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ABSTRACT

Unsupervised Domain Adaptation (UDA) aims at classifying unlabeled target im-
ages leveraging source labeled ones. In this work, we consider the Partial Domain
Adaptation (PDA) variant, where we have extra source classes not present in the
target domain. Most successful algorithms use model selection strategies that rely
on target labels to find the best hyper-parameters and/or models along training.
However, these strategies violate the main assumption in PDA: only unlabeled
target domain samples are available. Moreover, there are also inconsistencies in
the experimental settings - architecture, hyper-parameter tuning, number of runs -
yielding unfair comparisons. The main goal of this work is to provide a realistic
evaluation of PDA methods with the different model selection strategies under a
consistent evaluation protocol. We evaluate 7 representative PDA algorithms on 2
different real-world datasets using 7 different model selection strategies. Our two
main findings are: (i) without target labels for model selection, the accuracy of
the methods decreases up to 30 percentage points; (ii) only one method and model
selection pair performs well on both datasets. Experiments were performed with
our PyTorch framework, BenchmarkPDA, which we open source.

1 INTRODUCTION

Domain adaptation. Deep neural networks are highly successful in image recognition for in-
distribution samples (He et al., 2016) with this success being intrinsically tied to the large number
of labeled training data. However, they tend to not generalize as well on images with different back-
ground or colors not seen during training. Such shift in the samples is referred to as domain shift in
the literature. Unfortunately, enriching the training set with new samples from different domains is
challenging as labeling data is both an expensive and time-consuming task. Thus, researchers have
focused on unsupervised domain adaptation (UDA) where we have access to unlabelled samples
from a different domain, known as the target domain. The purpose of UDA is to classify these un-
labeled samples by leveraging the knowledge given by the labeled samples from the source domain
(Pan & Yang, 2010; Patel et al., 2015). In the standard UDA problem, the source and target domains
are assumed to share the same classes. In this paper, we consider a more challenging variant of the
problem called partial domain adaptation (PDA): the classes in the target domain Yt form a subset
of the classes in the source domain Ys (Cao et al., 2018), i.e., Yt ⊂ Ys. The number of target classes
is unknown as we do not have access to the labels. The extra source classes, not present in the target
domain, make the PDA problem more difficult: simply aligning the source and target domains forces
a negative transfer where target samples are matched to outlier source-only labels.

Realistic evaluations. Most recent PDA methods report an increase of the target accuracy up to 15
percentage points on average when compared to the baseline approach that uses only source domain
samples. While these successes constitute important breakthroughs in the DA research literature,
target labels are used for model selection, violating the main UDA assumption. In their absence, the
effectiveness of PDA methods remains unclear and model selection constitutes a yet to be solved
problem as we show in this work. Moreover, the hyper-parameter tuning is either unknown or
lacks details and sometimes requires labeled target data, which makes it challenging to apply PDA
methods to new datasets. Recent work has highlighted the importance of model selection in the
presence of domain shift. Gulrajani & Lopez-Paz (2021) showed that when evaluating domain
generalization (DG) algorithms, whose goal is to generalize to a completely unseen domain, in
a consistent and realistic setting no method outperforms the baseline ERM method by more than 1
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DATASET Model Selection S. ONLY PADA SAFN BA3US AR JUMBOT MPOT

OFFICE- Worst (w/o target labels) 59.55 (-2.31) 52.72 (-11.00) 61.37 (-1.93) 62.25 (-13.73) 64.32 (-8.42) 61.28 (-15.87) 46.92 (-30.38)

HOME
Best (w/o target labels) 60.73 (-1.14) 63.08 (-0.64) 62.59 (-0.71) 75.37 (-0.61) 70.58 (-2.16) 74.61 (-2.54) 66.24 (-11.07)

ORACLE 61.87 63.72 63.30 75.98 72.73 77.15 77.31

VISDA
Worst (w/o target labels) 55.02 (-4.46) 32.32 (-22.26) 42.83 (-19.81) 51.07 (-16.60) 55.69 (-18.15) 59.86 (-24.15) 61.62 (-25.33)
Best (w/o target labels) 55.24 (-4.24) 56.83 (2.26) 58.62 (-4.02) 65.58 (-2.09) 67.20 (-6.65) 77.69 (-6.31) 78.40 (-8.54)

ORACLE 59.48 54.57 62.64 67.67 73.85 84.01 86.95

Table 1: Task accuracy average computed over three different seeds (2020, 2021, 2022) on Partial
OFFICE-HOME and Partial-VISDA. For each dataset and PDA method, we display the results of the
worst and best performing model selection that do not use target labels as well as the ORACLE model
selection strategy. All results can be found in Table 6.

percentage point. They argue that DG methods without a model selection strategy remain incomplete
and should therefore be specified as part of the method. A similar recommendation was done by
Saito et al. (2021) for domain adaptation.

