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Abstract

In-context learning is a recent paradigm in nat-001
ural language understanding, where a large pre-002
trained language model (LM) observes a test in-003
stance and a few training examples as its input,004
and directly decodes the output without any up-005
date to its parameters. However, performance006
has been shown to strongly depend on the se-007
lected training examples (termed prompts). In008
this work, we propose an efficient method for009
retrieving prompts for in-context learning us-010
ing annotated data and an LM. Given an input-011
output pair, we estimate the probability of the012
output given the input and a candidate train-013
ing example as the prompt, and label training014
examples as positive or negative based on this015
probability. We then train an efficient dense016
retriever from this data, which is used to re-017
trieve training examples as prompts at test time.018
We evaluate our approach on three sequence-to-019
sequence tasks where language utterances are020
mapped to meaning representations, and find021
that it substantially outperforms prior work and022
multiple baselines across the board.023

1 Introduction024

The striking language skills and world knowledge025

embedded in large pre-trained language models026

(LMs) (Devlin et al., 2019; Petroni et al., 2019; Raf-027

fel et al., 2020; Brown et al., 2020) have recently028

led to in-context learning, a new paradigm in natu-029

ral language understanding. Under this paradigm,030

a language model is given a prompt, which typi-031

cally contains a few training examples, as well as a032

test instance as input, and generates the output for033

the test instance directly, without any update to its034

parameters. This approach was first introduced in035

GPT-3 (Brown et al., 2020), but has quickly spread036

to other LMs (Lieber et al., 2021; Du et al., 2021;037

Rae et al., 2021).038

An attractive property of in-context learning is039

that it provides a single model for multiple lan-040

guage understanding tasks. However, Liu et al.041

Retriever

Retriever Index

What is the longest river in 
the smallest state in the usa?

1) states
2) size of #1
3) #1 where #2 is the lowest
4) rivers of #3
5) how long are #4
6) #4 where #5 is the highest

Which states border the 
shortest river in the usa?

1) the usa
2) rivers of #1
3) how long are #2
4) #2 where #3 is the lowest
5) border states of #4

Which states border the
 longest river in the usa?

1) the usa
2) rivers of #1
3) how long are #2
4) #2 where #3 is the highest
5) border states of #4

1) rivers
2) #1 in the usa 
3) lengths of #2
4) #2 where #3 is longest
5) length of #4

Inference LM

What is the length of the 
longest river in the usa?

Similar examples

Question

Figure 1: An overview of prompt retrieval: Given a
question from BREAK, one retrieves similar training
examples from an index of the training set. The question
and training examples (the prompt) are passed to an
inference LM that decodes the output.

(2021a) showed that downstream performance can 042

vary widely depending on the choice of in-context 043

examples. This has sparked interest in prompt re- 044

trieval (see Fig. 1), where given a test instance, 045

training examples are chosen for the prompt based 046

on some similarity metric. Recent work has either 047

used off-the-shelf unsupervised similarity metrics, 048

or trained a prompt retriever to select examples 049

based on surface similarity (Das et al., 2021). 050

In this work, we suggest to use language mod- 051

els themselves to label examples that can serve as 052

good prompts, and train a prompt retriever from 053

this signal. To train the retriever (see Fig. 2), we 054

assume access to a training set of input-output pairs 055

and to a scoring LM, i.e., a language model that 056

will be used to score prompts. For each training 057

example (x, y), we go over other candidate train- 058

ing examples, and estimate the probability, accord- 059

ing to the scoring LM, of y conditioned on x and 060

the candidate prompt. We label training examples 061

that lead to high probability as positive and low 062

probability as negative and train a prompt retriever 063
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Figure 2: An overview of our approach for training EPR. Given a training example, we use an unsupervised retriever
Ru to obtain a set of candidates. We then pass the candidates to a scoring LM and label the top-k and the bottom-k
as positive and negative examples, respectively. Last, we use this training data to train a dense retriever.

