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Abstract

Relation detection plays an important role in
knowledge base question answering (KBQA),
and it is critical for the final performance of
KBQA systems. The previous works mainly
focused on enriching the information repre-
sentations of questions and relations, and ne-
glected the interaction information of questions
and relations and different tokens within the
relation. In this paper, we propose a seman-
tic enhanced relation detection model called
ARCNN, which is carefully designed by com-
bining BiGRU, multi-scale semantic extracted
CNN, and different attention mechanisms in
a seamless way. Moreover, we combine four
levels of relation abstractions to ensure the in-
tegrity of relation information and hence to en-
rich the relation representation. The experi-
mental results on two benchmarks show that
our ARCNN model achieves new state-of-the-
art accuracies of 96.42% for SimpleQuestions
and 90.4% for WebQuestions. Moreover, it
helps our KBQA system to yield the accuracy
of 81.5% and the F} score of 72.0% on two
benchmarks, respectively.

1 Introduction

Knowledge base question answering (KBQA) sys-
tems are developed with the growth of knowledge
base such as WordNet (Miller, 1995), DBpedia
(Auer et al., 2007), Freebase (Bollacker et al.,
2008), and YAGO (Suchanek et al., 2007). A
knowledge base usually contains a broad set of
triples, where each triple is in the form of <Subject,
Predicate, Object> and also called fact. KBQA
systems enable users to answer questions more
accurately and directly through operations such
as question analysis, knowledge extraction, and
knowledge reasoning on natural language questions
(Deng et al., 2020). For example, there is a ques-
tion "What is Christina Gabrielle’s profession?",
where Christina Gabrielle is the entity mention and
the profession is the predicate. The KBQA system

Q: What was the soundtrack for the movie ponyo ?

m.0dvypmt .42

Figure 1: The process to answer the questions, and there
are four mainly steps to obtain the answer.

utilizes phrases detection, resource mapping, se-
mantic combination, and other methods to parse the
question and then uses a fact <Christina Gabrielle,
people.people.profession, singer&writer> in the
knowledge base to answer the question. Therefore,
singer&writer is the answer to the question.

The KBQA system is generally decomposed into
several subtasks, among which relation detection is
the most challenging one (Yu et al., 2018; Xu et al.,
2018; Chen et al., 2019; Wu et al., 2019b). The
previous research revealed that most of the wrong
answers are caused by relation detection (He and
Golub, 2016; Zhang et al., 2018). Consequently,
the motivation of this paper is to improve the accu-
racy of relation detection and subsequently explore
the contributions to the KBQA system. Figure 1
shows the main subtasks of the KBQA system.

At present, although the knowledge base rela-
tion detection (KBRD) has been developed rapidly,
most studies still first enrich the semantic repre-
sentations of questions and relations, and then cal-
culate the similarity score between them, which
neglects two kinds of interaction information: be-
tween questions and relations, and among different
tokens within the relation. In addition, we find that
the previous works on relation abstraction was in-
complete, which may make the relation lose key
information in representation. For example, Yu
et al. (2017) utilized word-level and relation-level
relation abstractions for relation representation. Yu
et al. (2018) introduced the entity type information
(type-level) for relation detection. Luo et al. (2020)
only selected the whole relation (source-level) as
input for relation detection. To address the afore-



mentioned problems, this paper proposes a novel
framework called ARCNN, which can enhance the
semantic information representations of questions
and relations with the help of its well-designed
framework. Moreover, we merge the aforemen-
tioned four levels of relation abstractions to ensure
the integrity of relation information.

Our ARCNN model combines bidirectional
gated recurrent units (BiGRUs) (Cho et al., 2014)
and different attention mechanisms (Vaswani et al.,
2017) to fuse the semantic information of questions
and relations. Furthermore, ARCNN utilizes the
residual connection (He et al., 2016; Vaswani et al.,
2017) to ensure the completeness of the semantic
information representation of relations. Because
convolutional neural networks (CNNs) can gener-
ate richer and more expressive feature representa-
tions (Nathani et al., 2019), ARCNN exploits multi-
scale CNNs to extract hierarchical information by
integrating local information, which is also the key
to our success compared with previous methods
(Yuetal., 2017, Wu et al., 2019a; Yu et al., 2018;
Chen et al., 2019).

