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Abstract
Structure-based drug design (SBDD) aims to dis-
cover drug candidates by finding molecules (lig-
ands) that bind tightly to a disease-related pro-
tein (targets), which is the primary approach to
computer-aided drug discovery. Recently, apply-
ing deep generative models for three-dimensional
(3D) molecular design conditioned on protein
pockets to solve SBDD has attracted much atten-
tion, but their formulation as probabilistic mod-
eling often leads to unsatisfactory optimization
performance. On the other hand, traditional com-
binatorial optimization methods such as genetic
algorithms (GA) have demonstrated state-of-the-
art performance in various molecular optimiza-
tion tasks. However, they do not utilize protein
target structure to inform design steps but rely on
a random-walk-like exploration, which leads to
unstable performance and no knowledge transfer
between different tasks despite the similar binding
physics. To achieve a more stable and efficient
SBDD, we propose Reinforced Genetic Algo-
rithm (RGA) that uses neural models to prioritize
the profitable design steps and suppress random-
walk behavior. The neural models take the 3D
structure of the targets and ligands as inputs and
are pre-trained using native complex structures
to utilize the knowledge of the shared binding
physics from different targets and then fine-tuned
during optimization. We conduct thorough em-
pirical studies on optimizing binding affinity to
various disease targets and show that RGA outper-
forms the baselines in terms of docking scores
and is more robust to random initializations. The
ablation study also indicates that the training on
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different targets helps improve the performance
by leveraging the shared underlying physics of
the binding processes.

1. Introduction
Rapid drug discovery that requires less time and cost is of
significant interest in pharmaceutical science. Structure-
based drug design (SBDD) (Bohacek et al., 1996) that lever-
ages the three-dimensional (3D) structures of the disease-
related proteins to design drug candidates is one primary
approach to accelerate the drug discovery processes with
physical simulation and data-driven modeling. According
to the lock and key model (Tripathi & Bankaitis, 2017),
the molecules that bind tighter to a disease target are more
likely to expose bioactivity against the disease, which has
been verified experimentally (Alon et al., 2021). As Al-
phaFold2 has provided accurate predictions to most human
proteins (Jumper et al., 2021; Varadi et al., 2022), SBDD
has a tremendous opportunity to discover new drugs for new
targets that we cannot model before (Ren et al., 2022).

SBDD could be formulated as an optimization problem
where the objective function is the binding affinity estimated
by simulations such as docking (Tripathi & Bankaitis, 2017).
The most widely used design method is virtual screening,
which exhaustively investigates every molecule in a library
and ranks them. Lyu et al. successfully discovered new
chemotypes for AmpC β-lactamase and the D4 dopamine
receptor by studying hundreds of millions of molecules with
docking simulation (Lyu et al., 2019). However, the num-
ber of the drug-like molecules is large as estimated to be
1060 (Bohacek et al., 1996), and it is computationally pro-
hibitive to screen all of the possible molecules. Though
machine learning approaches have been developed to accel-
erate screening (Graff et al., 2021; Gentile et al., 2022), it
is still challenging to screen large enough chemical space
within the foreseeable future.

Instead of naively screening a library, designing drug can-
didates with generative models has been highlighted as a
promising strategy, exemplified by (Luo et al., 2021a; Li
et al., 2021). This class of methods models the problem as
the generation of ligands conditioned on the protein pock-
ets. However, as generative models are trained to learn the



distribution of known active compounds, they tend to pro-
duce molecules similar to training data (Walters & Murcko,
2020), which discourages finding novel molecules and leads
to unsatisfactory optimization performance.

A more straightforward solution is a combinatorial optimiza-
tion algorithm that searches the implicitly defined discrete
chemical space. As shown in multiple standard molecule
optimization benchmarks (Brown et al., 2019; Huang et al.,
2021), combinatorial optimization methods, especially ge-
netic algorithms (GA) (Jensen, 2019; Spiegel & Durrant,
2020), often perform better than deep generative models.
The key to superior performance is GA’s action definition.
Specifically, in each generation (iteration), GA maintains a
population of possible candidates (a.k.a. parents) and con-
ducts the crossover between two candidates and mutation
from a single candidate to generate new offspring. These
two types of actions, crossover and mutation, enable global
and local traversal over the chemical space, allowing a thor-
ough exploration and superior optimization performance.

However, most GAs select mutation and crossover opera-
tions randomly (Jensen, 2019), leading to significant vari-
ance between independent runs. Especially in SBDD, when
the oracle functions are expensive molecular simulations, it
is resource-consuming to ensure stability by running multi-
ple times. Further, most current combinatorial methods are
designed for general-purpose molecular optimization and
simply use a docking simulation as an oracle. It is challeng-
ing to leverage the structure of proteins in these methods,
and we need to start from scratch whenever we change a
protein target, even though the physics of ligand-protein
interaction is shared. Ignoring the shared information across
tasks leads to unnecessary exploration steps and, thus, de-
mands for many more oracle calls, which require expensive
and unnecessary simulations (Tripp et al., 2021).

To overcome these issues in the GA method, we propose
Reinforced Genetic Algorithm (RGA), which attempts to
reformulate an evolutionary process as a Markov decision
process and uses neural networks to make informed deci-
sions and suppress the random-walk behavior. Specifically,
we utilize an E(3)-equivariant neural network (Satorras et al.,
2021) to choose parents and mutation types based on the
3D structure of the ligands and proteins. The networks are
pre-trained with various native complex structures to uti-
lize the knowledge of the shared binding physics between
different targets and then fine-tuned with a reinforcement
learning algorithm during optimizations. We test RGA’s per-
formance with various disease-related targets, including the
main protease of SARS-CoV-2.

The main contributions of this paper can be summarized as
follows:

• We propose an evolutionary Markov decision process

(EMDP) that reformulates an evolutionary process as a
Markov decision process, where the state is a population
of molecules instead of a single molecule (Section 3.2).

• We show the first successful attempt to use a neural
model to guide the crossover and mutation operations
in a genetic algorithm to suppress random-walk behav-
ior and explore the chemical space intelligently (Sec-
tion 3.3).

• We present a structure-based de novo drug design al-
gorithm that outperforms baseline methods consistently
through thorough empirical studies on optimizing bind-
ing affinity by leveraging the underlying binding physics
(Section 4).

2. Related Works
We will discuss the related works on methods of drug design
and discuss the advantage of the proposed method over the
existing works.

General Molecular Design. Molecular generation meth-
ods offer a promising direction for the automated design
of molecules with desired pharmaceutical properties such
as synthesis accessibility and drug-likeliness. Based on
how to generate or search molecules, these approaches can
be categorized into two types, (1) deep generative mod-
els (DGMs) imitate the molecular data distribution, in-
cluding variational autoencoder (VAE) (Gómez-Bombarelli
et al., 2018; Jin et al., 2018), generative adversarial network
(GAN) (Guimaraes et al., 2017; Cao & Kipf, 2018), nor-
malizing flow model (Shi et al., 2020; Luo et al., 2021b),
energy based model (Liu et al., 2021b); and (2) combinato-
rial optimization methods directly search over the discrete
chemical space, including genetic algorithm (GA) (Jensen,
2019; Nigam et al., 2020; Gao et al., 2022), reinforcement
learning approaches (RL) (Olivecrona et al., 2017; You
et al., 2018; Zhou et al., 2019; Jin et al., 2020; Ahn et al.,
2020), Bayesian optimization (BO) (Korovina et al., 2020),
Markov chain Monte Carlo (MCMC) (Fu et al., 2020; Xie
et al., 2021; Bengio et al., 2021) and gradient ascent (Fu
et al., 2022; Shen et al., 2021).

