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Abstract

Relation detection plays an important role in001
knowledge base question answering (KBQA),002
and it is critical for the final performance of003
KBQA systems. The previous works mainly004
focused on enriching the information repre-005
sentations of questions and relations, and ne-006
glected the interaction information of questions007
and relations and different tokens within the008
relation. In this paper, we propose a seman-009
tic enhanced relation detection model called010
ARCNN, which is carefully designed by com-011
bining BiGRU, multi-scale semantic extracted012
CNN, and different attention mechanisms in013
a seamless way. Moreover, we combine four014
levels of relation abstractions to ensure the in-015
tegrity of relation information and hence to en-016
rich the relation representation. The experi-017
mental results on two benchmarks show that018
our ARCNN model achieves new state-of-the-019
art accuracies of 96.42% for SimpleQuestions020
and 90.4% for WebQuestions. Moreover, it021
helps our KBQA system to yield the accuracy022
of 81.5% and the F1 score of 72.0% on two023
benchmarks, respectively.024

1 Introduction025

Knowledge base question answering (KBQA) sys-026

tems are developed with the growth of knowledge027

base such as WordNet (Miller, 1995), DBpedia028

(Auer et al., 2007), Freebase (Bollacker et al.,029

2008), and YAGO (Suchanek et al., 2007). A030

knowledge base usually contains a broad set of031

triples, where each triple is in the form of <Subject,032

Predicate, Object> and also called fact. KBQA033

systems enable users to answer questions more034

accurately and directly through operations such035

as question analysis, knowledge extraction, and036

knowledge reasoning on natural language questions037

(Deng et al., 2020). For example, there is a ques-038

tion "What is Christina Gabrielle’s profession?",039

where Christina Gabrielle is the entity mention and040

the profession is the predicate. The KBQA system041
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Figure 1: The process to answer the questions, and there
are four mainly steps to obtain the answer.

utilizes phrases detection, resource mapping, se- 042

mantic combination, and other methods to parse the 043

question and then uses a fact <Christina Gabrielle, 044

people.people.profession, singer&writer> in the 045

knowledge base to answer the question. Therefore, 046

singer&writer is the answer to the question. 047

The KBQA system is generally decomposed into 048

several subtasks, among which relation detection is 049

the most challenging one (Yu et al., 2018; Xu et al., 050

2018; Chen et al., 2019; Wu et al., 2019b). The 051

previous research revealed that most of the wrong 052

answers are caused by relation detection (He and 053

Golub, 2016; Zhang et al., 2018). Consequently, 054

the motivation of this paper is to improve the accu- 055

racy of relation detection and subsequently explore 056

the contributions to the KBQA system. Figure 1 057

shows the main subtasks of the KBQA system. 058

At present, although the knowledge base rela- 059

tion detection (KBRD) has been developed rapidly, 060

most studies still first enrich the semantic repre- 061

sentations of questions and relations, and then cal- 062

culate the similarity score between them, which 063

neglects two kinds of interaction information: be- 064

tween questions and relations, and among different 065

tokens within the relation. In addition, we find that 066

the previous works on relation abstraction was in- 067

complete, which may make the relation lose key 068

information in representation. For example, Yu 069

et al. (2017) utilized word-level and relation-level 070

relation abstractions for relation representation. Yu 071

et al. (2018) introduced the entity type information 072

(type-level) for relation detection. Luo et al. (2020) 073

only selected the whole relation (source-level) as 074

input for relation detection. To address the afore- 075
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mentioned problems, this paper proposes a novel076