With the help of our ARCNN model, the accura-
cies of relation detection achieve 96.42% on Sim-
pleQuestions and 90.4% on WebQuestions, while
the previous state-of-the-art (SOTA) accuracies are
95.7% and 86.42% respectively. We further eval-
uate the contribution of the improvement of the
relation detection to the KBQA system. The results
show that the accuracy is 81.5% on SimpleQues-
tions and the Fj score is 72.0% on WebQuestions
while the previous SOTA results are 80.9% and
70.0% respectively. Therefore, the improvement of
relation detection leads to an obvious performance
boost of our KBQA system. The main contribu-
tions of our work can be summarized as follows:

* We design the ARCNN model for relation de-
tection, which enhances the semantic informa-
tion representations of questions and relations
by attention-based BiGRUs and multi-scale
CNNs .

* We enrich the relation representations by fus-
ing four levels of relation abstractions to our
model, and ensure the integrity of relation in-
formation.

* We perform extensive experiments on both
SimpleQuestions and WebQuestions. The ex-
periments show that our model results in new
SOTA accuracies on relation detection. It is

the first time that the accuracy of relation de-
tection on WebQuestions exceeds 90% and
the accuracy of relation detection on Simple-
Questions exceeds 96%.

2 Related Work

2.1 Knowledge Base Question Answering

KBQA systems understand and parse natural lan-
guage questions and then utilize facts in the knowl-
edge base to automatically answer natural language
questions. The traditional methods for KBQA sys-
tems parse each natural language question into a
logical expression such as Lambda-DCS (Liang
et al., 2013) that can express the semantics of the
question and then map the logical expression into
a knowledge base supported structure queries such
as SPARQL.

There are two main research directions related
to KBQA systems. One is to implement the KBQA
system in a pipeline manner. KBQA systems are
usually divided into several subtasks (e.g., named
entity recognition, entity linking, and relation de-
tection). Some studies use deep learning to improve
the performance of KBQA systems by improving
a specific subtask (Yu et al., 2017; Petrochuk and
Zettlemoyer, 2018; Wu et al., 2019a; Chen et al.,
2019; Yu et al., 2018). The other is to implement
the KBQA system in an end-to-end manner. Those
methods exploit various neural networks to map the
question and the candidate answers into dense vec-
tor representations respectively and calculate the
semantic similarity scores (dot product) between
them. By sorting the similarity scores between the
candidate answers and the question, the candidates
with the highest score will be selected as the answer
to the question (Bordes et al., 2014; Dong et al.,
2015; Hao et al., 2017; Lukovnikov et al., 2017).

2.2 Relation Detection for KBQA

KBRD is different from general relation detection
in two aspects. On the one hand, the general rela-
tion detection is to extract relation from the text,
and the number of relations is usually less than
100. However, there are always thousands of re-
lations for KBRD (Bordes et al., 2015; Yu et al.,
2017; Chen et al., 2019). Some methods viewed
KBRD as a multi-classification task to implement
the relation extraction by training a classifier (Yin
et al., 2016; Petrochuk and Zettlemoyer, 2018; Mo-
hammed et al., 2018). However, the performance
of relation extraction did not achieve their expected
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Figure 2: The overview of our ARCNN framework, which mainly includes four parts.

effect. On the other hand, KBRD always becomes
a zero-shot learning task due to the unseen relations
in training data (Yu et al., 2017). Those reasons
make KBRD more challenging than general rela-
tion detection.

There are also some methods which map the
question and the candidate relations into dense
vectors respectively and then get the correct re-
lation from candidate relations by calculating and
comparing the semantic similarity scores between
them. In order to enrich the semantic information
representations of the questions and relation, vari-
ous neural networks are used for relation detection
(Yu et al., 2017; Zhang et al., 2018; Chen et al.,
2019; Cui et al., 2021). Especially, pre-trained
models in recent years provide better strategies to
get more expressive representations and are widely
used for KBRD (Lukovnikov et al., 2019; Chen
and Li, 2020; Luo et al., 2020; Yan et al., 2021;
Zhang et al., 2021; Kacupaj et al., 2021). There-
fore, we test those strategies in our framework. In
addition, the wide use of attention mechanism has
also made a significant improvement in boosting se-
mantic information representations of the questions
and the relations (Qu et al., 2018; Nathani et al.,
2019; Zhang et al., 2020). There are also other
methods to construct various relation information
representations (Yu et al., 2017; Zhang et al., 2018;
Yu et al., 2018; Chen et al., 2019) to enrich the
relation semantic. Therefore, in order to ensure
the integrity of relation information, we merge four
levels relation abstractions for relation detection.