from this data using contrastive learning. We ar-064

gue that using an LM for labeling examples is a065

better proxy for training a retriever compared to066

previously-proposed surface similarity heuristics.067

Importantly, when creating the training data, we068

have access to the gold label y, which can be used069

to obtain a high-quality set of candidate prompts.070

This leads to good positive examples and hard neg-071

ative examples, which are beneficial for training072

with a contrastive objective.073

Using a scoring LM to train an efficient retriever074

for a potentially different test time inference LM is075

beneficial in two scenarios. First, when the scoring076

LM is smaller than the inference LM and serves as077

a proxy for it. This results in cheap and efficient078

data generation for the retriever, accessible to a079

wide range of researchers. Second, our approach080

can be used even when the scoring and inference081

LMs are identical (e.g., both are GPT-3). This is082

beneficial when we do not have access to model083

parameters and can only use it as a service, an084

increasingly popular paradigm. In this case, we use085

the LM to train a light-weight retriever that is only086

tasked with learning a similarity function. More087

generally, given that the scale of LMs is likely to088

keep increasing in the foreseeable future, one can089

view our approach for Efficient Prompt Retrieval,090

or EPR, as a method for interfacing and learning to091

interact with large LMs.092

We empirically test EPR on three structured093

sequence-to-sequence tasks, where input natural094

language utterances are mapped to a meaning rep-095

resentation: MTOP (Li et al., 2021) and SM-096

CALFLOW(Andreas et al., 2020), which focus on097

task-oriented dialogue, and BREAK (Wolfson et al.,098

2020), a benchmark for mapping questions to a 099

language-based meaning representation. We ob- 100

serve that EPR substantially improves performance 101

compared to prior work on prompt retrieval. When 102

the scoring LM and inference LM are identical 103

(using GPT-NEO (Black et al., 2021)), perfor- 104

mance compared to the best baseline improves 105

from 26% to 31.9% on BREAK, from 57% to 106

64.2% on MTOP, and from 51.4% to 54.3% on 107

SMCALFLOW. When using GPT-NEO as a proxy 108

for larger LMs (GPT-J, GPT-3, and CODEX), we 109

observe similar gains, where performance improves 110

substantially in all cases. 111

To conclude, we propose an approach for retriev- 112

ing training examples for in-context learning in 113

large language models, and show it substantially 114

outperforms prior methods. Given recent develop- 115

ments in scaling LMs, designing efficient methods 116

for interacting with LMs is an important direction 117

for future research. 118

2 Background: Prompt Retrieval 119

Problem setup Given a training set D = 120

{(xi, yi)}ni=1 of input-output sequences, and a 121

test example xtest, our goal is to train a retriever, 122

R(xtest,D), that will retrieve a subset of training 123

examples P = {(xj , yj)}mj=1 ⊂ D, where m ≪ n. 124

We succinctly refer to P as the prompt.1 125

Given an inference LM, g, a good prompt should 126

lead to the target output sequence when the test 127

example xtest is concatenated to the prompt P and 128

passed as a prefix to g. Specifically, decoding from 129

1Prompt often refers to a natural language template filled
by an input example (Liu et al., 2021b), but here it denotes the
sequence of training examples provided as input to the LM.
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the LM g([P;xtest]) should yield ytest. In this work,130