framework called ARCNN, which can enhance the077

semantic information representations of questions078

and relations with the help of its well-designed079

framework. Moreover, we merge the aforemen-080

tioned four levels of relation abstractions to ensure081

the integrity of relation information.082

Our ARCNN model combines bidirectional083

gated recurrent units (BiGRUs) (Cho et al., 2014)084

and different attention mechanisms (Vaswani et al.,085

2017) to fuse the semantic information of questions086

and relations. Furthermore, ARCNN utilizes the087

residual connection (He et al., 2016; Vaswani et al.,088

2017) to ensure the completeness of the semantic089

information representation of relations. Because090

convolutional neural networks (CNNs) can gener-091

ate richer and more expressive feature representa-092

tions (Nathani et al., 2019), ARCNN exploits multi-093

scale CNNs to extract hierarchical information by094

integrating local information, which is also the key095

to our success compared with previous methods096

(Yu et al., 2017; Wu et al., 2019a; Yu et al., 2018;097

Chen et al., 2019).098

With the help of our ARCNN model, the accura-099

cies of relation detection achieve 96.42% on Sim-100

pleQuestions and 90.4% on WebQuestions, while101

the previous state-of-the-art (SOTA) accuracies are102

95.7% and 86.42% respectively. We further eval-103

uate the contribution of the improvement of the104

relation detection to the KBQA system. The results105

show that the accuracy is 81.5% on SimpleQues-106

tions and the F1 score is 72.0% on WebQuestions107

while the previous SOTA results are 80.9% and108

70.0% respectively. Therefore, the improvement of109

relation detection leads to an obvious performance110

boost of our KBQA system. The main contribu-111

tions of our work can be summarized as follows:112

• We design the ARCNN model for relation de-113

tection, which enhances the semantic informa-114

tion representations of questions and relations115

by attention-based BiGRUs and multi-scale116

CNNs.117

• We enrich the relation representations by fus-118

ing four levels of relation abstractions to our119

model, and ensure the integrity of relation in-120

formation.121

• We perform extensive experiments on both122

SimpleQuestions and WebQuestions. The ex-123

periments show that our model results in new124

SOTA accuracies on relation detection. It is125

the first time that the accuracy of relation de- 126

tection on WebQuestions exceeds 90% and 127

the accuracy of relation detection on Simple- 128

Questions exceeds 96%. 129

2 Related Work 130

2.1 Knowledge Base Question Answering 131

KBQA systems understand and parse natural lan- 132

guage questions and then utilize facts in the knowl- 133

edge base to automatically answer natural language 134

questions. The traditional methods for KBQA sys- 135

tems parse each natural language question into a 136

logical expression such as Lambda-DCS (Liang 137

et al., 2013) that can express the semantics of the 138

question and then map the logical expression into 139

a knowledge base supported structure queries such 140

as SPARQL. 141

There are two main research directions related 142

to KBQA systems. One is to implement the KBQA 143

system in a pipeline manner. KBQA systems are 144

usually divided into several subtasks (e.g., named 145

entity recognition, entity linking, and relation de- 146

tection). Some studies use deep learning to improve 147

the performance of KBQA systems by improving 148

a specific subtask (Yu et al., 2017; Petrochuk and 149

Zettlemoyer, 2018; Wu et al., 2019a; Chen et al., 150

2019; Yu et al., 2018). The other is to implement 151

the KBQA system in an end-to-end manner. Those 152

methods exploit various neural networks to map the 153

question and the candidate answers into dense vec- 154

tor representations respectively and calculate the 155

semantic similarity scores (dot product) between 156

them. By sorting the similarity scores between the 157

candidate answers and the question, the candidates 158

with the highest score will be selected as the answer 159

to the question (Bordes et al., 2014; Dong et al., 160

2015; Hao et al., 2017; Lukovnikov et al., 2017). 161

2.2 Relation Detection for KBQA 162

KBRD is different from general relation detection 163

in two aspects. On the one hand, the general rela- 164

tion detection is to extract relation from the text, 165

and the number of relations is usually less than 166

100. However, there are always thousands of re- 167

lations for KBRD (Bordes et al., 2015; Yu et al., 168

2017; Chen et al., 2019). Some methods viewed 169

KBRD as a multi-classification task to implement 170

the relation extraction by training a classifier (Yin 171

et al., 2016; Petrochuk and Zettlemoyer, 2018; Mo- 172

hammed et al., 2018). However, the performance 173

of relation extraction did not achieve their expected 174
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Figure 2: The overview of our ARCNN framework, which mainly includes four parts.

