709, 2020.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural genera-
tion to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

Coline Devin, Pieter Abbeel, Trevor Darrell, and Sergey Levine. Deep object-centric representa-
tions for generalizable robot learning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 7111–7118. IEEE, 2018.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
open urban driving simulator. arXiv preprint arXiv:1711.03938, 2017.

C. Finn, Xin Yu Tan, Yan Duan, T. Darrell, S. Levine, and P. Abbeel. Deep spatial autoencoders
for visuomotor learning. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 512–519, 2016.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-bastien Grill, Florent Altché, Rémi Munos, and
Mohammad Gheshlaghi Azar. Bootstrap latent-predictive representations for multitask reinforce-
ment learning. arXiv preprint arXiv:2004.14646, 2020.

Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A Pires, and Rémi Munos.
Neural predictive belief representations. arXiv preprint arXiv:1811.06407, 2018.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In International Conference on Artificial Intelligence and
Statistics, 2010.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

10

Under review as a conference paper at ICLR 2021

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020.

Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, SM Eslami, and
Aaron van den Oord. Data-efficient image recognition with contrastive predictive coding. arXiv
preprint arXiv:1905.09272, 2019.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI Conference on Artificial Intelligence, 2018.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado van
Hasselt. Multi-task deep reinforcement learning with popart. In AAAI Conference on Artificial
Intelligence, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Sci-
ence, 364(6443):859–865, 2019.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive learning of structured world models.
arXiv preprint arXiv:1911.12247, 2019.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020a.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International Conference on Machine Learning, 2020b.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953,
2019.

Kuang-Huei Lee, Ian Fischer, Anthony Liu, Yijie Guo, Honglak Lee, John Canny, and Sergio
Guadarrama. Predictive information accelerates learning in rl. Advances in Neural Information
Processing Systems, 33, 2020.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, and R Devon Hjelm.
Deep reinforcement and infomax learning. arXiv preprint arXiv:2006.07217, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

11

Under review as a conference paper at ICLR 2021

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with momentum predictive representations. arXiv
preprint arXiv:2007.05929, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwinska, Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam Santoro, et al. Unsupervised predictive
memory in a goal-directed agent. arXiv preprint arXiv:1803.10760, 2018.

Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, and Lerrel Pinto. Learning predictive represen-
tations for deformable objects using contrastive estimation. arXiv preprint arXiv:2003.05436,
2020.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928,
2016.

12

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 ALGORITHMS

Algorithm 1
Online RL with decoupled ATC encoder (steps distinct from end-to-end RL in blue)
Require: θATC , φπ . ATC model parameters (encoder fθ thru contrast W), policy parameters

1: S ← {} . replay buffer of observations
2: θ̄ATC ← θATC . initialize momentum encoder (conv and linear only)
3: repeat
4: Sample environment and policy, through encoder:
5: for 1 to m do . a minibatch
6: a ∼ π(·|fθ(s);φ), s′ ∼ T (s, a), r ∼ R(s, a, s′)
7: S ← S ∪ {s} . store observations (delete oldest if full)
8: s← s′

9: end for
10: Update policy by given RL formula: . on- or off-policy
11: for 1 to n do . given number RL updates per minibatch
12: φπ ← φπ +RL(s, a, s′, r;φπ) . stop gradient into encoder
13: end for
14: Update encoder (and contrastive model) by ATC:
15: for 1 to p do
16: s, s+ ∼ S . sample observations: anchors and positives
17: θATC ← θATC − λATC∇θATC

LATC(s, s+) . ATC gradient update
18: θ̄ATC ← (1− τ)θ̄ATC + τθATC . update momentum encoder (conv and linear only)
19: end for
20: until converged
21: return Encoder fθ and policy πφ

A.2 ADDITIONAL FIGURES

0.0 12.5 25.0
×106

1000

2000

alien

0.0 12.5 25.0
×106

0

100

200

breakout

0.0 12.5 25.0
×106

200

250

300
frostbite

0.0 12.5 25.0
×106

200

400

600

800
gravitar

Encoder
Pre-Training

7-game
8-game
8-game wide
1-game
None (rand)

0.0 12.5 25.0
Agent Steps×106

20

0

20

Sc
or

e

pong

0.0 12.5 25.0
×106

0

5000

10000

15000
qbert

0.0 12.5 25.0
×106

1000

2000

seaquest

0.0 12.5 25.0
×106

500

1000
space_invaders

Figure 11: RL using multi-task encoders (all with weights frozen) for eight Atari games gives mixed perfor-
mance, partially improved by increased network capacity (8-game-wide). Training on 7 games and testing on
the held-out one yields diminished but non-zero performance, showing some limited feature transfer between
games.