we focus on structured tasks, such as semantic pars-131

ing, where x is a natural language utterance and y132

is a meaning representation for that utterance.133

Prior work Liu et al. (2021a) investigated the134

effect of different prompts on the performance135

of GPT-3 and demonstrated that the choice of in-136

context examples strongly affects downstream per-137

formance. They used an unsupervised sentence138

encoder to encode training examples, and retrieved139

for every test instance its nearest neighbors.140

Das et al. (2021) trained a supervised prompt141

retriever for knowledge-base question answering.142

The retriever was trained with supervision that is143

tailored for knowledge-base queries, and relies on144

surface similarity between formal queries. Con-145

versely, our approach takes advantage of the gener-146

ative LM itself and is thus more general.147

Shin et al. (2021) used GPT-3 to select examples148

for the prompt for few-shot semantic parsing. How-149

ever, rather than training a retriever, they randomly150

sample a large set of utterance-program pairs from151

the training set, and choose those that are similar152

to the target instance question according to GPT-3.153

This results in an expensive inference procedure,154

where GPT-3 is run hundreds of times for each test155

instance, unlike our approach, which is based on a156

light-weight sub-linear retriever.157

3 Efficient Prompt Retriever158

We now describe our method for training EPR,159

an efficient prompt retriever for in-context learn-160

ing. We first describe how to generate labeled data161

(§3.1), and then how to use the training data for162

training and inference (§3.2). Fig. 2 provides an163

overview of the training procedure.164

3.1 Generating the Training Data165

Our approach relies on finding which training ex-166

amples can serve as good prompts for other training167

examples. Scoring all pairs of training examples is168

quadratic in |D|, and thus prohibitive. Hence, we169

present a method for choosing a set of candidate ex-170

amples Ē ⊂ D, from which we will choose positive171

and negative examples for training. Importantly,172

since we are not at test time and are only generating173

data for training, we can use the target sequence174

y to retrieve a good set of candidates. This can be175

approached using a simple retrieval method, given176

that our goal is to retrieve examples that are similar177

to the input in terms of their output sequence, y.178

To obtain a high-quality candidate set of train- 179

ing examples, we take advantage of an unsuper- 180

vised retriever, Ē = Ru((x, y),D). For the choice 181

of the unsupervised retriever, we experiment with 182

BM25 (Robertson and Zaragoza, 2009), a sparse 183

retriever that relies on surface text similarity, and 184

SBERT (Reimers and Gurevych, 2019), which is 185

based on dense sentence encoding. For both, we 186

experimented with passing the retriever the training 187

pair (x, y) or the target sequence y only, and found 188

that using y leads to slightly higher performance. 189

Scoring the candidate set Once we retrieve the 190

set of candidates Ē = {ē1, · · · , ēL} for a training 191

example (x, y),2 we score each candidate ēl ∈ Ē 192

independently with a scoring LM, ĝ, which serves 193

as a proxy for the inference LM, g. Specifically, 194

the score for a candidate prompt is 195

s(ēl) = Probĝ(y | ēl, x), 196

which is the probability under the LM, ĝ, of the out- 197

put sequence conditioned on the candidate prompt 198

and input sequence. This indicates how helpful this 199

candidate is for decoding the target (independent 200

of all other candidates). We argue this score is a 201

better proxy for the utility of a training example at 202

inference time compared to prior approaches. 203

We apply this scoring function to all training ex- 204

amples, and define for each training example a set 205

of positive examples Epos, which includes the top-k 206

candidates in Ē according to s(ēl), and a set of neg- 207

ative examples Eneg, which includes the bottom-k 208

candidates in Ē according to s(ēl). This should lead 209

to relevant positive examples, assuming that the set 210

of candidates, Ē includes good prompt candidates 211

and hard negatives, since all candidates have high 212

similarity with (x, y) according to Ru(y,D). With 213

positive and negative examples at our disposal, we 214

can now apply contrastive learning, which we de- 215

scribe next. 216

3.2 Training and Inference 217

Training Our training procedure proceeds ex- 218

actly like the contrastive learning procedure from 219

DPR (Karpukhin et al., 2020). This procedure re- 220

sults in an input encoder EX(·), which receives the 221

sequence of input tokens, x, and a prompt encoder 222

EP (·), which receives a candidate prompt, namely, 223

a concatenation of the tokens in an input-output 224

pair. Both encoders are initialized with BERT-base 225

2We omit the dependence of Ē on (x, y) for simplicity.
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(Devlin et al., 2019), and the output vector repre-226

sentation is given by the CLS token, as usual. The227

goal of training is to learn a similarity metric such228

that given a test example xtest, it will be similar to229

training examples that lead to decoding of ytest.230

Our training instances are of the form231

⟨xi, e+i , e
−
i,1, . . . e

−
i,2B−1⟩. Where the positive ex-232

ample e+i is sampled from the set E(i)
pos, and our233

negative examples consist of one hard negative ex-234

ample sampled from E(i)
neg, B− 1 positive examples235

from the other instances in the same mini-batch,236

and the B − 1 hard negatives from those instances.237

We define the similarity score between an input238

and an input-output pair to be the inner product239

sim(x, e) = EX(x)⊤EP (e). We can now define240

the typical contrastive learning objective and mini-241

mize for each example the negative log likelihood242

of the positive example:243

L(xi, e
+
i , e

−
i,1, . . . e

−
i,2B−1) (1)244

= − log
esim(xi,e

+
i )

esim(xi,e
+
i ) +

∑2B−1
j=1 esim(xi,e

−
i,j)

.245

An advantage of this approach is that for batch size246

B the effective batch size is of order B2, with the247

in-batch negatives trick (Henderson et al., 2017).248

Inference After training the input encoder and249

prompt encoder, we encode the entire set of train-250

ing examples with EP (·) in a pre-processing step251

using FAISS (Johnson et al., 2017). At test time,252

given an input sequence, xtest, we compute its en-253

coding EX(xtest), and then use maximum inner-254

product search over the training data to find the L255

most similar training examples, sorted by their in-256

ner product (from high to low): P = (e1, . . . , eL).257

The final prompt P ′ is determined by C, the max-258

imal context size supported by the inference LM,259

g. Specifically, L′ ≤ L is the largest L′ such260 ∑L′

i=1 |ei| + |xtest| + |y′| ≤ C, where |y′| is the261

desired maximal length of the generated output. Fi-262

nally, we return the output of greedy decoding on263

g([eL′ ; eL′−1; . . . ; e1;xtest]).264

We note that while at training time we score each265

training example independently, at test time the266

language model observes a prompt, i.e., a sequence267

of examples. We leave modeling the dependence268

between different training examples to future work.269

4 Experimental Results270

We now compare EPR to a wide range of unsu-271

pervised and supervised baselines, both when the272

scoring LM, ĝ, is smaller than the inference LM, g, 273

and when they are identical. 274

4.1 Datasets 275

We focus on tasks that map utterances to meaning 276

representations, where in-context examples can be 277

used to learn the mapping from inputs to outputs. 278

Examples from each dataset and the number of 279

examples are in Table 1. 280

• BREAK (Wolfson et al., 2020): A dataset map- 281

ping complex natural language questions into a 282

language-based meaning representation, where 283

a question is decomposed into an ordered list 284

of atomic steps. We use the low-level BREAK 285

subset, containing 44K/7K/8K examples in its 286

training/development/test sets. 287

• MTOP (Li et al., 2021): A semantic parsing 288

dataset, focused on task-oriented dialogue, where 289

commands are mapped to complex nested queries 290

across 11 domains. Similar to past work (Pasu- 291

pat et al., 2021), we use the English subset of 292

MTOP, containing 16K/2K/4K examples in its 293

training/development/test sets. 294

• SMCALFLOW (Andreas et al., 2020): A large 295

English-language task-oriented dataset that cov- 296

ers tasks such as calendar, weather, places, and 297

people. The meaning representation is a dataflow 298

program, which includes API calls, function com- 299

position and complex constraints. SMCALFLOW 300

includes 15K development set examples and 301

134K training examples, from which we sample 302

a random set of 44K examples for training. 303

4.2 Baselines and Oracles 304

We consider the following unsupervised baselines, 305

which are applied at test time only. 306

• RANDOM: we randomly sample examples from 307

the training set D. 308

• SBERT: We use SentenceTransformers, 309

a library providing BERT-based sen- 310

tence embeddings.3 Specifically, we use 311

paraphrase-mpnet-base-v2, a 110M 312

parameter model to encode the test utterance 313

xtest and retrieve the examples with the most 314

similar utterances as in-context examples. 315

• BM25: We use the classical sparse retrieval 316

method BM25 (Robertson and Zaragoza, 2009), 317

which is an extension of TF-IDF, to retrieve for 318

3https://www.sbert.net/index.html.
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Dataset Size Utterance Meaning Representation

BREAK 60K There are more birds in the image on
the right than in the image on the left.