3  Our Approach
3.1 Problem Definition

First, given the question q and the candidate rela-
tion set R = {ry,ry, ..., r;}, where [ is the number

of candidate relations. We then compare q with
each candidate relation r; from four levels of rela-
tion abstractions by our ARCNN and compute the
semantic similarity score between them. Finally,
we select the relation with the highest score as the
predicted relation (+1). The formula is as follows:

it = argmax S(q, ;)

Ir,eR
3.2 Attention Mechanism

Given three inputs for scaled dot-product attention
mechanism (Vaswani et al., 2017), which are the
query sequence Q;y,,,,; € RO*P the key sequence
Kinput € RE*D and the value sequence Vipput €
RY*P where Q, K and V are the lengths of their
respective sequences and D is the vector dimension.
The attention is computed below:

QK"
vD
Q = Qinput an K= Kinputh7 V= Vinputh

where W,, W, and W, € RPXD are learnable

projection parameter matrices, 1/v/D is the scal-
ing factor, 7" denotes matrix transformation. If

Qinput = Kinput = Vinput, the attention is called
self-attention.

Attention(Q, K, V) = softmax(

WV

3.3 Model Framework

3.3.1 Input Module

The question is represented as q = {q1, G2, .., ¢m }»
where m is the number of words in the ques-
tion. For the question "what city was <e> born",
which is obtained by replacing the entity men-
tion "John Santos" in the original question "what
city was John Santos born" with <e>, it has five
words and hence q = {q1, ¢2,¢3,q4,q5}. The re-
lation can be represented as r = {ry,r2,...,7},



where n = s + w + p + t, s represents the
number of source-level relation representations,
w stands for the number of word-level rela-
tion representations, p denotes the number of
relation-level relation representations, and ¢ means
the number of type-level relation representations.
For the relation "people.person.place_of _birth",
it has one source-level relation representation
{"people.person.place_of _birth"}, three word-
level relation representations {'place”, "of",
"birth"}, one relation-level relation representation
{"place_of _birth"}, and two type-level relation rep-
resentations { "people", "person"}. The distributed
representations of the question and the relation are
shown as follows.

q = {q,4%, -, q"}

_ 1,2 n
re ={r.,rs,...,r}

where q, € R™>d ¢, e R4 { is the vector
dimension.

3.3.2 Semantic Representation and Fusion
Module

Through this module, we can obtain the semantic
information representation after the fusion of the
question and the relation h € R™*%¢, which mainly
includes three steps. In the first step, our model
exploits BiGRU to learn the semantic information
of question q = {qy, qy, ---,q,, } and relation ¥ =
{ri,Tr2,...,r,}, where q; and r; are processed as
follows:

d; = BiGRU(q,,i),Vi € [1,2, ..., m]
¥ = BiGRU(re, 5),¥j € [1,2, ..., n]

where q;, = [(Tz,&z] is obtained by concatenat-
ing the forward hidden state sequence (i =
{q_{, (E, e q?n} and the backward hidden state se-
+— — — _ . .

quence q; = {q1,42, -, ¢m}- So q is the hidden
state generated by BiGRU at time ¢ over the in-
put sequence (.. r; has a similar processing and
meaning as ;. [-; -] is the concatenation operator.

In the second step, ARCNN utilizes the self-
attention mechanism to capture the internal corre-
lation of different relation tokens. Using scaled
dot-product attention, we obtain the attention result
r, by the following formula:

r, = Attention(tWy,tWa, rW3)

where r, € R"*24 § ¢ R"*2d_ W, W,, and
W3 € R24%24 are learnable parameter matrices.

In order to ensure the completeness of the se-
mantic information of relation, ARCNN performs
residual connection between r, and r, which is
shown below:

r, =r,®r

where r, € R"*2?, @ denotes the point-wise sum-
mation operator.

In the final step, we obtain the result of infor-
mation fusion h by taking both enhanced relation
semantic information representation r, and ques-
tion semantic representation q as input to scaled
dot-product attention as shown below:

h = Attention(r, Wy, qW5, qWs)

where q € R™*2d W, Ws, and Wg € R24%2d gre
learnable parameter matrices.