In subpixel random shift, new pixels are a linearly weighted average of the four nearest pixels to a
randomly chosen coordinate location. We used uniformly random horizontal and vertical shifts, and
tested maximum displacements in (±) {0.1, 0.25, 0.5, 0.75, 1.0} pixels (with “edge” mode padding
±1). We found 0.5 to work well in all tested domains, restoring the performance of raw image
augmentation but eliminating convolutions entirely from the RL training updates.

13

Under review as a conference paper at ICLR 2021

0.0 12.5 25.0
Agent Steps ×106

0

100

200
Sc

or
e

breakout

0.0 12.5 25.0
×106

300

400

500

600

700
gravitar

0.0 12.5 25.0
×106

200

400

600

800

1000
space_invaders

0.0 12.5 25.0
×106

0

5

10

15

20
dmlab lasertag

Random Shift
Probability

1.0
0.1
0.0

Figure 12: Random shift augmentation helps in some Atari games and hurts in others, but applying with
probability 0.1 is a performant middle ground. DMLab benefits from random shift. (Offline pre-training.)

0 2
Env Steps ×105

0

200

400

600

800

1000

Re
tu

rn

Ball-in-Cup: Catch

0 2 4
×105

0

200

400

600

800

Cartpole: Swingup

0.0 2.5 5.0
×105

0

200

400

600
Cheetah: Run

0 2 4
×105

0

200

400

600

800

Walker: Walk
RL Random Shift
Latent ±0.5 (subpixel)
Observation ±4
Latent ±1 (pixel)
None

Figure 13: Even after pre-training encoders for DMControl using random shift, RL requires augmentation—
our subpixel augmentation acts on the (compressed) latent image, permitting its use in the replay buffer.

Stacked inputs UL (with shift)Random RL-trained UL (without shift)

Figure 14: Attention map in BREAKOUT which shows the RL-trained encoder focusing on game
score, whereas UL ATC encoder focuses properly on the paddle and ball.

Stacked inputs ATC (ours)Random RL-trainedPixel Control

Figure 15: Attention map in LASERTAG. UL encoder with pixel control focuses on the score, while
UL encoder with the proposed ATC focuses properly on the coin similar to RL-trained encoder.

Stacked inputs ATC (ours)Random RL-trainedPixel Control

Figure 16: Attention map in the LASERTAG which shows that UL encoders focus properly on the
enemy similar to RL-trained encoder.

14

Under review as a conference paper at ICLR 2021

A.3 RL SETTINGS

Table 1: DMControl, RAD-SAC Hyperparameters.

HYPERPARAMETER VALUE

OBSERVATION RENDERING (84, 84), RGB
RANDOM SHIFT PAD ±4

REPLAY BUFFER SIZE 1e5
INITIAL STEPS 1e4

STACKED FRAMES 3
ACTION REPEAT 2 (FINGER, WALKER)

8 (CARTPOLE)
4 (REST)

OPTIMIZER ADAM
(β1, β2)→ (fθ, πψ, Qφ) (.9, .999)

(β1, β2)→ (α) (.5, .999)
LEARNING RATE (fθ, πψ, Qφ) 2e−4 (CHEETAH)

1e−3 (REST)
LEARNING RATE (α) 1e−4

BATCH SIZE 512 (CHEETAH, PENDULUM)
256 (REST)

Q FUNCTION EMA τ 0.01
CRITIC TARGET UPDATE FREQ 2

CONVOLUTION FILTERS [32, 32, 32, 32]
CONVOLUTION STRIDES [2, 2, 2, 1]

CONVOLUTION FILTER SIZE 3
ENCODER EMA τ 0.05

LATENT DIMENSION 50
HIDDEN UNITS (MLP) [1024, 1024]

DISCOUNT γ .99
INITIAL TEMPERATURE 0.1

Table 2: Atari, PPO Hyperparameters.