General molecular design algorithms often use general
black-box oracle functions, and some are only tested with
trivial or self-designed oracles. For example, using penal-
ized octanol-water partition coefficient (LogP) as the ora-
cle function, it grows monotonically with the number of
carbons, and thus there exists a trivial policy to optimize
LogP. These oracles do not reflect the challenges of real
drug discovery, and those algorithms have limited value
for pharmaceutical discovery. Recent works are optimizing
docking scores to simulate a more realistic discovery sce-
nario (Cieplinski et al., 2020; Steinmann & Jensen, 2021;
Tripp et al., 2021; Yang et al., 2021), same as our work.



However, they are still ignoring the information in the given
protein structures that could potentially accelerate the design
process. However, the extension to leveraging the structural
knowledge is nontrivial.

Structure-based Drug Design. Structure-based drug de-
sign (SBDD) could utilize the structural information to
guide the design of molecules, which are potentially more
efficient in drug discovery tasks but poses additional chal-
lenges of how to leverage the structures. Since early 1990s,
various SBDD algorithms have been proposed, mostly
based on combinatorial optimization algorithms such as
tree search (Luo et al., 1996; Gillet et al., 1993; Pearlman
& Murcko, 1993) and evolutionary algorithms (Douguet
et al., 2000; Durrant et al., 2013). Those methods typically
optimize the ligands in the pockets according to a physi-
cal model characterizing the binding affinity. For example,
RASSE (Luo et al., 1996) used a force-field-like scoring
function (Wang et al., 1998) to evaluate the partial solutions
within a tree search. However, obtaining a fast and accu-
rate model to quantify binding free energy itself is still an
unsolved challenge.

Recently, generative modeling of 3D molecules conditioned
on protein targets is attracting more attention (Luo et al.,
2021a; Li et al., 2021). Similar to DGMs in general molec-
ular design, those methods learn the atom’s compositional
and spatial distribution of native structure of protein-ligand
complexes with neural models and design new ligands by
complete the complex structure given targets. Deep gener-
ative models are end-to-end and data-driven thus surpass
the necessity of understanding the physics of interaction.
However, as the training objective is to learn the distribu-
tion of known active compounds, the models tend to pro-
duce molecules close to the training set (Walters & Murcko,
2020), which is undesired in terms of patentability and leads
to unsatisfactory optimization performance.

3. Method
In this paper, we focus on structure-based drug design. The
goal is to design drug molecules (a.k.a. ligands) that could
bind tightly with the disease-related proteins (a.k.a. targets).
Given the 3D structures of the target proteins, including
binding site information, docking is a popular computa-
tional method for assessing the binding affinity, which can
be roughly retrieved as the free energy changes during the
binding processes. We present a variant of genetic algorithm
that is guided by reinforcement learning and a docking or-
acle. Next, we will first describe the general evolutionary
process used in genetic algorithms (Section 3.1); Then we
will present how to model this evolutionary process as a
Markov decision process (MDP) where RL framework can
be constructed (Section 3.2); After that, we describe the
detailed implementation of this MDP framework using mul-

tiple policy networks (Section 3.3).

3.1. Evolutionary Process

In this section, we introduce the primary setting of the evo-
lutionary processes. With both optimization performance
and synthetic accessibility taken into account (Gao & Coley,
2020; Huang et al., 2021), we follow the action settings in
Autogrow 4.0 (Spiegel & Durrant, 2020). It demonstrated
superior performance over other GA variants in the empir-
ical validation of structure-based drug design (Spiegel &
Durrant, 2020), and its mutation actions originated from
chemical reactions so that the designed molecules are more
likely to be synthesizable. Specifically, an evolutionary pro-
cesses starts by randomly sampling a population of drug
candidates from a library. In each generation (iteration), it
carries out (i) crossover between parents selected from the
last generation, and (ii) mutation on a single child to obtain
the offspring pool. An illustration of both crossover and
mutation operations is available in Appendix. Note that we
only adopted the action settings from Autogrow 4.0, without
using other tricks such as elitism.

Crossover, also called recombination, combines the struc-
ture of two parents to generate new children. Following
Autogrow 4.0 (Spiegel & Durrant, 2020), we select two
parents from the last generation and search for the largest
common substructure shared between them. Then we gen-
erate two children by randomly switching their decorating
moieties, i.e., the side chains attached to the common sub-
structure.

Mutation operates on a single parent molecule and modifies
its structure slightly. Following Autogrow 4.0 (Spiegel &
Durrant, 2020), we adopt transformations based on chemi-
cal reactions. Unlike naively defined atom-editing actions,
mutation steps based on chemical reactions could ensure all
modification is reasonable in reality, leading to a larger prob-
ability of designing synthesizable molecules. We included
two types of chemical reactions: uni-molecular reactions,
which only require one reactant, and bi-molecular reactions,
which require two reactants. While uni-molecular reactions
could be directly applied to the parent, we sample a pur-
chasable compound to react with the parent when conduct-
ing a bi-molecular reaction. In both cases, the parent serves
as one reactant, and we use the main product as the child
molecule. We use the chemical reactions from (Spiegel &
Durrant, 2020), which was originally from (Durrant et al.,
2013; Hartenfeller et al., 2011).

Evolution. At the t-th generation (iteration), given a popula-
tion of molecules denoted as S(t), we generate an offspring
pool denoted as Q(t) by applying crossover and mutation
operations. Then we filter out the ones with undesirable
physical and chemical properties (e.g., poor solubility, high
toxicity) in the offspring pool and select the most promising



Figure 1: We illustrate one generation (iteration) of GA
(top) and RGA pipeline (bottom). Specifically, we train
policy networks that take the target and ligand as input to
make informed choices on parents and mutation types in
RGA.

K to form the next generation pool (S(t+1)).

3.2. Evolutionary Markov Decision Process

Next we propose the evolutionary Markov decision pro-
cess (EMDP) that formulates an evolutionary process of
genetic algorithm as a Markov decision process (MDP).
The primary purpose is to utilize reinforcement learning
algorithms to train networks to inform the decision steps to
replace random selections. Taking a generation as a state,
Markov property that requires P (S(t+1)|S(1), · · · ,S(t)) =
P (S(t+1)|S(t)) is naturally satisfied by the evolutionary pro-
cess described above, where S(t) denotes the state at the t-th
generation, which is the population of ligands. We use X
to denote a ligand. We elaborate essential components for
Markov decision process as follows, and the EMDP pipeline
is illustrated in Figure 1.

State Space. We define the population at the t-step gener-
ation, S(t), in the evolutionary process as the state at the
t-step in an EMDP. A state includes population of candi-
date molecules (i.e., ligand, denoted X) and their 3D poses
docked to the target, fully observable to the RL agent. At the
beginning of the EMDP, we randomly select a population
of candidate molecules and use docking simulation to yield
their 3D poses as the initial state.

Action Space. The actions in an EMDP are to conduct the
two evolutionary steps: crossover and mutation, in a popula-
tion. For each evolutionary step, we need two actions to con-
duct it. Concretely, crossover (Xparent 1

crossover, X
parent 2
crossover

crossover−−−−−→
Xchild 1

crossover, X
child 2
crossover) can be divided to:

1. select the first candidate ligand Xparent 1
crossover from the cur-

rent state (population S(t));

2. conditioned on the first selected candidate Xparent 1
crossover,

select the second candidate ligand Xparent 2
crossover from the

remaining candidate ligand set S(t) − {Xparent 1
crossover} and

apply crossover (Section 3.1) to them.

Mutation (Xparent
mutation

mutated by ξ−−−−−−−→ Xchild
mutation) can be divided to:

1. select the candidate ligand Xparent
mutated to be mutated from

the current state (population S(t));

2. conditioned on the selected candidate ligand Xparent
mutated,

select the reaction ξ from the reaction set R and apply
it to Xparent

mutated.