1) return right image;
2) return birds in #1;
3) return number of #2;
4) return left image;
5) return birds in #4
6) return number of #5;
7) return if #3 is higher than #6;

MTOP 22K call Zoey’s wife. [IN:CREATE_CALL =
[SL:CONTACT = [IN:GET_CONTACT =
[SL:CONTACT_RELATED = Zoey]
[SL:TYPE_RELATION = wife]]]]

SMCALFLOW 148K Can you create me a new meeting
on thursday morning?

(Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper
(Event.start_?
(DateTimeConstraint (Morning)
(NextDOW (Thursday)))))))

Table 1: Examples from each of the datasets we evaluate on.

each test utterance xtest the training examples319

with the most similar utterance.320

• BRUTEFORCE: We apply the prompt selection321

method for few-shot semantic parsing from Shin322

et al. (2021). Given a test example xtest, we sam-323

ple 200 training examples. For each training324

example (xi, yi), compute Probg(xtest | xi), and325

use the highest scoring examples for the prompt.326

Similar to us, this approach uses the inference327

LM to choose prompts. However, it does so at328

test time, which results in slow inference.329

Next, we describe baselines that use the train-330

ing set, D, to train a prompt retriever. All super-331

vised methods share the following template. First,332

a candidate set Ē of L = 50 examples is retrieved333

with the unsupervised retriever Ru(y,D). We use334

BM25 as an unsupervised retriever, since it outper-335

formed SBERT (see §4.4). We then score each can-336

didate prompt ēl ∈ Ē with some scoring function,337

and label the top-k prompts as positive examples338

and the bottom-k as negative examples (k = 5).339

Different supervised methods only differ in the340

scoring function itself.341

• DR-BM25: Here, we use the original BM25342

scores for labeling positive and negative exam-343

ples and training a dense retriever.344

• CASE-BASED REASONING (CBR): We adapt345

the scoring function from Das et al. (2021),346

which focused on knowledge-base question an-347

swering. They define the weight for a pair of log-348

ical forms to be the F1 score between the two sets349

of relations appearing in those logical forms, and350

use this weight to softly label their data. Since351

in our setting we do not assume logical forms,352

we define the score between two output sequence353

yi and yj to be the F1 between the two sets of354

tokens in yi and yj , omitting stop words. 355

• EFFICIENT PROMPT RETRIEVAL (EPR): Our 356

full approach from §3. 357

Last, we also consider two oracle models. 358

• BM25-ORACLE: We score test examples 359

with BM25 using the gold output sequence 360

RBM25(ytest,D). This provides an upper-bound 361

on what can be learned by DR-BM25. EPR can 362

potentially outperform this oracle, since its train- 363

ing signal goes beyond surface text similarity. 364

• LM-ORACLE: We use the procedure for labeling 365

training data at test time. Given a test example 366

(xtest, ytest), we first retrieve L candidate training 367

examples with RBM25(ytest,D), we then sort the 368

candidates with the scoring LM ĝ, estimating the 369

probability of ytest given xtest and the candidate 370

prompt. This provides an upper bound for EPR, 371

since EPR is trained to emulate this behaviour. 372

4.3 Experimental Details 373

Language models In this work, we only train 374

a dense retriever, but use scoring and inference 375

LMs. For our scoring LM, ĝ, we use GPT-NEO 376

(Black et al., 2021), a 2.7B-parameter LM trained 377

on The Pile (Gao et al., 2021), an 825 GB English 378

text corpus, constructed from a wide range of high- 379

quality resources. 380

In addition, we consider the following infer- 381

ence LMs: (a) GPT-J (Wang and Komatsuzaki, 382

2021): a 6B-parameter LM, also trained on The 383

Pile. The advantage in this setup, is that GPT-J 384

was trained on the same corpus as GPT-NEO. (b) 385

GPT-3 (Brown et al., 2020): A 175B-parameter 386

model, trained mostly on a filtered subset of com- 387

mon crawl. (c) CODEX (Chen et al., 2021): A 388

GPT-3 175B-parameter model finedtuned on code 389
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Model BREAK MTOP SMCALFLOW

Unsuper.
RANDOM 1.7 7.3 8.9
SBERT 21.6 48.7 43.6
BM25 26.0 52.9 46.1
BRUTEFORCE 7.7 18.1 11.1

Super.
DR-BM25 23.6 50.2 43.1
CBR 25.7 57.0 51.4
EPR (ours) 31.9 64.2 54.3

Oracle BM25-ORACLE 32.3 58.9 47.3
LM-ORACLE 43.1 71.6 73.7

Table 2: Development results when GPT-NEO is the
scoring and inference LM. Numbers for BREAK are
LF-EM, and for MTOP and SMCALFLOW are EM.