HYPERPARAMETER VALUE

OBSERVATION RENDERING (84, 84), GREY
STACKED FRAMES 4

ACTION REPEAT 4
OPTIMIZER ADAM

LEARNING RATE 2.5e−4
PARALLEL ENVIRONMENTS 16

SAMPLING INTERVAL 128
LIKELIHOOD RATIO CLIP, ε 0.1

PPO EPOCHS 4
PPO MINIBATCHES 4

CONVOLUTION FILTERS [32, 64, 64]
CONVOLUTION FILTER SIZES [8, 4, 3]

CONVOLUTION STRIDES [4, 2, 1]
HIDDEN UNITS (MLP) [512]

DISCOUNT γ .99
GENERALIZED ADVANTAGE ESTIMATION λ 0.95

LEARNING RATE ANNEALING LINEAR
ENTROPY BONUS COEFFICIENT 0.01

EPISODIC LIVES FALSE
REPEAT ACTION PROBABILITY 0.25

REWARD CLIPPING ±1
VALUE LOSS COEFFICIENT 1.0

15

Under review as a conference paper at ICLR 2021

Table 3: DMLab, PPO Hyperparameters.

HYPERPARAMETER VALUE

OBSERVATION RENDERING (72, 96), RGB
STACKED FRAMES 1

ACTION REPEAT 4
OPTIMIZER ADAM

LEARNING RATE 2.5e−4
PARALLEL ENVIRONMENTS 16

SAMPLING INTERVAL 128
LIKELIHOOD RATIO CLIP, ε 0.1

PPO EPOCHS 1
PPO MINIBATCHES 2

CONVOLUTION FILTERS [32, 64, 64, 64]
CONVOLUTION FILTER SIZES [8, 4, 3, 3]

CONVOLUTION STRIDES [4, 2, 1, 1]
HIDDEN UNITS (LSTM) [256]

SKIP CONNECTIONS CONV 3, 4; LSTM
DISCOUNT γ .99

GENERALIZED ADVANTAGE ESTIMATION λ 0.97
LEARNING RATE ANNEALING NONE

ENTROPY BONUS COEFFICIENT 0.01 (EXPLORE)
0.0003 (LASERTAG)

VALUE LOSS COEFFICIENT 0.5

16

Under review as a conference paper at ICLR 2021

A.4 ONLINE ATC SETTINGS

Table 4: Common ATC Hyperparameters.

HYPERPARAMETER VALUE

RANDOM SHIFT PAD ±4
LEARNING RATE 1e−3

LEARNING RATE ANNEALING COSINE
TARGET UPDATE INTERVAL 1

TARGET UPDATE τ 0.01
PREDICTOR HIDDEN SIZES, hψ [512]

REPLAY BUFFER SIZE 1e5

Table 5: DMControl ATC Hyperparameters.

HYPERPARAMETER VALUE

RANDOM SHIFT PROBABILITY 1
BATCH SIZE AS RL (INDIVIDUAL OBSERVATIONS)

TEMPORAL SHIFT, k 1
MIN AGENT STEPS TO UL 1e4
MIN AGENT STEPS TO RL 1e4

UL UPDATE SCHEDULE AS RL
(2X CHEETAH)

LATENT SIZE 128

Table 6: Atari ATC Hyperparameters.

HYPERPARAMETER VALUE

RANDOM SHIFT PROBABILITY 0.1
BATCH SIZE 512 (32 TRAJECTORIES OF 16 TIME STEPS)

TEMPORAL SHIFT, k 3
MIN AGENT STEPS TO UL 5e4
MIN AGENT STEPS TO RL 1e5

UL UPDATE SCHEDULE ANNEALED QUADRATICALLY FROM 6 PER SAMPLER ITERATION
(1e4 ONCE AT 1e5 STEPS FOR WEIGHT INITIALIZATION)

LATENT SIZE 256

Table 7: DMLab ATC Hyperparameters.