3.3.3 Feature Extraction Module

We exploit another BiG RU to learn the semantic
information from h, which is the output of infor-
mation fusion from above module. We feed h into
BiG RU and then obtain the hidden state represen-
tation g € R™*?¢ by the following formula:

g = BiGRU(h,j),¥j € [1,2,...,n] (1)

g= {g17g27"'7gn} (2)

After that, we employ two strategies to extract
rich features of learned semantic information g.
One is that we utilize average-pooling and max-
pooling operations to reduce our model parameters
and prevent over-fitting when executing feature ex-
traction. The aforementioned two pooling opera-
tions on g are shown in Eq.(3). We concatenate
the vectors obtained from the above two pooling
operations and output the semantic information rep-
resentation s as shown in Eq.(4).

n
gj n
=D &n-maxg ()
7j=1
S = (84} 8m “)

where g, € R*, g € R? ands € R

The other is that we employ CNNs to extract
features from g. We first apply the 1D convolution
filters m € R¥(29) o capture the features of g with
a window size k (k consecutive tokens), and obtain
a new feature x; according to the formula below:

ri=f(m-g ;.\ p 1+D)



where g;.;. ;.1 means the window with k tokens, f
is the non-liner activation function ReLU, b € R
is the bias term.

By sliding convolution filter on g with a cer-
tain step size, we can get a new feature map
X = [z1,T9,....,Ty_kt+1]. We then apply max-
pooling operation on x € R™**! and take the
maximum value & = maz{x} as the feature corre-
sponding to a particular filter. In order to enhance
the semantic representation and capture the multi-
scale features of g, we use multiple filters with
different windows sizes to extract features and get
several features. Finally, we output a feature map
X = [&1;@9;...; 2] € R (s is the number of fil-
ters) by concatenating the features obtained by the
max-pooling operations.

3.3.4 Output Module

In this module, we first construct a fixed-length
vector ¢ = [X;s] € R3? by concatenating the re-
sults of two feature extraction strategies. Then we
exploit a multi-layer perceptron (MLP), which has
three fully connected layers with ReLU activation
function and dropout layer, to compute the seman-
tic similarity score S(q,r) between the question
and the relation. The formula is shown below:

S(q,r) = (w3 -o(wa-o(Wy-c+by)+bo)+b3)

where wy, wo and w3 are the learnable weights of
MLP layer, by, by and b3 are the bias terms, o is the
ReLU activation function, and 9§ is the sigmoid
activation function.

During our ARCNN model training, we utilize
the ranking loss as the training objective to maxi-
mize the margin between gold relation and negative
relations. The ranking loss can be computed as fol-
lows:

L = max{0,v — S(q,r") + S(q,r")}

where + is the margin value and set to 0.5, r™ is
the negative relation set of question q, and r™ is
the positive relation.

4 Experiments

4.1 Datasets

SimpleQuestions is constructed by (Bordes et al.,
2015), which contains over 100,000 samples. Each
question in SimpleQuestions has a corresponding
fact from FB2M that provides the answer and ex-
plains this question, which is called the single-

relation question. The FB2M is a Freebase! subset
with 2M entities (Bordes et al., 2015). SimpleQues-
tions is split into the training set, validation set, and
test set, which contain 75,722, 10,815, and 21,687
samples, respectively.

WebQuestions is proposed by Berant et al.
(2013) for KBQA, which contains both single-
relation samples (61%) and multi-relation samples
(39%). 1t only has a training set with 3,116 samples
and a test set with 1,649 samples. In our experi-
ment, we divide the training set into a training set
and a validation set at a ratio of 9:1, and use the test
set for our model testing. The datasets> for relation
detection are released by (Yin et al., 2016; Yu et al.,
2017).

4.2 Experimental Details

We implement our model using PyTorch v1.8.1 and
train it on a single Nvidia Titan RTX PCI-E GPU.
All word embeddings are initialized by the pre-
trained GloVe® with 300 dimensions and updated
during training. The out-of-vocabulary words are
randomly initialized by uniformly sampling from
(-0.5,0.5). During the experiment, we set the initial
learning rate to 0.001, the optimization strategy to
Adamazx, the batch size to 128, the loss margin to
0.5, the dropout rate to 0.35, and the size of hidden
states for BIGRUs to 300. In our ARCNN model,
its CNNs have four filters, whose sizes are 2, 3, 4,
and b5, respectively. For other parameter settings,
please refer to the source code available at GitHub*
for the details.