effect. On the other hand, KBRD always becomes175

a zero-shot learning task due to the unseen relations176

in training data (Yu et al., 2017). Those reasons177

make KBRD more challenging than general rela-178

tion detection.179

There are also some methods which map the180

question and the candidate relations into dense181

vectors respectively and then get the correct re-182

lation from candidate relations by calculating and183

comparing the semantic similarity scores between184

them. In order to enrich the semantic information185

representations of the questions and relation, vari-186

ous neural networks are used for relation detection187

(Yu et al., 2017; Zhang et al., 2018; Chen et al.,188

2019; Cui et al., 2021). Especially, pre-trained189

models in recent years provide better strategies to190

get more expressive representations and are widely191

used for KBRD (Lukovnikov et al., 2019; Chen192

and Li, 2020; Luo et al., 2020; Yan et al., 2021;193

Zhang et al., 2021; Kacupaj et al., 2021). There-194

fore, we test those strategies in our framework. In195

addition, the wide use of attention mechanism has196

also made a significant improvement in boosting se-197

mantic information representations of the questions198

and the relations (Qu et al., 2018; Nathani et al.,199

2019; Zhang et al., 2020). There are also other200

methods to construct various relation information201

representations (Yu et al., 2017; Zhang et al., 2018;202

Yu et al., 2018; Chen et al., 2019) to enrich the203

relation semantic. Therefore, in order to ensure204

the integrity of relation information, we merge four205

levels relation abstractions for relation detection.206

3 Our Approach207

3.1 Problem Definition208

First, given the question q and the candidate rela-209

tion set R = {r1, r2, ..., rl}, where l is the number210

of candidate relations. We then compare q with 211

each candidate relation ri from four levels of rela- 212

tion abstractions by our ARCNN and compute the 213

semantic similarity score between them. Finally, 214

we select the relation with the highest score as the 215

predicted relation (r̂+). The formula is as follows: 216

r̂+ = argmax
ri∈R

S(q, ri) 217

3.2 Attention Mechanism 218

Given three inputs for scaled dot-product attention 219

mechanism (Vaswani et al., 2017), which are the 220

query sequence Qinput ∈ RQ×D, the key sequence 221

Kinput ∈ RK×D and the value sequence Vinput ∈ 222

RV×D, where Q,K and V are the lengths of their 223

respective sequences and D is the vector dimension. 224

The attention is computed below: 225

Attention(Q,K,V) = softmax(
QKT

√
D

)V 226

227
Q = QinputWq,K = KinputWk,V = VinputWv 228

where Wq,Wk and Wv ∈ RD×D are learnable 229

projection parameter matrices, 1/
√
D is the scal- 230

ing factor, T denotes matrix transformation. If 231

Qinput = Kinput = Vinput, the attention is called 232

self-attention. 233

3.3 Model Framework 234

3.3.1 Input Module 235

The question is represented as q = {q1, q2, ..., qm}, 236

where m is the number of words in the ques- 237

tion. For the question "what city was <e> born", 238

which is obtained by replacing the entity men- 239

tion "John Santos" in the original question "what 240

city was John Santos born" with <e>, it has five 241

words and hence q = {q1, q2, q3, q4, q5}. The re- 242

lation can be represented as r = {r1, r2, ..., rn}, 243
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where n = s + w + p + t, s represents the244