Model BREAK MTOP

Unsuper. BM25 17.6 49.0

Super. CBR 18.4 57.5
EPR (ours) 23.9 64.4

Table 3: Test results where GPT-NEO is the scoring
and inference LM. Numbers for BREAK are NEM, the
official metric, and for MTOP are EM.

from GitHub. Since our tasks involve mapping390

from utterances to programs or meaning represen-391

tations, CODEX might potentially perform well at392

in-context learning.393

For all LMs, we use a maximum context size of394

C =2,048 tokens.395

Evaluation On BREAK, we evaluate perfor-396

mance on the development set with LF-EM (Has-397

son and Berant, 2021), which is a better metric398

compared to Normalized Exact Match (NEM), the399

official metric, as it measures whether two mean-400

ing representations are semantically equivalent. On401

the test set, we use NEM. On MTOP and SM-402

CALFLOW, we evaluate with Exact Match (EM),403

i.e., whether the string output by the inference LM404

is identical to the reference string.405

We evaluate EPR in two settings: (a) LM-as-a-406

service, and (b) LM-as-a-proxy. In the first set-407

ting, we use GPT-NEO as both the scoring LM408

and inference LM. In this setting, we evaluate on409

the full development sets of BREAK, MTOP, and410

SMCALFLOW. In the latter setting, as we access411

GPT-3 and CODEX through a paid API, we sample412

a random subset of 1,000 development examples413

from each dataset and evaluate each model once on414

this subset.415

4.4 Results416

LM-as-a-service Table 2 reports results where417

the scoring and inference LMs are identical.418

EPR substantially outperforms all other baselines.419

Model One-shot Full-context

Unsuper. RANDOM 1.1 1.7
BM25 15.2 26.0

Super.
DR-BM25 14.1 23.6
CBR 14.5 25.7
EPR 23.0 31.9

Oracle
BM25-ORACLE 18.0 32.3
LM-ORACLE 33.3 43.1
ANYCORRECT-ORACLE 53.6 -

Table 4: Development results on BREAK with GPT-
NEO in the one-shot setting. Numbers are LF-EM. Full-
context is the corresponding numbers from Table 2.

Specifically, when comparing to the best baseline, 420

it improves performance from 26.0 to 31.9 on 421

BREAK, from 57.0 to 64.2 on MTOP, and from 422

51.4 to 54.3 on SMCALFLOW. This shows that 423

using the LM itself to label examples is an effective 424

approach for obtaining a strong prompt retriever. 425

Table 3 shows test results on BREAK and MTOP 426

corroborating that EPR substantially improves per- 427

formance compared to BM25 and CBR. 428

For the unsupervised methods, the RANDOM 429

baseline shows that random sampling of training 430

examples leads to poor performance. BM25 out- 431

performs SBERT for prompt retrieval, and con- 432

sequently we use BM25 in all of our supervised 433

approaches to retrieve the set of candidates, Ē . Last, 434

BRUTEFORCE performs worse than BM25. We as- 435

sume this is since the training sets are large (∼14- 436

120K examples), and sampling 200 examples does 437

not cover examples that are useful for GPT-NEO. 438

Interestingly, EPR outperforms BM25-ORACLE 439

on MTOP and SMCALFLOW and is comparable on 440

BREAK. This is surprising since BM25-ORACLE 441

has access to the output sequence ytest at test time, 442

illustrating that the signal provided by the scoring 443

LM for training goes beyond surface text similarity. 444

The performance of LM-ORACLE is substantially 445

higher than EPR, showing that the supervision pro- 446

vided by the scoring LM is strong, and training a 447

better retriever from this signal can substantially 448

enhance performance. 449

We further evaluate our models in the one-shot 450

setup, i.e., when the prompt given to the inference 451

LM includes the highest scoring example only. In 452

this setup, the inference LM is applied in the same 453

setting as when we generate labeled data, where 454

we go over each prompt candidate independently. 455

Since train and test time are now closer, we can ex- 456

pect the advantage of EPR to be more pronounced. 457

Table 4 shows the results. Indeed, EPR out- 458

performs the best baseline by 8.5%, and BM25- 459
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BREAK MTOP SMCALFLOW

Method RANDOM BM25 CBR EPR RANDOM BM25 CBR EPR RANDOM BM25 CBR EPR

GPT-3 4.2 20.1 21.3 25.3 7.6 52.5 54.8 62.6 5.8 35.3 41.6 46.5
CODEX 8.9 24.5 24.2 29.5 10.8 60.6 59.4 66.1 7.2 45.1 48.7 50.3
GPT-J 3.3 26.7 26.7 31.5 8.8 56.6 58.0 65.4 10.6 50.4 50.9 57.4

GPT-NEO 1.0 22.8 25.8 29.9 7.6 52.8 55.4 63.6 8.0 46.1 50.1 53.5

Table 5: Results on a random sample of 1,000 examples from the development set when using GPT-Neo as a scoring
LM across different inference LMs and datasets.

EPR CBR
Test

Example
Utterance Give the code of the airport with the

least flights.
Meaning

Representation 1) flights of #1
2) number of #2 for each #1
3) #1 where #3 is lowest
4) code of #4

Top-1 Utterance What is the code of the city with the
most students?

What destination has the fewest number
of flights?

Meaning
Representation 1) cities

2) students in #1
3) number of #2 for each #1
4) #1 where #3 is highest
5) code of #4

1) destinations
2) flights of #1
3) number of #2 for each #1
4) #1 where #3 is lowest

Top-2 Utterance Return the code of the city that has the
most students.

Which destination has least number of
flights?

Meaning
Representation 1) cities

2) students in #1
3) number of #2 for each #1
4) #1 where #3 is highest
5) code of #4

1) destinations
2) flights to #1
3) number of #2 for each #1
4) #1 where #3 is lowest

Top-3 Utterance Find the count and code of the job has
most employees.