As applying the crossover and mutation steps are determin-
istic, the actions in an EMDP focus on selecting parents and
mutation types. Upon finish the action, we could obtain the
offspring pool, Q(t).

State Transition Dynamics. The state transition in an
EMDP is identical to the evolution in an evolutionary pro-
cess. Once we finish the actions and obtain the offspring
pool, Q(t) = {Xchild 1, Xchild 2, · · · }, we apply molecular
quality filters to filter out the ones unlikely to be drug and
then select the most promising K to form the parent set for
the next generation (S(t+1)).

Reward. We define the reward as the binding affinity
change (docking score). The actions leading to stronger
binding score would be prioritized. As there is no “episode”
concept in an EMDP, we treat every step equally.

3.3. Target-Ligand Policy Network

To utilize molecular structures’ translational and rota-
tional invariance, we adopt equivariance neural networks
(ENNs) (Satorras et al., 2021) as the target-ligand policy
neural networks to select the actions in both mutation and
crossover steps. Each ligand has a 3D pose that binds to the
target protein, and the complex serves as the input of ENN.

Specifically, we want to model a 3D graph Y , which can be
ligand, target, or target-ligand complex. The input feature
can be described as Y = (A,Z), where A represents atoms’
categories (the vocabulary set V = {H,C,O,N, · · · }) and
Z represents 3D coordinates of the atoms. Suppose D ∈
R|V|×d is the embedding matrix of all the categories of
atoms in a vocabulary set V , is randomly initialized and
learnable, d is the hidden dimension in ENN. Each kind of
atom corresponds to a row in D. We suppose there are N
atoms, and each atom corresponds to a node in the 3D graph.
Node embeddings at the l-th layer are denoted as H(l) =

{h(l)
i }Ni=1, where l = 0, 1, · · · , L, L is number of layers

in ENN. The initial node embedding h
(0)
i = D⊤ai ∈ Rd

embeds the i-th node, where ai is one-hot vector that encode
the category of the i-th atom. Coordinate embeddings at



the l-th layer are denoted Z(l) = {z(l)i }Ni=1. The initial
coordinate embeddings Z(0) = {zi}Ni=1 are the real 3D
coordinates of all the nodes. The following equation defines
the feedforward rules of ENN, for i, j = 1, · · · , N, i ̸=
j, l = 0, 1, · · · , L− 1, we have

w
(l+1)
ij = MLPe

(
h
(l)
i ⊕ h

(l)
j ⊕ ||z(l)i − z

(l)
j ||22

)
∈ Rd,

v
(l+1)
i =

N∑
j=1,j ̸=i

w
(l+1)
ij ∈ Rd,

z
(l+1)
i = z

(l)
i +

N∑
j=1,j ̸=i

(
z
(l)
i − z

(l)
j

)
MLPx

(
w

(l)
ij

)
∈ R3,

h
(l+1)
i = MLPh

(
h
(l)
i ⊕ v

(l+1)
i

)
∈ Rd,

hY =

N∑
i=1

h
(L)
i ∈ Rd =⇒ hY = ENN(Y)

(1)
where ⊕ denotes the concatenation of vectors; MLPe(·) :
R2d+1 −→ Rd;MLPx(·) : Rd −→ R;MLPh(·) : R2d −→ Rd

are all two-layer multiple layer perceptrons (MLPs) with
Swish activation in the hidden layer (Ramachandran et al.,
2017). At the l-th layer, w(l)

ij represents the message vector

for the edge from node i to node j; v
(l)
i represents the

message vector for node i, z(l)i is the position embedding
for node i; h(l)

i is the node embedding for node i. H(L) =

[h
(L)
1 , · · · ,h(L)

N ] are the node embeddings of the L-th (last)
layer. We aggregate them using sum function as readout
function to obtain a representation of the 3D graph, denoted
hY . The whole process is written as hY = ENN(Y).

Crossover Policy Network. We design two policy networks
for two corresponding actions in a crossover, as mentioned
in Section 3.2. (1) the first action in crossover operation
is to select the first parent ligand Xparent 1

crossover from the pop-
ulation S(t). Similar to the first action in mutation oper-
ation, we obtain a valid probability distribution over all
the available ligands based on target-ligand complex as in-
put feature and ENN as the neural network architecture,
the selection probability of the ligand Xparent 1

crossover ∈ S(t)

is p
(1)
crossover(X

parent 1
crossover|S(t)) =

exp
(

MLP(h
T &X

parent 1
crossover

)
)

∑
X′∈S(t) exp

(
MLP(hT &X′ )

) ,

where T and X denotes target and ligand (including 3D
pose), respectively, T &X denotes target-ligand complex.
(2) The second action is to select the second parent lig-
and conditioned on the first parent ligand selected in the
first action. Specifically, for ligand in the remaining popu-
lation set, we concatenate the ENN’s embedding of the
target, first parent ligand Xparent 1

crossover and the second par-
ent ligand Xchild

mutation, and feed it into an MLP to estimate
a scalar as an unnormalized probability. The unnormal-
ized probabilities for all the ligands in the remaining

population set are normalized via softmax function, i.e.,
p
(2)
crossover(X

parent 2
crossover|Xparent 1

crossover,S(t)) = Softmax
{

MLP(hT ⊕
hXparent 1

crossover
⊕ hXparent 2

crossover
), · · · ,

}
Xparent 2

crossover∈S(t)−{Xparent 1
crossover}

. Given
two parents ligands, crossover finds the largest substructure
that the two parent compounds share and generates a child
by combining their decorating moieties. Thus, the genera-
tion of child ligands are deterministic, and the probability
of the generated ligands Xchild

crossover is

pcrossover(X
child 1
crossover, X

child 2
crossover|S(t))

=pcrossover(X
parent 1
crossover, X

parent 2
crossover|S(t))

= p(1)crossover(X
parent 1
crossover|S(t)) · p(2)crossover(X

parent 2
crossover|Xparent 1

crossover,S(t)).
(2)

Mutation Policy Network. We design two policy networks
for two corresponding actions in mutation, as mentioned in
Section 3.2. (1) the first action in mutation operation is to se-
lect a candidate ligand to be mutated from population S(t).
It models the 3D target-ligand complex to learn if there
is improvement space in the current complex. Formally,
we obtain a valid probability distribution over all the avail-
able ligands based on target-ligand complex as input feature
and ENN as neural architecture, the selection probability
of the ligand Xparent

mutation ∈ S(t) is p
(1)
mutation(X

parent
mutation|S(t)) =

exp
(

MLP(hT &X
parent
mutation

)
)

∑
X′∈S(t) exp

(
MLP(hT &X′ )

) , where T &X denotes target-

ligand complex, hT &X = ENN(T &X) represents the
ENN’s embedding of target-ligand complex. (2) The second
action is to select the SMARTS reaction from the reaction
set conditioned on the selected ligand in the first action.
Specifically, for each reaction, we generate the new ligand
Xchild

mutation, then obtain the embedding of target, first ligand
Xparent

mutation and the new ligand Xchild
mutation through ENN, con-

catenate these three embeddings and feed it into a MLP
to estimate a scalar as unnormalized probability. The un-
normalized probabilities for all the reactions are normal-
ized via softmax function, i.e., p(2)mutation(ξ|X

parent
mutation,S(t)) =

Softmax
{

MLP(hT ⊕ hXparent
mutation

⊕ hXchild
mutation

]), · · · ,
}
ξ∈R,

where Xparent
mutation

mutated by ξ−−−−−−−→ Xchild
mutation, R is the reaction set.