number of source-level relation representations,245

w stands for the number of word-level rela-246

tion representations, p denotes the number of247

relation-level relation representations, and t means248

the number of type-level relation representations.249

For the relation "people.person.place_of_birth",250

it has one source-level relation representation251

{"people.person.place_of_birth"}, three word-252

level relation representations {"place", "of",253

"birth"}, one relation-level relation representation254

{"place_of_birth"}, and two type-level relation rep-255

resentations {"people", "person"}. The distributed256

representations of the question and the relation are257

shown as follows.258

qe = {q1e , q2e , ..., qme }259
260

re = {r1e , r2e , ..., rne }261

where qe ∈ Rm×d, re ∈ Rn×d, d is the vector262

dimension.263

3.3.2 Semantic Representation and Fusion264

Module265

Through this module, we can obtain the semantic266

information representation after the fusion of the267

question and the relation h ∈ Rn×2d, which mainly268

includes three steps. In the first step, our model269

exploits BiGRU to learn the semantic information270

of question q̄ = {q̄1, q̄2, ..., q̄m} and relation r̄ =271

{r̄1, r̄2, ..., r̄n}, where q̄i and r̄j are processed as272

follows:273

q̄i = BiGRU(qe, i),∀i ∈ [1, 2, ...,m]274
275

r̄j = BiGRU(re, j), ∀j ∈ [1, 2, ..., n]276

where q̄i = [
→
qi;
←
qi] is obtained by concatenat-277

ing the forward hidden state sequence
→
qi =278

{→q1,
→
q2, ...,

→
qm} and the backward hidden state se-279

quence
←
qi = {←q1,

←
q2, ...,

←
qm}. So q̄ is the hidden280

state generated by BiGRU at time i over the in-281

put sequence qe. r̄j has a similar processing and282

meaning as q̄i. [·; ·] is the concatenation operator.283

In the second step, ARCNN utilizes the self-284

attention mechanism to capture the internal corre-285

lation of different relation tokens. Using scaled286

dot-product attention, we obtain the attention result287

ra by the following formula:288

ra = Attention(r̄W1, r̄W2, r̄W3)289

where ra ∈ Rn×2d, r̄ ∈ Rn×2d. W1, W2, and290

W3 ∈ R2d×2d are learnable parameter matrices.291

In order to ensure the completeness of the se- 292

mantic information of relation, ARCNN performs 293

residual connection between ra and r̄, which is 294

shown below: 295

rr = ra +⃝r̄ 296

where rr ∈ Rn×2d, +⃝ denotes the point-wise sum- 297

mation operator. 298

In the final step, we obtain the result of infor- 299

mation fusion h by taking both enhanced relation 300

semantic information representation rr and ques- 301

tion semantic representation q̄ as input to scaled 302

dot-product attention as shown below: 303

h = Attention(rrW4, q̄W5, q̄W6) 304

where q̄ ∈ Rm×2d. W4, W5, and W6 ∈ R2d×2d are 305

learnable parameter matrices. 306

3.3.3 Feature Extraction Module 307

We exploit another BiGRU to learn the semantic 308

information from h, which is the output of infor- 309

mation fusion from above module. We feed h into 310

BiGRU and then obtain the hidden state represen- 311

tation g ∈ Rn×2d by the following formula: 312

gj = BiGRU(h, j), ∀j ∈ [1, 2, ..., n] (1) 313

314
g = {g1, g2, ..., gn} (2) 315

After that, we employ two strategies to extract 316

rich features of learned semantic information g. 317

One is that we utilize average-pooling and max- 318

pooling operations to reduce our model parameters 319

and prevent over-fitting when executing feature ex- 320

traction. The aforementioned two pooling opera- 321

tions on g are shown in Eq.(3). We concatenate 322

the vectors obtained from the above two pooling 323

operations and output the semantic information rep- 324

resentation s as shown in Eq.(4). 325

ga =
n∑

j=1

gj
n
, gm =

n
max
j=1

gj (3) 326

327
s = [ga; gm] (4) 328

where ga ∈ R2d, gm ∈ R2d, and s ∈ R4d 329

The other is that we employ CNNs to extract 330

features from g. We first apply the 1D convolution 331

filters m ∈ Rk(2d) to capture the features of g with 332

a window size k (k consecutive tokens), and obtain 333

a new feature xi according to the formula below: 334

xi = f(m · gi:i+k−1 + b) 335
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where gi:i+k−1 means the window with k tokens, f336