What is the number of airports per
country, ordered from most to least?

Meaning
Representation 1) jobs

2) employees of #1
3) number of #2 for each #1
4) #1 where #3 is highest
5) employees of #4
6) number of #5
7) code of #4
8) #6 , #7

1) countries
2) airports in #1
3) number of #2 for each #1
4) #3 sorted by most to least

Table 6: An example from BREAK development set where EPR is correct and CBR is incorrect along with the top-3
training examples retrieved from each retriever.

ORACLE by 5%. In addition, we examine460

ANYCORRECT-ORACLE, which tests whether any461

of the candidates returned by BM25 leads to the462

correct output. ANYCORRECT-ORACLE reaches463

53.6%, 20 points above LM-ORACLE. This shows464

the high quality of candidates provided by BM25465

(applied on the y), as one can reach more than 50%466

LF-EM with just a single prompt. Moreover, it467

hints that a better scoring function can potentially468

further improve performance.469

LM-as-a-proxy Table 5 shows results when the470

scoring LM is GPT-NEO and the inference LM is a471

larger LM. First, the trends are similar to the LM-as-472

a-service setup, i.e., EPR substantially outperforms473

prior baselines, including our best unsupervised474

baseline, BM25, and the best supervised baseline,475

CBR, by 2-8 points on all datasets and all pre-476

trained models. Thus, GPT-NEO serves as a good477

proxy for choosing training examples. 478

To further validate this finding, we evaluate the 479

performance of GPT-J on BREAK with GPT-NEO 480

as the scoring LM compared to using GPT-J it- 481

self as the scoring LM. We find performance im- 482

proves slightly from 31.5 to 33.6. Analogously, 483

when using CODEX as the scoring LM and infer- 484

ence LM performance remains roughly the same: 485

29.5→29.3. Thus, using a smaller LM (GPT-NEO) 486

is an effective strategy for training a retriever that 487

will be applied on other LMs. Zooming in on dif- 488

ferent inference LMs, GPT-J performs slightly bet- 489

ter than GPT-NEO across the board, since it was 490

trained on the same data and using the same pro- 491

cedure as GPT-NEO. CODEX outperforms GPT- 492

3, which can be explained by the fact that it was 493

trained on code, and our datasets involve map- 494

ping to programs or meaning representations. Sur- 495
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Figure 3: A t-SNE projection and clustering of the rep-
resentations learned by EPR for the training examples
in BREAK. An interactive version displaying individual
examples is available here.