The probability of the generated ligand Xchild
mutation is

pmutation(X
child
mutation|S(t))

=p
(1)
mutation(X

parent
mutation|S

(t)) · p(2)mutation(ξ|X
parent
mutation,S

(t)).
(3)

Policy Gradient. We leverage policy gradient to train the
target-ligand policy neural network. Specifically, we con-
sider maximizing the expected reward as objective via RE-
INFORCE (Olivecrona et al., 2017),

max EX∼p(X|S(t))

[
Reward(X)

]
, (4)

where p(X) is defined in Equation (2) and (3) for crossover
and mutation, respectively. The whole pipeline is illustrated



in Figure 1. To provide a warm start and leverage the struc-
tural information, we pretrain the ENNs on 3D target-ligand
binding affinity prediction task, where the inputs are the
target-ligand complexes, and the outputs are their binding
affinity.

4. Experiment
In this section, we briefly describe the experimental setup
and results. The Appendix includes more details, including
software configuration, implementation details, dataset de-
scription & processing, hyperparameter tuning, code reposi-
tory, ablation study, and additional experimental results.

4.1. Experimental Setup

Docking Simulation. We adopt AutoDock Vina (Trott &
Olson, 2010) to evaluate the binding affinity. The dock-
ing score estimated by AutoDock Vina is called Vina score
and roughly characterizes the free energy changes of bind-
ing processes in kcal/mol. Thus lower Vina score means
a stronger binding affinity between the ligand and target.
We picked various disease-related proteins, including G-
protein coupling receptors (GPCRs) and kinases from DUD-
E (Mysinger et al., 2012) and the SARS-CoV-2 main pro-
tease (Zhang et al., 2021) as targets. Please see the Appendix
for more information.

Baselines. The baseline methods cover traditional brute-
force search methods (Screening), deep generative models
(JTVAE and Gen3D), genetic algorithm (GA+D, graph-GA,
Autogrow 4.0), reinforcement learning methods (MolDQN,
RationaleRL, REINVENT, GEGL), and MCMC method
(MARS). Gen3D and Autogrow 4.0 are structure-based
drug design methods, while others are general-purpose
molecular design methods. Although methods explicitly
utilizing target structures are relatively few, we add general-
purpose molecular design methods optimizing the same
docking oracle scores as ours, which is a common use
case, as baselines (Jensen, 2019; Huang et al., 2021). Con-
cretely, Screening mimics high throughput screening via
sampling from ZINC database randomly; JTVAE (Junc-
tion Tree Variational Auto-Encoder) (Jin et al., 2018) uses
a Bayesian optimization on the latent space to indirectly
optimize molecules; Gen3D (Luo et al., 2021a) is an auto-
regressive generative model that grows 3D structures atom-
wise inside the binding pocket; GA+D (Nigam et al., 2020)
represents molecule as SELFIES string (Krenn et al., 2020)
and uses genetic algorithm enhanced by a discriminator
neural network; Graph-GA (Jensen, 2019) conduct genetic
algorithm on molecular graph representation; Autogrow
4.0 (Spiegel & Durrant, 2020) is the state-of-the-art ge-
netic algorithm in structure-based drug design; MolDQN
(Molecule Deep Q-Network) (Zhou et al., 2019) leverages
deep Q-value learning to grow molecules atom-wisely; Ra-

tionaleRL (Jin et al., 2020) uses rationale (e.g., functional
groups or subgraphs) as the building block and a policy gra-
dient method to guide the training of graph neural network-
based generator; REINVENT (Olivecrona et al., 2017) rep-
resent molecules as SMILES string and uses policy gradient
based reinforcement learning methods to guide the training
of the RNN generator; GEGL (genetic expert-guided learn-
ing) (Ahn et al., 2020) uses LSTM guided by reinforcement
learning to imitate the GA exploration; MARS (Markov
Molecule Sampling) (Xie et al., 2021) leverages Markov
chain Monte Carlo sampling (MCMC) with adaptive pro-
posal and annealing scheme to search chemical space. To
conduct a fair comparison, we limit the number of oracle
calls to 1,000 times for each method. Implementation details
of all the baseline methods are available in Appendix.

Dataset: we randomly select molecules from ZINC (Ster-
ling & Irwin, 2015) database (around 250 thousands drug-
like molecules) as 0-th generation of the genetic algorithms
(RGA, Autogrow 4.0, GA+D). ZINC also serves as the train-
ing data for pretraining the model in JTVAE, REINVENT,
RationaleRL, etc. We adopt CrossDocked2020 (Francoeur
et al., 2020) dataset that contains around 22 million ligand-
protein complexes as the training data for pretraining the
policy neural networks, as mentioned in Section 3.3. More
descriptions are available in Appendix.

Metrics. The selection of evaluation metrics follows recent
works in molecule optimization (Jin et al., 2018; Nigam
et al., 2020; Jin et al., 2020; Xie et al., 2021) and structured
based drug design (Spiegel & Durrant, 2020; Luo et al.,
2021a; Huang et al., 2021). For each method, we select top-
100 molecules with the best docking scores for evaluation
and consider the following metrics: TOP-1/10/100 (average
docking score of top-1/10/100 molecules): docking score di-
rectly measures the binding affinity between the ligand and
target and is the most informative metric in structure-based
drug design; Novelty (Nov) (% of the generated molecules
that are not in training set); Diversity (Div) (average pair-
wise Tanimoto distance between the Morgan fingerprints);
We also evaluate some simple pharmaceutical properties,
including quantitative drug-likeness (QED) and synthetic
accessibility (SA). QED score indicates drug-likeliness rang-
ing from 0 to 1 (higher the better). SA score ranges from 1
to 10 (lower the better).

4.2. Results

Stronger Optimization Performance. We summarized
the main results of the structure-based drug design in Ta-
ble 1. We evaluate all the methods on all targets and report
each metric’s mean and standard deviations across all tar-
gets. Our result shows RGA achieves the best performance
in TOP-100/10/1 scores among all methods we compared.
Compared to Autogrow 4.0, RGA’s better performance in



Table 1: The summarized performance of different methods. The mean and standard deviation across targets are reported.
Arrows (↑, ↓) indicate the direction of better performance. For each metric, the best method is underlined and the top-3
methods are bolded. RGA-pretrain and RGA-KT are two variants of RGA that without pretraining and without training on
different target proteins, respectively.

Method TOP-100↓ TOP-10↓ TOP-1↓ Nov↑ Div↑ QED↑ SA↓
screening -9.351±0.643 -10.433±0.563 -11.400±0.630 0.0±0.0% 0.858±0.005 0.678±0.022 2.689±0.077

MARS -7.758±0.612 -8.875±0.711 -9.257±0.791 100.0±0.0% 0.877±0.001 0.709±0.008 2.450±0.034

MolDQN -6.287±0.396 -7.043±0.487 -7.501±0.402 100.0±0.0% 0.877±0.009 0.170±0.024 5.833±0.182

GEGL -9.064±0.920 -9.91±0.990 -10.45±1.040 100.0±0.0% 0.853±0.003 0.643±0.014 2.99±0.054

REINVENT -10.181±0.441 -11.234±0.632 -12.010±0.833 100.0±0.0% 0.857±0.011 0.445±0.058 2.596±0.116

RationaleRL -9.233±0.920 -10.834±0.856 -11.642±1.102 100.0±0.0% 0.717±0.025 0.315±0.023 2.919±0.126

JTVAE -9.291±0.702 -10.242±0.839 -10.963±1.133 98.0±0.027% 0.867±0.001 0.593±0.035 3.222±0.136

Gen3D -8.686±0.450 -9.285±0.584 -9.832±0.324 100.0±0.0% 0.870±0.006 0.701±0.016 3.450±0.120

GA+D -7.487±0.757 -8.305±0.803 -8.760±0.796 99.2±0.011% 0.834±0.035 0.405±0.024 5.024±0.164

Graph-GA -10.848±0.860 -11.702±0.930 -12.302±1.010 100.0±0.0% 0.811±0.037 0.456±0.067 3.503±0.367

Autogrow 4.0 -11.371±0.398 -12.213±0.623 -12.474±0.839 100.0±0.0% 0.852±0.011 0.748±0.022 2.497±0.049