is the non-liner activation function ReLU , b ∈ R337

is the bias term.338

By sliding convolution filter on g with a cer-339

tain step size, we can get a new feature map340

x = [x1, x2, ..., xn−k+1]. We then apply max-341

pooling operation on x ∈ Rn−k+1 and take the342

maximum value x̂ = max{x} as the feature corre-343

sponding to a particular filter. In order to enhance344

the semantic representation and capture the multi-345

scale features of g, we use multiple filters with346

different windows sizes to extract features and get347

several features. Finally, we output a feature map348

x̂ = [x̂1; x̂2; ...; x̂s] ∈ R4d (s is the number of fil-349

ters) by concatenating the features obtained by the350

max-pooling operations.351

3.3.4 Output Module352

In this module, we first construct a fixed-length353

vector c = [x̂; s] ∈ R8d by concatenating the re-354

sults of two feature extraction strategies. Then we355

exploit a multi-layer perceptron (MLP), which has356

three fully connected layers with ReLU activation357

function and dropout layer, to compute the seman-358

tic similarity score S(q, r) between the question359

and the relation. The formula is shown below:360

S(q, r) = δ(w3 · σ(w2 · σ(w1 · c + b1) + b2) + b3)361

where w1,w2 and w3 are the learnable weights of362

MLP layer, b1, b2 and b3 are the bias terms, σ is the363

ReLU activation function, and δ is the sigmoid364

activation function.365

During our ARCNN model training, we utilize366

the ranking loss as the training objective to maxi-367

mize the margin between gold relation and negative368

relations. The ranking loss can be computed as fol-369

lows:370

L = max{0, γ − S(q, r+) + S(q, r−)}371

where γ is the margin value and set to 0.5, r− is372

the negative relation set of question q, and r+ is373

the positive relation.374

4 Experiments375

4.1 Datasets376

SimpleQuestions is constructed by (Bordes et al.,377

2015), which contains over 100,000 samples. Each378

question in SimpleQuestions has a corresponding379

fact from FB2M that provides the answer and ex-380

plains this question, which is called the single-381

relation question. The FB2M is a Freebase1 subset 382

with 2M entities (Bordes et al., 2015). SimpleQues- 383

tions is split into the training set, validation set, and 384

test set, which contain 75,722, 10,815, and 21,687 385

samples, respectively. 386

WebQuestions is proposed by Berant et al. 387

(2013) for KBQA, which contains both single- 388

relation samples (61%) and multi-relation samples 389

(39%). It only has a training set with 3,116 samples 390

and a test set with 1,649 samples. In our experi- 391

ment, we divide the training set into a training set 392

and a validation set at a ratio of 9:1, and use the test 393

set for our model testing. The datasets2 for relation 394

detection are released by (Yin et al., 2016; Yu et al., 395

2017). 396

4.2 Experimental Details 397

We implement our model using PyTorch v1.8.1 and 398

train it on a single Nvidia Titan RTX PCI-E GPU. 399

All word embeddings are initialized by the pre- 400

trained GloVe3 with 300 dimensions and updated 401

during training. The out-of-vocabulary words are 402

randomly initialized by uniformly sampling from 403

(-0.5,0.5). During the experiment, we set the initial 404

learning rate to 0.001, the optimization strategy to 405

Adamax, the batch size to 128, the loss margin to 406

0.5, the dropout rate to 0.35, and the size of hidden 407

states for BiGRUs to 300. In our ARCNN model, 408

its CNNs have four filters, whose sizes are 2, 3, 4, 409

and 5, respectively. For other parameter settings, 410

please refer to the source code available at GitHub4 411

for the details. 412

4.3 Results 413

This section reports the relation detection results on 414

SimpleQuestions and WebQuestions, where source, 415

words, relation and types correspond to the four 416

levels of relation abstractions respectively. In Table 417

1, we compare the performance of our ARCNN 418

model with other baselines on the test datasets of 419

SimpleQuestions and WebQuestions (first block), 420

i.e., AMPCNN (Yin et al., 2016), HR-BiLSTM (Yu 421

et al., 2017), Multi-View (Yu et al., 2018), QURRD 422

(Xu et al., 2018), MVA-MTQA-net (Deng et al., 423

2019), FOFE-net (Wu et al., 2019a), KRD (Chen 424

et al., 2019), BERT (Lukovnikov et al., 2019), 425

DAM (Chen and Li, 2020), and BiGRU (Cui et al., 426

2021). 427

1https://developers.google.com/freebase
2https://github.com/Gorov/KBQA_RE_data
3https://nlp.stanford.edu/projects/glove/
4https://github.com/example/ARCNN
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Approach Relation Input SimpleQuestions WebQuestions
AMPCNN (Yin et al., 2016) words 91.3 -
HR-BiLSTM(Yu et al., 2017) words + rel_names 93.3 82.53
Multi-View(Yu et al., 2018) entity pair + relation + type 93.75 85.95
QURRD(Xu et al., 2018) relation 94.2 86.42
MVA-MTQA-net(Deng et al., 2019) word + knowledge 95.7 85.8
FOFE-net(Wu et al., 2019a) relation 93.3 83.26
KRD(Chen et al., 2019) words + relation 93.5 85.72
BERT(Lukovnikov et al., 2019) relation 83.6 -
DAM(Chen and Li, 2020) words 93.3 84.1
BiGRU(Cui et al., 2021) relation 81.16 -
ARCNN source + words + relation + types 96.42 (+0.72) 90.4 (+3.98)