4.3 Results

This section reports the relation detection results on
SimpleQuestions and WebQuestions, where source,
words, relation and types correspond to the four
levels of relation abstractions respectively. In Table
1, we compare the performance of our ARCNN
model with other baselines on the test datasets of
SimpleQuestions and WebQuestions (first block),
i.e., AMPCNN (Yin et al., 2016), HR-BiLSTM (Yu
etal., 2017), Multi-View (Yu et al., 2018), QURRD
(Xu et al., 2018), MVA-MTQA-net (Deng et al.,
2019), FOFE-net (Wu et al., 2019a), KRD (Chen
et al., 2019), BERT (Lukovnikov et al., 2019),
DAM (Chen and Li, 2020), and BiGRU (Cui et al.,
2021).

'https://developers.google.com/freebase
Zhttps://github.com/Gorov/KBQA_RE_data
3https://nlp.stanford.edu/projects/glove/
*https://github.com/example/ ARCNN



Approach Relation Input SimpleQuestions | WebQuestions
AMPCNN (Yin et al., 2016) words 913 -
HR-BIiLSTM(Yu et al., 2017) words + rel_names 93.3 82.53
Multi-View(Yu et al., 2018) entity pair + relation + type 93.75 85.95
QURRD(Xu et al., 2018) relation 94.2 86.42
MVA-MTQA-net(Deng et al., 2019) word + knowledge 95.7 85.8
FOFE-net(Wu et al., 2019a) relation 93.3 83.26
KRD(Chen et al., 2019) words + relation 93.5 85.72
BERT(Lukovnikov et al., 2019) relation 83.6 -
DAM(Chen and Li, 2020) words 93.3 84.1
BiGRU(Cli et al., 2021) relation 81.16 -
ARCNN source + words + relation + types 96.42 (+0.72) 90.4 (+3.98)
w/o multi-scale semantic extracted CNN source + words + relation + types 95.14 82.92
w/o residual connection source + words + relation + types 95.54 84.62
w/o self-attention source + words + relation + types 95.70 82.19
replacing attention with concatenation source + words + relation + types 94.94 81.52
replacing BiGRU with Transformer for encode | source + words + relation + types 95.74 88.69
replacing pre-trained GloVe with BERT source + words + relation + types 94.20 75.40
w/o source words + relation + types 95.93 88.88
w/o source and types words + relation 95.97 86.32
w/o source, relation, and types words 95.90 85.90

Table 1: The accuracies of relation detection on SimpleQuestions and WebQuestions (test set) using different
strategies, where w/o is the abbreviate of without. The first block shows the performance of baselines. The numbers
in brackets represent the increasement of our model relative to the SOTA results.

As can be seen from Table 1, our model achieves
the best accuracies of 96.42% for SimpleQuestions
and 90.4% for WebQuestions, and outperforms the
previous SOTA work on both benchmarks. Since
the accuracies for SimpleQuestions are above 90%,
the previous work (Yu et al., 2018) had predicted
that there is still room for improvement for We-
bQuestions. Our ARCNN model achieves better
performance than their expection by yielding the
accuracy 90.4% for WebQuestions.

4.4 Ablation Tests of ARCNN

To evaluate the impacts of the different components
of our model, we conduct the experiments with the
following different strategies.

* w/o multi-scale semantic extracted CNN
We remove the CNNs from Feature Extraction
Module, and only use the average-pooling and
max-pooling operations for feature extraction.

* w/o residual connection We eliminate the
residual connection from Semantic Represen-
tation and Fusion Module, and directly use
the self-attention results and question repre-
sentation for semantic information fusion.

* w/o self-attention We get rid of the self-
attention from ARCNN, and directly fuse the
semantic information of the question and the
relation after they encode respectively.

* replacing attention with concatenation We
employ concatenation operation instead of

attention for semantic information fusion of
questions and relations.

¢ replacing BiGRU with Transformer for en-
code We utilize the Transformer encoder to
replace the BiGRU for question and relation
encode.

* replacing pre-trained GloVe with BERT We
employ pre-trained BERT (BERT-Base, Un-
cased) to replace the pre-trained GloVe for to-
kens initialization of questions and relations.

* different strategies for relation input We
perform some ablation experiments to com-
pare the influence of different relation inputs
on the accuracy of our ARCNN model.