RGA (ours) -11.867±0.170 -12.564±0.287 -12.869±0.473 100.0±0.0% 0.857±0.020 0.742±0.036 2.473±0.048

RGA - pretrain -11.443±0.219 -12.424±0.386 -12.435±0.654 100.0±0.0% 0.854±0.035 0.750±0.034 2.494±0.043

RGA - KT -11.434±0.169 -12.437±0.354 -12.502±0.603 100.0±0.0% 0.853±0.028 0.738±0.034 2.501±0.050

docking score demonstrates that the policy networks con-
tribute positively to the chemical space navigation and even-
tually help discover more potent binding molecules. On the
other hand, including longer-range navigation steps enabled
by crossover leads to superior performance than other RL
methods (REINVENT, MolDQN, GEGL and RationaleRL)
that only focus on local modifications. In addition, we also
observed competitive structure quality measured by QED
(> 0.7) and SA_Score (< 2.5) in Autogrow 4.0 and RGA
without involving them as optimization objectives, thanks
to the mutation steps originating from chemical reactions.
We visualize two designed ligands with optimal affinity for
closer inspection in Figure 2(a) and 2(b), and find both
ligands bind tightly with the targets.

Suppressed Random-Walk Behavior. Especially in
SBDD, when the oracle functions are expensive molecu-
lar simulations, robustness to random seeds is essential for
improving the worst-case performance of algorithms. One
of the major issues in traditional GAs is that they have a sig-
nificant variance between multiple independent runs as they
randomly select parents for crossover and mutation types.
To examine this behavior, we run five independent runs for
RGA, Autogrow 4.0 and graph-GA (three best baselines, all
are GA methods) on all targets and plot the standard devi-
ations between runs in Figure 2(c) and 2(d). With policy
networks guiding the action steps, we observed that the
random-walk behavior in Autogrow 4.0 was suppressed in
RGA, indicated by the smaller variance. Especially in the
later learning phase (after 500 oracle calls), the policy net-
works are fine-tuned and guide the search more intelligently.
This advantage leads to improved worst-case performance
and a higher probability of successfully identifying bioactive

drug candidates with constrained resources.

Knowledge Transfer Between Protein Targets. To verify
if RGA benefited from learning the shared physics of ligand-
target interaction, we conducted an ablation study whose
results are in the last two rows of Table 1. Specifically, we
compare RGA with two variants: (1) RGA-pretrain that does
not pretrain the policy network with all native complex struc-
tures in the CrossDocked2020; (2) RGA-KT (knowledge
transfer) that fine-tune the networks with data of individual
target independently. We find that both strategies positively
contribute to RGA on TOP-100/10/1 docking score. These
results demonstrate the policy networks successfully learn
the shared physics of ligand-target interactions and leverage
the knowledge to improve their performance.

5. Conclusion
In this paper, we propose Reinforced Genetic Algorithm
(RGA) to tackle the structure-based drug design problem.
RGA reformulate the evolutionary process in genetic al-
gorithms as a Markov decision process called evolution-
ary Markov decision process (EMDP) so that the search-
ing processes could benefit from trained neural models.
Specifically, we train policy networks to choose the par-
ents to crossover and mutate instead of randomly sampling
them. Further, we also leverage the common physics of
the ligand-target interaction and adopt a knowledge-transfer
strategy that uses data from other targets to train the net-
works. Through empirical study, we show that RGA has
strong and robust optimization performance, consistently
outperforming baseline methods in terms of docking score.



(a) Example of 7l11 (b) Example of 3eml

(c) TOP-100 vs # oracle call (d) Score Bar

Figure 2: (a) and (b): Example of ligand poses (generated
by RGA) and binding sites of target structures. Example of
7l11: the PDB ID of target is 7l11, which is SARS-COV-
2(2019-NCOV) main protease. Example of 3eml: the PDB
ID is 3eml, which is a human A2A Adenosine receptor.
(c) and (d): studies of suppressed random-walk behavior.
(c) reports TOP-100 docking score as a function of oracle
calls. The results are the means and standard deviations of
5 independent runs. (d) shows the bars of TOP-100 docking
score for various independent runs.

Though we adopted mutations originating from chemical
reactions and the structural quality metrics seem good, we
need to emphasize that the designed molecules from RGA
do not guarantee synthesizability (Gao & Coley, 2020), as
the crossover operations may break inheriting synthesizabil-
ity. Directly working on synthetic pathways could solve
the problem (Gao et al., 2022; Bradshaw et al., 2020), but
the extension is not trivial. As for future direction, we ex-
pect to theoretically analyze the EMDP formulation and the
performance of RGA. We also expect to generalize RGA to
other combinatorial optimization scenarios, such as sym-
bolic laws discovery (Schmidt & Lipson, 2009), quantum
circuits design (Du et al., 2020)), etc.
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A. Mathematical Notation
For ease of exposition, we list the mathematical notations
in Table 2. All the mathematical notations are divided into
three parts: (1) notation for genetic algorithm (Section 3.1);
(2) notation for equivariance neural networks (ENN) (Sator-
ras et al., 2021) (Section 3.3); (3) notations for policy net-
work (Section 3.3).

B. Illustration of Genetic Algorithm
Figure 3 provides two examples to illustrate crossover and
mutation operations in genetic algorithm described in Sec-



Table 2: Mathematical Notations. All the mathematical no-
tations are divided into three parts: (1) notation for genetic
algorithm (Section 3.1); (2) notation for equivariance neural
networks (ENN) (Satorras et al., 2021) (Section 3.3); (3)
notations for policy network (Section 3.3).

Notations Descriptions
X ligand (drug molecule, including 3D pose)
T target (target protein related to the disease)
S(t) the state (population of molecule) at the t-th generation.
Q(t) offspring pool at the t-th generation.
K the number of molecule in the state, i.e., size of population.

Xparent 1/2
crossover the first/second parent molecule in the crossover.

Xchild 1/2
crossover the first/second child molecule in the crossover.

Xparent
mutation parent molecule in the mutation

Xchild
mutation child molecule in the mutation

ξ ∈ R the selection reaction in the mutation
R the reaction set (library) for mutation

ENN equivariance neural networks (Satorras et al., 2021)
V = {H,C,O,N, · · · } vocabulary set of atoms

Y = (A,Z) 3D structure
A categories of all the atoms
ai one-hot vector that encode category of i-th atom
Z 3D coordinates of the atoms

D ∈ R|V|×d the embedding matrix of all the categories of atoms
d the hidden dimension in ENN.
N number of atoms in the input of ENN.
L number of layers in ENN

l = 0, 1, · · · , L index of layer in ENN
MLP multiple layer perceptrons

MLPe(·),MLPx(·),MLPh(·) two-layer MLP in ENN with Swish activation (Ramachandran et al., 2017) in hidden layer
⊕ the concatenation of vectors

Z(0) = {zi}Ni=1 initial coordinate embeddings, real 3D coordinates of all the nodes.
H(l) = {h(l)

i }Ni=1 Node embeddings at the l-th layer
h
(0)
i = D⊤ai ∈ Rd The initial node embedding that embeds the i-th node
Z(l) = {z(l)i }Ni=1 Coordinate embeddings at the l-th layer

w
(l)
ij message vector for the edge from node i to node j at l-th layer

v
(l)
i message vector for node i at l-th layer

z
(l)
i the position embedding for node i at l-th layer

h
(l)
i the node embedding for node i at l-th layer

hY = ENN(Y) ENN representation of the 3D graph Y (Equation 1)
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tion 3.1.

Crossover, also called recombination, combines the struc-
ture of two parents to generate new children. Following
Autogrow 4.0 (Spiegel & Durrant, 2020), as shown in Fig-
ure 3(a), we select two parents from the last generation and
search for the largest common substructure shared between
them. Then we generate two children by randomly switch-
ing their decorating moieties, i.e., the side chains attached
to the common substructure.