prisingly, GPT-J outperforms CODEX (except on496

MTOP) and GPT-3 despite being 30x smaller. A497

possible This can perhaps be explained by the fact498

that GPT-J was trained on a different dataset (The499

Pile (Gao et al., 2021)).500

Analysis Table 6 shows an example from BREAK501

where EPR decodes the correct output, while CBR502

does not. All training examples retrieved by EPR503

perform an argmax (argmin in the original utter-504

ance), and return in the final step “a code”, while505

the third example retrieved by CBR does not per-506

form an argmax or argmin, and do not involve “a507

code”. We provide additional examples in App. A.508

Figure 3 shows a t-SNE (Hinton and Roweis,509

2002) projection of the embeddings learned by510

EPR for the training examples of BREAK, with511

a link to an interactive version, where we applied512

the OPTICS (Schubert and Gertz, 2018) cluster-513

ing algorithm. Examining clusters shows that EPR514

captures both lexical and structure similarity. Ex-515

amples for clusters are also available in App. A.516

5 Related Work517

Retrieval Research on training dense retrievers518

has skyrocketed recently, propelled by interest519

in open-domain question answering (Chen et al.,520

2017; Lee et al., 2019; Karpukhin et al., 2020; Guu521

et al., 2020; Khattab and Zaharia, 2020; Qu et al.,522

2021). Work on retrieval-based methods has also523

spread more widely to other knowledge-intensive524

tasks (Lewis et al., 2020), e.g., fact verification525

(Samarinas et al., 2021).526

Similar to us, Pasupat et al. (2021) proposed to527

use retrieval in semantic parsing. However, they fo-528

cus on controlling the output generated by a model.529

Retrieval methods have also been successfully used 530

in language modeling (Khandelwal et al., 2020; 531

Borgeaud et al., 2021; Rae et al., 2021) and ma- 532

chine translation (Khandelwal et al., 2021). 533

Prompts Developing methods for interacting 534

with LMs and extracting desired behaviours has 535

attracted considerable attention, under the umbrella 536

term prompting. In this work, prompts are a set of 537

in-context training examples, but substantial effort 538

has also been devoted to casting natural language 539

tasks as language modeling by phrasing the tar- 540

get task in natural language (see survey in (Liu 541

et al., 2021b)). Such approaches include prompt 542

engineering through manual patterns (Petroni et al., 543

2019; Schick and Schütze, 2021), and methods 544

for extracting either hard (Shin et al., 2020; Haviv 545

et al., 2021) or soft (Li and Liang, 2021; Zhong 546

et al., 2021; Qin and Eisner, 2021) prompts auto- 547

matically. 548

Prompt retrieval for supervised models In par- 549

allel to this work, adding training examples as addi- 550

tional input has been shown to be useful for super- 551

vised models as well. Anonymous (2021) and Xu 552

et al. (2021) used BM25 to retrieve and augment the 553

input with similar examples from the training set. 554

Fine-tuning the model with the additional inputs 555

improved performance on tasks such as summariza- 556

tion and question answering. Such methods can 557

also potentially benefit from a stronger retriever. 558

6 Conclusions 559

Large pre-trained LMs are becoming an insepara- 560

ble part of the natural language understanding eco- 561

system. However, accessing their weights or updat- 562

ing them can be prohibitive for many researchers. 563

In this work, we propose EPR, a method for learn- 564

ing to retrieve good prompts for in-context learning, 565

by using language models themselves as the scor- 566

ing function. This allows us to train a light-weight 567

retriever and substantially improve performance on 568

three challenging tasks. 569

More broadly, given that large LMs models are 570

likely to play a prominent role in developing lan- 571

guage understanding models, it is important to de- 572

velop approaches for interacting with such models 573

effectively. EPR can be viewed as a step in this 574

direction. 575
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A Appendix 886

Training details To train EPR, we use the Adam 887

optimizer (Kingma and Ba, 2015) with batch size 888

120 and learning rate 1e-4 on eight RTX 3090. We 889

run training for 30 epochs. We used the default 890

DPR hyperparameters without tuning. We used the 891

final epoch of the model to perform model selec- 892

tion, and applied minimal learning rate tuning on 893

the validation set of BREAK. 894

Risk assessment Large language models have 895

been shown to exhibit various kinds of bias (Bender 896

et al., 2021), since EPR is trained on the signal 897

obtained from such large LMs, it might also exhibit 898

to these biases. 899

Additional examples Tables 7, 8, and 9 pro- 900

vide more examples for cases where EPR is cor- 901

rect while CBR is incorrect along with the top-3 902

prompts for each method. 903
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EPR CBR
Test

Example
Utterance Remind me to add 2 dozen eggs to my

grocery list.
Meaning

Representation [IN:CREATE_REMINDER [SL:PERSON_REMINDED
me ] [SL:TODO add 2 dozen eggs to my
grocery list ] ]

Top-1 Utterance Remind me to get two bottles of water. Please add a grocery list to my list of
things to be reminded about doing today.

Meaning
Representation [IN:CREATE_REMINDER [SL:PERSON_REMINDED

me ] [SL:TODO get two bottles of water ]
]

[IN:CREATE_REMINDER [SL:TODO a grocery
list ] [SL:PERSON_REMINDED my ]
[SL:DATE_TIME today ] ]

Top-2 Utterance Remind me to bring an extra pair of
shoes to the river.

Remind me to make a grocery list

Meaning
Representation [IN:CREATE_REMINDER [SL:PERSON_REMINDED

me ] [SL:TODO bring an extra pair of
shoes to the river ] ]

[IN:CREATE_REMINDER [SL:PERSON_REMINDED
me ] [SL:TODO make a grocery list ] ]

Top-3 Utterance Remind me to add bottled water to
grocery list.

I need to make a grocery list; will you
remind me when I get off work at 5:00
p.m.?

Meaning
Representation [IN:CREATE_REMINDER [SL:PERSON_REMINDED

me ] [SL:TODO add bottled water to
grocery list ] ]

[IN:CREATE_REMINDER [SL:TODO make a
grocery list ] [SL:PERSON_REMINDED me ]
[SL:DATE_TIME at 5 : 00 p.m . ] ]

Table 7: An example from MTOP development set where EPR is correct and CBR is incorrect along with the top-3
training examples retrieved from each retriever.

EPR CBR
Test

Example
Utterance confirmed thanks
Meaning

Representation (PleasantryAnythingElseCombined)

Top-1 Utterance it’s ok bye Yes, but make sure to let me know the
weather for that time.

Meaning
Representation (PleasantryAnythingElseCombined) (let (x0 (Execute (^(Dynamic)

ConfirmAndReturnAction))) (do (Yield x0)
(Yield (WeatherForEvent (^(Dynamic) item
x0)))))

Top-2 Utterance It’s ok Awesome, perfect
Meaning

Representation (PleasantryAnythingElseCombined) (Yield (Execute (^(Dynamic)
ConfirmAndReturnAction)))

Top-3 Utterance It’s ok Perfect...
Meaning

Representation (PleasantryAnythingElseCombined) (Yield (Execute (^(Dynamic)
ConfirmAndReturnAction)))

Table 8: An example from SMCALFLOW development set where EPR is correct and CBR is incorrect along with
the top-3 training examples retrieved from each retriever.
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EPR CBR
Test

Example
Utterance Create a meeting with David Crim today
Meaning

Representation (Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"David Crim")))))))))))

Top-1 Utterance make a meeting with jeri today set up a meeting with both of David
Crim’s reports today

Meaning
Representation (Yield (CreateCommitEventWrapper

(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"jeri")))))))))))

(Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasPeople (FindReports
(Execute (refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"David Crim"))))))))))))

Top-2 Utterance put meeting with emlime on today Make a meeting with David Largenstop on
the 24th.