w/o multi-scale semantic extracted CNN source + words + relation + types 95.14 82.92
w/o residual connection source + words + relation + types 95.54 84.62
w/o self-attention source + words + relation + types 95.70 82.19
replacing attention with concatenation source + words + relation + types 94.94 81.52
replacing BiGRU with Transformer for encode source + words + relation + types 95.74 88.69
replacing pre-trained GloVe with BERT source + words + relation + types 94.20 75.40
w/o source words + relation + types 95.93 88.88
w/o source and types words + relation 95.97 86.32
w/o source, relation, and types words 95.90 85.90

Table 1: The accuracies of relation detection on SimpleQuestions and WebQuestions (test set) using different
strategies, where w/o is the abbreviate of without. The first block shows the performance of baselines. The numbers
in brackets represent the increasement of our model relative to the SOTA results.

As can be seen from Table 1, our model achieves428

the best accuracies of 96.42% for SimpleQuestions429

and 90.4% for WebQuestions, and outperforms the430

previous SOTA work on both benchmarks. Since431

the accuracies for SimpleQuestions are above 90%,432

the previous work (Yu et al., 2018) had predicted433

that there is still room for improvement for We-434

bQuestions. Our ARCNN model achieves better435

performance than their expection by yielding the436

accuracy 90.4% for WebQuestions.437

4.4 Ablation Tests of ARCNN438

To evaluate the impacts of the different components439

of our model, we conduct the experiments with the440

following different strategies.441

• w/o multi-scale semantic extracted CNN442

We remove the CNNs from Feature Extraction443

Module, and only use the average-pooling and444

max-pooling operations for feature extraction.445

• w/o residual connection We eliminate the446

residual connection from Semantic Represen-447

tation and Fusion Module, and directly use448

the self-attention results and question repre-449

sentation for semantic information fusion.450

• w/o self-attention We get rid of the self-451

attention from ARCNN, and directly fuse the452

semantic information of the question and the453

relation after they encode respectively.454

• replacing attention with concatenation We455

employ concatenation operation instead of456

attention for semantic information fusion of 457

questions and relations. 458

• replacing BiGRU with Transformer for en- 459

code We utilize the Transformer encoder to 460

replace the BiGRU for question and relation 461

encode. 462

• replacing pre-trained GloVe with BERT We 463

employ pre-trained BERT (BERT-Base, Un- 464

cased) to replace the pre-trained GloVe for to- 465

kens initialization of questions and relations. 466

• different strategies for relation input We 467

perform some ablation experiments to com- 468

pare the influence of different relation inputs 469

on the accuracy of our ARCNN model. 470

By analyzing the ablation experimental results 471

in Table 1, we can draw the following conclusions: 472

1. Without employing multi-scale CNNs as the 473

feature extraction method, this strategy makes 474

the accuracies dropped rapidly. It indicates 475

that it is significant to use multi-scale CNNs 476

to extract features, and multiple convolution 477

filter sizes can extract the features of contin- 478

uous tokens with different lengths and hence 479

enrich the semantic information feature of the 480

representation. Moreover, residual connection 481

is also significant in ensuring the integrity of 482

semantic information. 483

2. It is important to employ the self-attention 484

mechanism to capture the mutual influences 485
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the color, the greater the impact.