Mutation operator performs an in silico chemical reac-
tion to generate an altered child compound (i.e., product
in the chemical reaction) derived from a parent (reactant
in the chemical reaction), as shown in Figure 3(b). The
chemical reaction here contains two reactants, one is parent
molecule, another is from reaction set. The reaction set R
is generated via merging two public reaction libraries: (1)
the AutoClickChemRxn set (36 reactions) (Durrant et al.,
2013) and (2) RobustRxn set (58 reactions (Hartenfeller
et al., 2011)). Each reaction ξ in reaction set R contains a
SMARTS string based reaction template and a reactant. It
uses SMARTS reaction template, together with RDKit (Lan-
drum et al., 2006), to perform chemical mutations efficiently.

The process is written as Xparent
mutation

mutated by ξ−−−−−−−→ Xchild
mutation,

where ξ is selected reaction (with a reaction template and
another reactant). The ligand to be mutated and the reaction
used for mutation are both randomly selected from previous

generation and reaction set R, respectively. Compared with
the mutation operator in conventional GA that randomly
flipping an arbitrary bit, the reaction-based mutation en-
hance synthesizability of the generated molecules (Spiegel
& Durrant, 2020). Mutation operator performs an in silico
chemical reaction to generate an altered child compound
(i.e., product in the chemical reaction) derived from a parent
(reactant in the chemical reaction). The chemical reaction
here contains two reactants, one is parent molecule, another
is from reaction set.

(a) crossover

(b) mutation

Figure 3: Illustration of GA operations: (a) crossover finds
the largest substructure that the two parent compounds share
and generates a child by combining their decorating moi-
eties. (b) mutation: given a reactant (i.e., parent), mutation
operator uses SMARTS-reaction template (with another re-
actant) to performs an in silico chemical reaction to generate
child compound (i.e., product).

C. Baseline Setup
In this section, we describe the experimental setting for
baseline methods. Most of the settings follow the original
papers.

• GA+D (genetic algorithm enhanced by discriminator
neural network) (Nigam et al., 2020) utilizes SELFIES
string as the representation of molecules, thus guar-
anteeing the 100% chemical validity of the generated
molecules. Following their original paper, the discrim-
inator neural network is a two-layer fully connected



neural network with ReLU activation and sigmoid out-
put layer. The hidden size is 100. the size of the output
layer is 1. The input feature of discriminator neural
network is a vector of chemical and geometrical prop-
erties characterizing the molecules. The population
size is set to 300. Maximal generation number is set to
1000. The patience is set to 5. When the property does
not improve when the patience exhausts, the process
early stops. We used Adam optimizer with 1e-3 as
the initial learning rate. beta (β) is the weight of dis-
criminator neural network’s score in fitness evaluation,
which is used to select most promising molecules in
each generation. We set β = 1.

• Graph-GA (Jensen, 2019) uses molecular graph to
represent molecules and uses crossover and mutation
operations to edit the molecular graph. After tuning,
the size of population is set to 120. The size of off-
spring is set to 70. The mutation rate is set to 0.067.
Graph-GA do not have learnable parameters and is
easy to implement. We use the implementation in Gua-
caMol (Brown et al., 2019).

• MolDQN (Molecule Deep Q-Networks) (Zhou et al.,
2019) uses molecular graph to represent molecules, for-
mulate the molecule optimization process as a Markov
Decision Process (MDP) and utilize Deep Q-value
learning to optimize it. It grows molecular graph atom-
wise, that is, in each episode, it adds one atom to the
partially generated molecular graph. The reward func-
tion is the negative value of the Vina score. Following
the original paper, maximal step in each episode is
40. Each step calls oracle once. The discount factor is
0.9. Deep Q-network is a multilayer perceptron (MLP)
whose hidden dimensions are 1024, 512, 128, 32, re-
spectively. The model size is 6.4 M. The input of the
Q-network is the concatenation of the molecule feature
(2048-bit Morgan fingerprint, with a radius of 3) and
the number of left steps. Adam is used as an optimizer
with 1e-4 as the initial learning rate. Only rings with
a size of 5 and 6 are allowed. It leverages ϵ-greedy to-
gether with randomized value functions (bootstrapped-
DQN) as an exploration policy, ϵ is annealed from 1 to
0.01 in a piecewise linear way.

• RationaleRL (Jin et al., 2020). The architecture of
the generator is a message-passing network (MPN) fol-
lowed by MLPs applied in breadth-first order. The gen-
erator is pre-trained on general molecules combined
with an encoder and then fine-tuned to maximize the
reward function using policy gradient. The encoder
and decoder MPNs both have hidden dimensions of
400. The dimension of the latent variable is 50. Adam
optimizer is used on both pre-training and fine-tuning
with initial learning rates of 1e-3, 5e-4, respectively.

The annealing rate is 0.9. We pre-trained the model
with 20 epochs.

• MARS (Xie et al., 2021) leverage Markov chain Monte
Carlo sampling (MCMC) on molecules with an anneal-
ing scheme and an adaptive proposal. The proposal
is parameterized by a graph neural network, which is
trained on MCMC samples. We follow most of the
settings in the original paper. The message passing
network has six layers, where the node embedding
size is set to 64. Adam is used as an optimizer with
3e-4 initial learning rate. To generate a basic unit,
top-1000 frequent fragments are drawn from ZINC
database (Sterling & Irwin, 2015) by enumerating sin-
gle bonds to break. During the annealing process, the
temperature T = 0.95⌊t/5⌋ would gradually decrease
to 0.

• Autogrow 4.0 (Spiegel & Durrant, 2020) is the base
model for RGA and have been briefly described in Sec-
tion 3.1. The setup of Autogrow is the same as RGA
for fair comparison, the only difference is that RGA use
policy network to guide the selection of ligands and
reaction for crossover and mutation while Autogrow
randomly selects them. The reaction set R is gener-
ated via merging two public reaction libraries: (1) the
AutoClickChemRxn set (36 reactions) (Durrant et al.,
2013) and (2) RobustRxn set (58 reactions (Harten-
feller et al., 2011)). In each generation, It generates
200 offspring (100 from crossover and 100 from mu-
tation) and keep 50 most promising (with lowest Vina
scores) ones for the next generation.

• Screening exhaustively searches the ZINC
database (Sterling & Irwin, 2015) within oracle
budget. It is the traditional high-throughput screening
approach.

• REINVENT (Olivecrona et al., 2017) is a rein-
forcement learning approach, represent molecule as
SMILES string and uses recurrent neural network to
model SMILES string. It pretrains a prior model using
molecules on ZINC and finetune the model using the
reward function. It uses REINFORCE to maximize the
expected reward function. The learning rate is set to
0.0005; the batch size is set to 64; The hyperparameter
σ weighs the pretrained prior model and the reward
function, and is set to 60. The model size is 16.3M.

• JTVAE (Jin et al., 2018) build a junction tree to repre-
sent molecule via using substructure (either ring or
atom) to represent molecule. It uses both molecu-
lar graph-leven and junction tree-level encoder and
decoder. The VAE model is pretrained on ZINC
databases. Then Bayesian Optimization is used to opti-
mize the docking score on the continuous latent space.



We use “botorch”, the python’s Bayesian optimization
package, to implement the Bayesian optimization pro-
cess. It has 703 substructures in vocabulary, extracted
from ZINC. The hidden size is 450. The latent size of
VAE is set to 56. The model size is 21.8 M.

• Gen3D (Luo et al., 2021a) uses 3D deep generative
models and grow the molecule via adding atoms auto-
regressively. It train a universal model for all the tar-
gets. The number of message passing layers in context
encoder is 6, and the hidden dimension is 256. We
train the model using the Adam optimizer at learning
rate 0.0001. The model size is 17.4 M.