By analyzing the ablation experimental results
in Table 1, we can draw the following conclusions:

1. Without employing multi-scale CNNs as the
feature extraction method, this strategy makes
the accuracies dropped rapidly. It indicates
that it is significant to use multi-scale CNNs
to extract features, and multiple convolution
filter sizes can extract the features of contin-
uous tokens with different lengths and hence
enrich the semantic information feature of the
representation. Moreover, residual connection
is also significant in ensuring the integrity of
semantic information.

2. It is important to employ the self-attention
mechanism to capture the mutual influences
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Figure 3: Visual display of the heat map of attention
weight matrices. Different levels of relation abstractions
are represented by different color fonts. The brighter
the color, the greater the impact.

within the relation. Consequently, utilizing the
attention mechanism to implement the fusion
of semantic information between questions
and relations is much more effective than us-
ing simple semantic information fusion (e.g.,
concatenation operation). We can also get this
conclusion from Figure 3. For example, the
"birth" in relation has the most significant im-
pact on the "born” in the question, which is
consistent with our basic intuition.

3. We utilize the new technique Transformer for
tokens encoding and the famous pre-trained
model BERT for tokens initialization of ques-
tions and relation. However, both methods fail
to improve relation detection accuracy in our
experiments. It shows that the Transformer
encoder is not as good as BiGRU in captur-
ing local information, and its shortcomings
in obtaining position information make the
Transformer encoder fail to achieve ideal re-
sults in relation detection. Moreover, the pre-
trained BERT model may not be suitable for
our ARCNN framework.

4. We use other strategies (e.g. "words + relation
+ types", "words + relation", and "words", etc)
as input, and observe that the experimental re-
sults on both SimpleQuestions and WebQues-
tions have performance degradation. It sug-
gests that our ARCNN has achieved obvious
advantages by combining more levels of rela-
tion abstractions as model input, which can
capture the comprehensive semantic informa-

tion of relations.

4.5 Error Analysis

In this section, we analyze the errors of relation de-
tection, which mainly contains the following three
categories. Table 2 shows the number and rate of
error samples in different categorical errors in the
relation detection results of two benchmarks.

Error Samples SQ Rate(%) | WQ Rate(%)
Question Ambiguity | 361 46.5 91 57.6
Semantic Deficiency | 90 11.6 7 4.4

Dataset Noise 158 20.4 6 3.8

Others 167 21.5 54 34.2
Sum 776 100 158 100

Table 2: The number and rate of error samples in differ-
ent categorical errors in the relation detection results of
SimpleQuestions and WebQuestions.

* Question Ambiguity: It makes the question
ambiguity when we replace the entity mention
in the question with "<e>". For example,
through the question of "which country uses
<e>?", it is difficult for us to understand the
real meaning of the original question, which
is "which country uses ndali language ?".

* Semantic Deficiency: We get a short ques-
tion pattern after replacing the entity men-
tion in the question with "<e>". It does not
make grammatical sense. For example, the
templates corresponding to the question "who
wrote nocturnal pleasure?" and "who wrote
love comes quickly?" are both "who wrote
<e>?". So it is difficult to understand the
semantic information of question. And hence
a detection error occurs.

» Dataset Noise: This kind of errors is very
common, especially in SimpleQuestions. For
example, through the question of "where was
<e> born?", it is difficult to infer whether the
question is about the nationality or birthplace
of someone. So we may get the wrong relation
for this question. Especially when there are a
few training samples, it will be more common
and more difficult to infer the correct relation.

* Others: We classify the rest error samples
into the fourth category.

According to the statistics of the three categori-
cal errors in Table 2, we find that a larger proportion
of errors in SimpleQuestions and WebQuestions
are caused by question ambiguity. Therefore, our
future work is to make the question representa-
tions more expressive and to represent the ques-
tions more precisely. Moreover, we calculate the
number of each category errors in 1-hop and 2-hop
relations in WebQuestions. As we can see from
Table 3, the accuracy of 2-hop (multi-relation) rela-
tions is 88.7%, and also exceeds the SOTA results
(QURRD). It shows that our ARCNN model does



WwQ 1-hop | 2-hop | Sum
Original Samples | 1046 603 1649
Error Samples 90 68 158
Acc(%) 914 88.7 | 90.4

Table 3: The number and ratio of different relation types
(1-hop or 2-hops) in the original test samples and error
samples in WebQuestions.