HYPERPARAMETER VALUE

RANDOM SHIFT PROBABILITY 1
BATCH SIZE 512 (INDIVIDUAL OBSERVATIONS)

TEMPORAL SHIFT, k 3
MIN AGENT STEPS TO UL 5e4
MIN AGENT STEPS TO RL 1e5

UL UPDATE SCHEDULE 2 PER SAMPLER ITERATION
LATENT SIZE 256

17

Under review as a conference paper at ICLR 2021

A.5 OFFLINE PRE-TRAINING DETAILS

We conducted coarse hyperparameter sweeps to tune each competing UL algorithm. In all cases, the
best setting is the one shown in our comparisons.

When our VAEs include a time difference between input and reconstruction observations, we include
one hidden layer with action additionally input between the encoder and decoder. We tried both 1.0
and 0.1 KL-divergence weight in the VAE loss, and found 0.1 to perform better in both DMControl
and Atari.

DMControl For the VAE, we experimented with 0 and 1 time step difference between input and
reconstruction target observations and training for either 1e4 or 5e4 updates. The best settings were
1-step temporal, and 5e4 updates, with batch size 128. ATC used 1-step temporal, 5e4 updates
(although this can be significantly decreased), and batch size 256 (including CHEETAH). The pre-
training data set consisted of the first 5e4 transitions from a RAD-SAC agent learning each task,
including 5e3 random actions. Within this span, CARTPOLE and BALL IN CUP learned completely,
but WALKER and CHEETAH reached average returns of 514 and 630, respectively (collected without
the compressive convolution).

DMLab For Pixel Control, we used the settings from Hessel et al. (2019) (see the appendix
therein), except we used only empirical returns, computed offline (without bootstrapping). For CPC,
we tried training batch shapes, batch× time in (64, 8), (32, 16), (16, 32), and found the setting with
rollouts of length 16 to be best. We contrasted all elements of the batch against each other, rather
than only forward constrasts. In all cases we also used 16 steps to warmup the LSTM. For all al-
gorithms we tried learning rates 3e−4 and 1e−3 and both 5e4 and 1.5e5 updates. For ATC and
CPC, the lower learning rate and higher number of updates helped in LASERTAG especially. The
pretraining data was 125e3 samples from partially trained RL agents receiving average returns of
127 and 6 in EXPLORE GOAL LOCATIONS SMALL and LASERTAG THREE OPPONENTS SMALL,
respectively.

Atari For the VAE, we experimented with 0, 1, and 3 time step difference between input and
reconstruction target, and found 3 to work best. For ST-DIM we experimented with 1, 3, and 4
time steps differences, and batch sizes from 64 to 256, learning rates 1e−3 and 5e−4. Likewise,
3-step delay worked best. For the inverse model, we tried 1- and 3-step predictions, with 1-step
working better overall, and found random shift augmentation to help. For pixel control, we used
the settings in Jaderberg et al. (2017), again with full empirical returns. We ran each algorithm for
up to 1e5 updates, although final ATC results used 5e4 updates. We ran each RL agent with and
without observation normalization on the latent image and observed no difference in performance.
Pretraining data was 125e3 samples sourced from the replay buffer of DQN agents trained for 15e6
steps with epsilon-greedy ε = 0.1. Evaluation scores were:

Table 8: Atari Pre-Training Data Source Agents.

GAME EVALUATION SCORE

ALIEN 1, 800
BREAKOUT 279
FROSTBITE 1, 400
GRAVITAR 390

PONG 18
QBERT 8, 800

SEAQUEST 11, 000
SPACE INVADERS 1, 200

18

	Introduction
	Related Work
	Augmented Temporal Contrast
	Experiments
	Evaluation Environments and Algorithms
	Online RL with ATC
	Encoder Pre-Training Benchmarks
	Multi-Task Encoders
	Ablations and Encoder Analysis

	Conclusion
	Appendix
	Algorithms
	Additional Figures
	RL Settings
	Online ATC Settings
	Offline Pre-Training Details