• GEGL (Genetic Expert Guided Learning) (Ahn et al.,
2020) uses LSTM (guided by RL agent) to imitate
GA process, however, it is unable to inherit the GA’s
flexible assembling manner due to the auto-regressive
essence of LSTM. It use Adam as optimizer with ini-
tial learning rate 1e-3. The batch size during sampling
is 512, the batch size during optimization is 256. In
GA, mutation rate is 0.01. The similarity threshold is
0.4, which constrain the similarity between the origi-
nal molecule and the edited molecule. The maximal
SMILES length is set to 120.

D. Additional Experimental Setup
D.1. Docking Simulation

Molecular docking is a computational method which pre-
dicts the preferred orientation of one molecule to a second
when a ligand and a target are bound to each other to form
a stable complex. Knowledge of the preferred orientation
in turn may be used to predict the strength of association
or binding affinity between two molecules using, for exam-
ple, scoring functions. We adopt AutoDock Vina (Trott &
Olson, 2010) to evaluate the binding affinity. The docking
score estimated by AutoDock Vina is called Vina score and
roughly characterizes the free energy changes of binding
processes in kcal/mol. Vina score is usually smaller than
0 and lower Vina score means a stronger binding affinity
between the ligand and target. We leverage the negative
value of the docking score as reward function (Equation 4).

D.2. Dataset

In this paper, we use ZINC (Sterling & Irwin, 2015) database
and CrossDocked2020 (Francoeur et al., 2020) dataset.
ZINC is a free database of 250 thousands commercially-
available drug-like chemical compounds for virtual screen-
ing (Sterling & Irwin, 2015). We randomly select molecules
from ZINC (Sterling & Irwin, 2015) database (around 250
thousands drug-like molecules) as 0-th generation of the
genetic algorithms (RGA, Autogrow 4.0, graph-GA GA+D).
Other baseline methods also use ZINC to either pretrain

the models, e.g., JTVAE, REINVENT, RationaleRL or pro-
vide searching database, e.g., screening. We adopt Cross-
Docked2020 (Francoeur et al., 2020) dataset that contains
around 22 million ligand-protein complexes as the training
data for pretraining the policy neural networks, as mentioned
in Section 3.3.

Regarding the target proteins, we picked various disease-
related proteins, including G-protein coupling receptors
(GPCRs) and kinases from DUD-E (Mysinger et al., 2012)
and the SARS-CoV-2 main protease (Zhang et al., 2021)
as targets. for all the selected target protein, the bind-
ing pocket size for all the targets are set to (15.0, 15.0,
15.0). The units of coordinate are Angstrom Å (10−10

m). Detailed descriptions of these targets are available at
https://www.rcsb.org/.

D.3. Evaluation metrics

We leverage the following evaluation metrics to measure the
optimization performance:

• Novelty is the fraction of the generated molecules that
do not appear in the training set.

• Diversity of generated molecules is defined as the av-
erage pairwise Tanimoto distance between the Morgan
fingerprints (You et al., 2018; Jin et al., 2020; Xie et al.,
2021).

diversity = 1− 1

|M|(|M| − 1)

∑
m1,m2∈M

sim(m1,m2),

(5)
where M is the set of generated molecules that we
want to evaluate. sim(m1,m2) is the Tanimoto similar-
ity between molecule m1 and m2, where (Tanimoto)
Similarity measures the similarity between the input
molecule and generated molecules. It is defined as
sim(X,Y ) =

FP⊤
XFPY

∥FPX∥2∥FPY ∥2
, FPX is the binary Mor-

gan fingerprint vector for the molecule X . In this paper,
it is a 2048-bit binary vector.

• QED represents a quantitative estimate of drug-
likeness. QED score ranges from 0 to 1. It can be evalu-
ated by the RDKit package (https://www.rdkit.
org/).

• SA (Synthetic Accessibility) score measures how hard
it is to synthesize a given molecule, based on a combi-
nation of the molecule’s fragments contributions (Ertl
& Schuffenhauer, 2009). It is evaluated via RD-
Kit (Landrum et al., 2006). The raw SA score ranges
from 1 to 10. A higher SA score means the molecule
is hard to be synthesized and is not desirable.

• Run Time. Unlike optimizing some simple oracles
such as QED and LogP scores, the docking simulation

https://www.rcsb.org/
https://www.rdkit.org/
https://www.rdkit.org/


need to search 3D molecular conformation docked in
the target, which is computationally expensive. Thus
run time is an important metric to measure the effi-
ciency of the methods.

E. Implementation Details
E.1. Software/Hardware Configuration

We implemented RGA using Pytorch 1.10.2, Python 3.7,
RDKit v2020.09.1.0 on an Intel Xeon E5-2690 machine
with 256G RAM and NVIDIA Pascal Titan X GPUs.

E.2. Hyperparameter Setup

The neural architectures of policy networks are E(3)-
equivariant neural network (ENN) (Satorras et al., 2021).
The vocabulary set V = {C,N,O, S,H, other}. In ENN,
the number of layers is set to 3, i.e., L = 3; the hidden
dimension is set to 100, i.e., d = 100. In Equation 1,
MLPe(·),MLPx(·),MLPh(·) are two-layer MLP in ENN
with Swish activation (Ramachandran et al., 2017) in hidden
layer. Summation function is used as aggregation function
to aggregate the last-layer’s node embedding into graph-
level embedding. All the atoms that within the binding site
are used as the input of ENN. REINFORCE is used to imple-
ment policy gradient (Peters & Bagnell, 2010; Olivecrona
et al., 2017). Adam is utilized as optimizer with learning
rate 0.001 for both crossover and mutation policy networks.
The reaction set R is generated via merging two public
reaction libraries: (1) the AutoClickChemRxn set (36 re-
actions) (Durrant et al., 2013) and (2) RobustRxn set (58
reactions (Hartenfeller et al., 2011)). We use RDKit (Lan-
drum et al., 2006) to perform in silico chemical reaction
based on SMARTS reaction template. In each generation,
we generate up to 200 offspring (100 from crossover and 100
from mutation) and keep 50 most promising (with lowest
Vina scores) ones for the next generation.

F. Additional Experiment
F.1. Efficiency Study

As mentioned before, unlike optimizing some simple oracles
such as QED and LogP scores, the docking simulation need
to search 3D molecular conformation docked in the target,
which is time-consuming. Thus run time is an important
measurement to evaluate the efficiency of the methods. We
report the bar of run time over different targets for all the
compared methods in Figure 4. The run times varies greatly
over different methods. Thus, for ease of visualization, we
divided all the methods into two groups. One is slow group,
containing 5 methods: screening, GEGL, REINVENT, Ra-
tionaleRL and JTVAE, where all the methods take more than
10 hours. Another is fast group (<10 hours), containing 7

methods, MARS, MolDQN, Gen3D, GA+D, GraphGA, Au-
togrow, and RGA. We find that both Autogrow and RGA are
efficient compared with other methods. This attributes to the
unique design of genetic algorithm (both crossover and mu-
tation operations) and the usage of filter after GA operators,
as described in Section 3.1. RGA is only slightly slower
than Autogrow because it requires additional computation
to pretrain/train the policy neural networks.

(a) Slower Group (>10 hours)

(b) Fast Group (<10 hours)

Figure 4: Efficiency evaluation measured by run time for all
the methods. The unit of run time is hours. Due to the big
variance in run time, for ease of visualization, we divide all
the methods into two groups. One is slow group, containing
5 methods: screening, GEGL, REINVENT, RationaleRL
and JTVAE. Another is fast group, containing 7 methods,
MARS, MolDQN, Gen3D, GA+D, GraphGA, Autogrow,
and RGA.