within the relation. Consequently, utilizing the486

attention mechanism to implement the fusion487

of semantic information between questions488

and relations is much more effective than us-489

ing simple semantic information fusion (e.g.,490

concatenation operation). We can also get this491

conclusion from Figure 3. For example, the492

"birth" in relation has the most significant im-493

pact on the "born" in the question, which is494

consistent with our basic intuition.495

3. We utilize the new technique Transformer for496

tokens encoding and the famous pre-trained497

model BERT for tokens initialization of ques-498

tions and relation. However, both methods fail499

to improve relation detection accuracy in our500

experiments. It shows that the Transformer501

encoder is not as good as BiGRU in captur-502

ing local information, and its shortcomings503

in obtaining position information make the504

Transformer encoder fail to achieve ideal re-505

sults in relation detection. Moreover, the pre-506

trained BERT model may not be suitable for507

our ARCNN framework.508

4. We use other strategies (e.g. "words + relation509

+ types", "words + relation", and "words", etc)510

as input, and observe that the experimental re-511

sults on both SimpleQuestions and WebQues-512

tions have performance degradation. It sug-513

gests that our ARCNN has achieved obvious514

advantages by combining more levels of rela-515

tion abstractions as model input, which can516

capture the comprehensive semantic informa-517

tion of relations.518

4.5 Error Analysis519

In this section, we analyze the errors of relation de-520

tection, which mainly contains the following three521

categories. Table 2 shows the number and rate of522

error samples in different categorical errors in the523

relation detection results of two benchmarks.524

Error Samples SQ Rate(%) WQ Rate(%)
Question Ambiguity 361 46.5 91 57.6
Semantic Deficiency 90 11.6 7 4.4

Dataset Noise 158 20.4 6 3.8
Others 167 21.5 54 34.2
Sum 776 100 158 100

Table 2: The number and rate of error samples in differ-
ent categorical errors in the relation detection results of
SimpleQuestions and WebQuestions.

• Question Ambiguity: It makes the question 525

ambiguity when we replace the entity mention 526

in the question with "<e>". For example, 527

through the question of "which country uses 528

<e>?", it is difficult for us to understand the 529

real meaning of the original question, which 530

is "which country uses ndali language?". 531

• Semantic Deficiency: We get a short ques- 532

tion pattern after replacing the entity men- 533

tion in the question with "<e>". It does not 534

make grammatical sense. For example, the 535

templates corresponding to the question "who 536

wrote nocturnal pleasure?" and "who wrote 537

love comes quickly?" are both "who wrote 538

<e>?". So it is difficult to understand the 539

semantic information of question. And hence 540

a detection error occurs. 541

• Dataset Noise: This kind of errors is very 542

common, especially in SimpleQuestions. For 543

example, through the question of "where was 544

<e> born?", it is difficult to infer whether the 545

question is about the nationality or birthplace 546

of someone. So we may get the wrong relation 547

for this question. Especially when there are a 548

few training samples, it will be more common 549

and more difficult to infer the correct relation. 550

• Others: We classify the rest error samples 551

into the fourth category. 552

According to the statistics of the three categori- 553

cal errors in Table 2, we find that a larger proportion 554

of errors in SimpleQuestions and WebQuestions 555

are caused by question ambiguity. Therefore, our 556

future work is to make the question representa- 557

tions more expressive and to represent the ques- 558

tions more precisely. Moreover, we calculate the 559

number of each category errors in 1-hop and 2-hop 560

relations in WebQuestions. As we can see from 561

Table 3, the accuracy of 2-hop (multi-relation) rela- 562

tions is 88.7%, and also exceeds the SOTA results 563

(QURRD). It shows that our ARCNN model does 564
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WQ 1-hop 2-hop Sum
Original Samples 1046 603 1649

Error Samples 90 68 158
Acc(%) 91.4 88.7 90.4

Table 3: The number and ratio of different relation types
(1-hop or 2-hops) in the original test samples and error
samples in WebQuestions.