Meaning
Representation (Yield (CreateCommitEventWrapper

(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"emlime")))))))))))

(Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(nextDayOfMonth (Today) 24L))))
(Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"David Largenstop")))))))))))

Top-3 Utterance I want meet Dr Kennady from today create a meet with bob today
Meaning

Representation (Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"Dr Kennady")))))))))))

(Yield (CreateCommitEventWrapper
(CreatePreflightEventWrapper (&
(Event.start_? (DateTime.date_? (?=
(Today)))) (Event.attendees_?
(AttendeeListHasRecipient (Execute
(refer (extensionConstraint
(RecipientWithNameLike (^(Recipient)
EmptyStructConstraint) (PersonName.apply
"bob")))))))))))

Table 9: An example from SMCALFLOW development set where EPR is correct and CBR is incorrect along with
the top-3 training examples retrieved from each retriever.

Utterance Meaning Representation

which 3 seas border philippines? 1#) return the philippines
2#) return seas that border #1

what three seas surround philippines? 1#) return seas
2#) return #1 that surround the philippines

what states does west virginia border? 1#) return west virginia
2#) return border states of #1

what states borders west virginia? 1#) return west virginia
2#) return border states of #1

which states border colorado 1#) return states
2#) return #1 that border colorado

Table 10: Example of a cluster from the t-SNE projection of EPR on BREAK.
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Utterance Meaning Representation

List the total scores of body builders
in ascending order.

1#) return body builders
2#) return scores of #1
3#) return sum of #2 for each #1
4#) return #3 sorted by ascending order

What are the names of body builders in
descending order of total scores?

1#) return body builders
2#) return names of #1
3#) return scores of #1
4#) return sum of #3 for each #1
5#) return #2 sorted by #4 in descending order

List the total points of gymnasts in
descending order.

1#) return gymnasts
2#) return points of #1
3#) return sum of #2 for each #1
4#) return #3 sorted by descending order

What are the total points for all
gymnasts, ordered by total points
descending?

1#) return gymnasts
2#) return total points for all #1
3#) return #2 ordered by total points descending

List the total points of gymnasts in
descending order of floor exercise
points.

1#) return gymnasts
2#) return points of #1
3#) return sum of #2 for each #1
4#) return floor exercise points of #1
5#) return #3 sorted by #4 in descending order

Table 11: Example of a cluster from the t-SNE projection of EPR on BREAK.

Utterance Meaning Representation

Show the locations that have both
performances with more than 2000
attendees and performances with less
than 1000 attendees.

1#) return performances
2#) return attendees of #1
3#) return the number of #2 for each #1
4#) return #1 where #3 is more than 2000
5#) return #1 where #3 is less than 1000
6#) return the locations of #4
7#) return the locations of #5
8#) return the locations in both #6 and #7

Show the theme for exhibitions with both
records of an attendance below 100 and
above 500.

1#) return exhibitions
2#) return attendances of #1
3#) return number of #2 for each #1
4#) return #1 where #3 is below 100
5#) return #1 where #3 is above 500
6#) return #1 of both #4 and #5
7#) return themes for #6

Which themes have had corresponding
exhibitions that have had attendance
both below 100 and above 500?

1#) return themes
2#) return exhibitions with #1
3#) return attendances of #2
4#) return #1 where #3 is lower than 100
5#) return #1 where #3 is higher than 500
6#) return #1 of both #4 and #5

Show the publishers that have
publications with price higher than
10000000 and publications with price
lower than 5000000.

1#) return publishers
2#) return publications of #1
3#) return prices of #2
4#) return #1 where #3 is higher than 10000000
5#) return #1 where #3 is lower than 5000000
6#) return #1 of both #4 and #5

Show the famous titles of the artists
with both volumes that lasted more than
2 weeks on top and volumes that lasted
less than 2 weeks on top.

1#) return artists
2#) return volumes of #1
3#) return weeks on top that #2 lasted
4#) return number of #3 for each #2
5#) return #1 where #4 is more than 2
6#) return #1 where #4 is less than 2
7#) return #1 in both #5 and #6
8#) return famous titles of #7

Table 12: Example of a cluster from the t-SNE projection of EPR on BREAK.
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Utterance Meaning Representation

What is the metal thing next to the
small cylinder?

1#) return the small cylinder
2#) return things
3#) return #2 that are metal
4#) return #3 that are next to #1

What is the purple thing next to the
brown thing?

1#) return the brown thing
2#) return things
3#) return #2 that are purple
4#) return #3 that are next to #1

What is the gray thing next to the
block?

1#) return gray thing
2#) return the block
3#) return #1 next to #2

What is the shiny thing next to the
cylinder?

1#) return shiny thing
2#) return cylinder
3#) return #1 next to #2

What is the thing in front of the red
square?

1#) return things
2#) return squares
3#) return #2 that is red
4#) return #1 that is in front of #3

Table 13: Example of a cluster from the t-SNE projection of EPR on BREAK.

Utterance Meaning Representation

Is the purple thing behind the big red
thing?

1#) return purple thing
2#) return big red thing
3#) return Is #1 behind #2

is the purple sphere in front of the
blue cube?

1#) return the purple sphere
2#) return the blue cube
3#) return if #1 is in front of #2

is the gray sphere behind the green
cylinder?

1#) return the green cylinder
2#) return the gray sphere
3#) return if #2 is behind #1

is the red cube in front of the yellow
ball?

1#) return the red cube
2#) return the yellow ball
3#) return if #1 is in front of #2

Is the blue ball in front of the silver
cube?

1#) return blue ball
2#) return silver cube
3#) return is #1 in front of #2

Table 14: Example of a cluster from the t-SNE projection of EPR on BREAK.
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