F.2. Additional Ablation Study

To further understand our model and GA process, we con-
duct an ablation study to investigate the impact of each



component/strategy to optimization performance. Specif-
ically, we consider the following four variants of RGA.
RGA-pretrain is a variant of RGA that does not pretrain the
policy neural network. RGA-KT (Knowledge Transfer) is a
variant of RGA that does not training policy neural network
on different target proteins, i.e., optimizing ligand for one
target at a time. RGA-MU (mutation) is a variant of RGA
that does not involve mutation operation in GA. That is,
all the ligands are generated via crossover operator. Corre-
spondingly, RGA-CO (crossover) is a variant that does not
use crossover operation in GA, which means no mutation
operator. The results are reported in Table 3. We find that
removing either component/strategy will cause a drop in
optimization performance (i.e., increase in TOP-100/10/1
scores). Both crossover and mutation are critical to the op-
timization performance. Also, both pretraining the policy
networks and knowledge transfer between different target
have positive contribution to the performance. The ablation
study furtherly validates the effectiveness of the proposed
RGA method.

G. Additional Discussion on Related Work
Methodology. The molecule generations methods can be
divided into two categories. The first one is deep generative
models (DGMs), which leverage the continuous represen-
tation to estimate the data distribution using various kinds
of deep neural networks, including variational autoencoder
(VAE) (Gómez-Bombarelli et al., 2018; Jin et al., 2018),
generative adversarial network (GAN) (Guimaraes et al.,
2017; Cao & Kipf, 2018), normalizing flow model (Shi
et al., 2020; Zang & Wang, 2020; Luo et al., 2021b), energy
based model (Liu et al., 2021b) and diffusion model (Xu
et al., 2021), etc. The second one is combinatorial opti-
mization methods, which directly search the discrete chemi-
cal space, including genetic algorithm (GA) (Jensen, 2019;
Nigam et al., 2020; Gao et al., 2022), reinforcement learn-
ing approaches (RL) (Olivecrona et al., 2017; You et al.,
2018; Zhou et al., 2019; Jin et al., 2020; Fu et al., 2021),
Bayesian Optimization (BO) (Korovina et al., 2020; Moss
et al., 2020), Monte Carlo Tree Search (MCTS) (Yang et al.,
2017; 2020; Jin et al., 2020) and Markov Chain Monte Carlo
(MCMC) (Fu et al., 2020; Xie et al., 2021; Bengio et al.,
2021). Deep generative models (DGMs) usually require a
large amount of data to fit, which impedes their usage in
low data regime. In contrast, combinatorial optimization
methods require less training data, while the trade-off is the
need to call the optimization oracles during the exploration
in the chemical space (Zhou et al., 2019; Fu et al., 2022;
Gao & Coley, 2020; Gao et al., 2022; Brown et al., 2019).

Among all the machine learning methods, Genetic algo-
rithm (GA) exhibits superior performance in some standard
benchmarks (Brown et al., 2019; Huang et al., 2021). The

key reason is GA’s global assembling strategy. Specifically,
in each generation (iteration), GA maintains a population
of molecule candidates (a.k.a. parents), and conducts the
crossover operation between two (random-selected) par-
ent candidates, which enables relatively large exchanges
on molecular sub-graph between molecular graphs. How-
ever, GA is leveraging random-walk based mutation and
crossover operations (Jensen, 2019; Spiegel & Durrant,
2020) and is essentially based on brute-force trial and error.

On the other hand, Reinforcement learning (RL) methods
are good at navigating the discrete space via prioritizing
the promising searching branches and circumventing brute-
force search. The current RL-based methods (Olivecrona
et al., 2017; You et al., 2018; Zhou et al., 2019; Jin et al.,
2020) slightly left behind other state-of-the-art combina-
torial optimization methods (Fu et al., 2022; Huang et al.,
2021). The main reason is that current RL based molecule
optimization approaches are based on auto-regressive assem-
bling strategy, i.e., growing molecules iteratively via adding
a basic building block one time, where the building block
can be either a token in SMILES representation (Olivecrona
et al., 2017) or a substructure in molecular graph represen-
tation (You et al., 2018; Zhou et al., 2019; Jin et al., 2020).
Such assembling strategy are essentially local search meth-
ods, which hinders the algorithm’s ability to overcome the
rough optimization landscape (or energy barrier) and is easy
to be stuck in the local optimum (Conti et al., 2018; Liu
et al., 2021a).

Discussion. Among all the machine learning methods,
molecular graph level genetic algorithm (GA) exhibits state-
of-the-art performance in some standard molecule optimiza-
tion benchmarks (Brown et al., 2019; Huang et al., 2021).
The key reason is GA’s assembling manner. Specifically,
in each generation (iteration), GA maintains a population
of possible candidates (a.k.a. parents), and conducts the
crossover operation between two candidates to generate
new offspring, which enables thorough exploration to the
chemical space. However, there is still improvement space
for GA. GA are leveraging random-walk based mutation
and crossover operations (Jensen, 2019) and suffers from
brute-force trial and error strategy.

On the other hand, reinforcement learning approaches are
good at navigating the discrete space via prioritizing the
promising decisions that are worth investigating, for exam-
ple, AlphaGo successfully applied RL to defeat a profes-
sional human Go player (Silver et al., 2017). However, the
current RL based drug design methods (Olivecrona et al.,
2017; You et al., 2018; Zhou et al., 2019) slightly left behind
other state-of-the-art combinatorial optimization methods.
The main reason lies at the inferior assembling strategy,
which grows molecule in an auto-regressive fashion. It is
hard for this kind of local search strategy to overcome the



Table 3: Ablation studies. Arrows (↑, ↓) indicate the direction of better performance. For each metric, the best method
is underlined. RGA-pretrain is a variant of RGA that does not pretrain the policy neural network. RGA-KT (Knowledge
Transfer) is a variant of RGA that does not training policy neural network on different target proteins, i.e., optimizing ligand
for one target at a time. RGA-MU (mutation) is a variant of RGA that does not involve mutation operation in GA. That is,
all the ligands are generated via crossover operator. Correspondingly, RGA-CO (crossover) is a variant that does not use
crossover operation in GA, which means no mutation operator. Via comparing the results with RGA (full) in the first line,
we observe that removing either component would cause a drop in optimization performance (i.e., increase in TOP-100/10/1
scores).

Method TOP-100↓ TOP-10↓ TOP-1↓ Nov↑ Div↑ QED↑ SA↓
RGA (full) -11.867±0.170 -12.564±0.287 -12.869±0.473 100.0±0.0% 0.857±0.020 0.742±0.036 2.473±0.048

RGA - pretrain -11.443±0.219 -12.424±0.386 -12.435±0.654 100.0±0.0% 0.854±0.035 0.750±0.034 2.494±0.043

RGA - KT -11.434±0.169 -12.437±0.354 -12.502±0.603 100.0±0.0% 0.853±0.028 0.738±0.034 2.501±0.050

RGA - MU -10.919±0.166 -11.135±0.362 -11.747±0.455 100.0±0.0% 0.812±0.032 0.702±0.050 2.970±0.048

RGA - CO -9.866±0.169 -10.320±0.296 -10.793±0.501 100.0±0.0% 0.737±0.048 0.748±0.067 2.467±0.034

barrier of the objective, so it is easy to be trapped into the
local optimum.

In this paper, we attempt to enhance genetic algorithm using
reinforcement learning technique. Specifically, we propose
Reinforced Genetic Algorithm (RGA), which inherits the
assembling manner from genetic algorithm and use rein-
forcement learning to guide the search over the chemical
space. (Ahn et al., 2020) also combine RL and GA, which
uses LSTM (guided by RL agent) to imitate GA process,
however, it is unable to inherit the GA’s flexible assembling
manner due to the auto-regressive essence of LSTM.
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