Dataset SQ WQ
Relations Seen Unseen Seen Unseen

Original Data 21526 161 (0.7%) 1579 70 (4.2%)
Error Samples 754 18 (2.4%) 114 44 (27.8%)

Rate(%) 96.5 88.8 92.8 37.1

Table 4: Statistics on the relations has been seen/unseen
in the training data for original and error samples in
SimpleQuestions and WebQuestions. The numbers in
brackets denote the proportion of unseen relations in
total samples (original or error samples).

not give poor accuracies due to the complexity of565

the relation, which indicates that our model is still566

effective in predicting complex relations.567

From another perspective, the previous ap-568

proaches can obtain a high accuracy for samples569

whose relations have been seen in the training data,570

while the performance will drop rapidly for unseen571

relations (Wu et al., 2019b). Therefore, we have572

collected statistics on the relations that have been573

seen/unseen in the training data for error samples574

in SimpleQuestions and WebQuestions. As can be575

seen from Table 4, the performance of ARCNN576

does not drop too much for the unseen relations in577

SimpleQuestions (the accuracy drops from 96.5%578

to 88.8%) but falls rapidly for the unseen relations579

in WebQuestions (the accuracy drops from 92.8%580

to 37.1%). For SimpleQuestions, since the pro-581

portion of unseen relation samples in the original582

dataset is very small (0.7%), it can not significantly583

contribute to the performance of relation detection584

to pay much more attention to the research on un-585

seen relations. However, for the WebQuestions, it586

is meaningful to improve the relation detection on587

the unseen relations (e.g., zero-shot learning), be-588

cause unseen relations have a larger proportion in589

WebQuestions (4.2%) and there are more error sam-590

ples caused by unseen relations (27.8%). There-591

fore, in future work, we will pay more attention592

to zero-shot learning for WebQuestions and focus593

more on enhancing the semantic representations of594

questions and relations for SimpleQuestions.595

4.6 KBQA Results596

In order to evaluate how the new SOTA accuracy597

of relation detection could benefit the KBQA sys-598

Approach SQ WQ
MemNNs (Bordes et al., 2015) 63.9 42.2
HR-BiLSTM (Yu et al., 2017) 78.7 63.9
BiLSTM-CRF&BiLSTM (Petrochuk
and Zettlemoyer, 2018)

78.1 -

PR+JFS (Hao et al., 2018) 80.2 -
FOFE-net (Wu et al., 2019a) 77.3 67.6
BERT (Lukovnikov et al., 2019) 77.3 -
BERT-based (Luo et al., 2020) 80.9 -
DAM (Chen and Li, 2020) - 70.0
BiGRU-CRF&BiGRU (Cui et al., 2021) 80.37 -
Our method 81.5 72.0

Table 5: The performance of KBQA systems on Simple-
Questions and WebQuestions using different methods.

tem, we continue to complete the subsequent ex- 599

periments of the KBQA system, including entity 600

recognition, entity linking, and fact selection. The 601

experimental results of our KBQA system are re- 602

ported in Table 5, where we compare the perfor- 603

mance of our method with other baselines, i.e., 604

MemNN (Bordes et al., 2015), HR-BiLSTM (Yu 605

et al., 2017), BiLSTM-CRF&BiLSTM (Petrochuk 606

and Zettlemoyer, 2018), PR+JFS (Hao et al., 2018), 607

FOFE-net (Wu et al., 2019b), BERT (Lukovnikov 608

et al., 2019), BERT-based (Luo et al., 2020), DAM 609

(Chen and Li, 2020), and BiGRU-CRF&BiGRU 610

(Cui et al., 2021). As shown in Table 5, the F1 611

score achieves 72.0% on WebQuestions, which 612

exceeds the SOTA work (DAM) by 2.0%. On 613

SimpleQuestions, the accuracy of our KBQA sys- 614

tem reaches 81.5%, which exceeds the SOTA work 615

(BERT-based) by 0.6%. It suggests that relation 616

detection plays a critical role in the KBQA system, 617

and hence directly contributes to the performance 618

of the KBQA system. 619

5 Conclusion 620

This paper introduces a new neural network frame- 621

work called ARCNN to achieve more precise 622

matching between questions and relations in a se- 623

mantic space. Our ARCNN model combines Bi- 624

GRU, multi-scale semantic extracted CNN, and 625

different attention mechanisms to enhance the se- 626

mantic information interaction and the semantic 627

information representations of questions and rela- 628

tions. To construct richer relation representations, 629

ARCNN merges four levels of relation abstractions 630

to capture semantic and literal relevance informa- 631

tion, which makes our model match questions and 632

relations more precisely. The experimental results 633

show that our approach is more competitive than 634

others in the relation detection on both SimpleQues- 635

tions and WebQuestions. 636
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