Dataset SQ wWQ
Relations Seen Unseen Seen Unseen
Original Data | 21526 161 (0.7%) | 1579 70 (4.2%)
Error Samples 754 18 (2.4%) 114 44 (27.8%)
Rate(%) 96.5 88.8 92.8 37.1

Table 4: Statistics on the relations has been seen/unseen
in the training data for original and error samples in
SimpleQuestions and WebQuestions. The numbers in
brackets denote the proportion of unseen relations in
total samples (original or error samples).

not give poor accuracies due to the complexity of
the relation, which indicates that our model is still
effective in predicting complex relations.

From another perspective, the previous ap-
proaches can obtain a high accuracy for samples
whose relations have been seen in the training data,
while the performance will drop rapidly for unseen
relations (Wu et al., 2019b). Therefore, we have
collected statistics on the relations that have been
seen/unseen in the training data for error samples
in SimpleQuestions and WebQuestions. As can be
seen from Table 4, the performance of ARCNN
does not drop too much for the unseen relations in
SimpleQuestions (the accuracy drops from 96.5%
to 88.8%) but falls rapidly for the unseen relations
in WebQuestions (the accuracy drops from 92.8%
to 37.1%). For SimpleQuestions, since the pro-
portion of unseen relation samples in the original
dataset is very small (0.7%), it can not significantly
contribute to the performance of relation detection
to pay much more attention to the research on un-
seen relations. However, for the WebQuestions, it
is meaningful to improve the relation detection on
the unseen relations (e.g., zero-shot learning), be-
cause unseen relations have a larger proportion in
WebQuestions (4.2%) and there are more error sam-
ples caused by unseen relations (27.8%). There-
fore, in future work, we will pay more attention
to zero-shot learning for WebQuestions and focus
more on enhancing the semantic representations of
questions and relations for SimpleQuestions.

4.6 KBQA Results

In order to evaluate how the new SOTA accuracy
of relation detection could benefit the KBQA sys-

Approach SQ WQ
MemNNs (Bordes et al., 2015) 63.9 | 42.2
HR-BiLSTM (Yu et al., 2017) 78.7 | 63.9
BiLSTM-CRF&BIiLSTM  (Petrochuk | 78.1 -
and Zettlemoyer, 2018)

PR+JFS (Hao et al., 2018) 80.2 -
FOFE-net (Wu et al., 2019a) 77.3 | 67.6
BERT (Lukovnikov et al., 2019) 77.3 -
BERT-based (Luo et al., 2020) 80.9 -
DAM (Chen and Li, 2020) - 70.0
BiGRU-CRF&BiGRU (Cui et al., 2021) | 80.37 -
Our method 815 | 72.0

Table 5: The performance of KBQA systems on Simple-
Questions and WebQuestions using different methods.

tem, we continue to complete the subsequent ex-
periments of the KBQA system, including entity
recognition, entity linking, and fact selection. The
experimental results of our KBQA system are re-
ported in Table 5, where we compare the perfor-
mance of our method with other baselines, i.e.,
MemNN (Bordes et al., 2015), HR-BiLSTM (Yu
et al., 2017), BILSTM-CRF&BILSTM (Petrochuk
and Zettlemoyer, 2018), PR+JFS (Hao et al., 2018),
FOFE-net (Wu et al., 2019b), BERT (Lukovnikov
et al., 2019), BERT-based (Luo et al., 2020), DAM
(Chen and Li, 2020), and BiGRU-CRF&BiGRU
(Cui et al., 2021). As shown in Table 5, the Fj
score achieves 72.0% on WebQuestions, which
exceeds the SOTA work (DAM) by 2.0%. On
SimpleQuestions, the accuracy of our KBQA sys-
tem reaches 81.5%, which exceeds the SOTA work
(BERT-based) by 0.6%. It suggests that relation
detection plays a critical role in the KBQA system,
and hence directly contributes to the performance
of the KBQA system.

5 Conclusion

This paper introduces a new neural network frame-
work called ARCNN to achieve more precise
matching between questions and relations in a se-
mantic space. Our ARCNN model combines Bi-
GRU, multi-scale semantic extracted CNN, and
different attention mechanisms to enhance the se-
mantic information interaction and the semantic
information representations of questions and rela-
tions. To construct richer relation representations,
ARCNN merges four levels of relation abstractions
to capture semantic and literal relevance informa-
tion, which makes our model match questions and
relations more precisely. The experimental results
show that our approach is more competitive than
others in the relation detection on both SimpleQues-
tions and WebQuestions.
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