PDA methods have been designed using target labels at test time to select the best models. Paral-
lel work (Saito et al., 2021; You et al., 2019) on model selection strategies for domain adaptation
claimed to select the best models without using target labels. However, a realistic empirical study of
these strategies in PDA is still lacking. In this work, we conduct extensive experiments to study the
impact of model selection strategies on the performance of partial domain adaptation methods. We
evaluate 7 different PDA methods over 7 different model selection strategies, 4 of which do not use
target labels, and 2 different datasets under the same experimental protocol for a fair comparison.
We list below our major findings:

• The accuracy attained by models selected without target labels can decrease up to 30 percentage
points compared to the one reported using target labels (See Table 1 for a summary of results).

• Only 1 pair of PDA methods and target label-free model selection strategies achieve comparable
accuracies to when target labels are used, while still improving over a source only baseline.

• Random seed plays an important role in the selection of hyper-parameters. Selected parameters
are not stable across different seeds and the standard deviation between accuracies on the same
task can be up to 8.4% even when relying on target labels for model selection.

• Under a more realistic scenario where some target labels are available, 100 random samples is
enough to see only a drop of 1 percentage point in accuracy (when compared to using all target
samples). However, the extreme case of using only one labeled target sample per class leads a
to significant drop in performance.

Outline. In Section 2, we provide an overview of the different model selection strategies considered
in this work. Then in Section 3, we discuss the PDA methods that we consider. In Section 4 we
describe the training procedures, hyper-parameter tuning and evaluation protocols used to evaluate
all methods fairly. In Section 5, we discuss the results of the different benchmarked methods and
the performance of the different model selection strategies. Finally in Section 6, we give some
recommendations for future work in partial domain adaptation.

2 MODEL SELECTION STRATEGIES: AN OVERVIEW

Model selection (choosing hyper-parameters, training checkpoints, neural network architectures) is
a crucial part of training neural networks. In the supervised learning setting, a validation set is
used to estimate the model’s accuracy. However, in UDA such approach is not possible as we have
unlabeled target samples. Several strategies have been designed to address this issue. Below, we
discuss the ones used in this work.

Source Accuracy (S-ACC). Ganin & Lempitsky (2015) used the accuracy estimated on a small
validation set from the source domain to perform the model selection. While the source and target
accuracies are related, there are no theoretical guarantees. You et al. (2019) showed that when the
domain gap is large this approach fails to select competitive models.

Deep Embedded Validation (DEV). Sugiyama et al. (2007) and Long et al. (2018) perform model
selection through Importance-Weighted Cross-Validation (IWCV). Under the assumption that the
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source and target domain follow a covariate shift, the target risk can be estimated from the source risk
through importance weights that give increased importance to source samples that are closer to target
samples. These importance weights correspond to the ratio of the target and source densities and are
estimated using Gaussian kernels. Recently, You et al. (2019) proposed an improved variant, Deep
Embedded Validation (DEV), that controls the variance of the estimator and estimates the importance
weights with a discriminative model that distinguish source samples from target samples leading to
a more stable and effective method.

Entropy (ENT). While minimizing the entropy of the target samples has been used in domain
adaptation to improve accuracy by promoting tighter clusters, Morerio et al. (2018) showed that it
can also be used for model selection. The intuition is that a lower entropy model corresponds to a
highly confident model with discriminative target features and therefore reliable predictions.

Soft Neighborhood Density (SND). Saito et al. (2021) argue that a good UDA model will have a
cluster structure where nearby target samples are in the same class. They claim that entropy is not
able to capture this property and propose the Soft Neighborhood Density (SND) score to address it.

Target Accuracy (ORACLE). We consider as well the target accuracy on all target samples. While
we emphasize once again its use is not realistic in unsupervised domain adaptation (hence why we
will refer to it as ORACLE), it has nonetheless been used to report the best accuracy achieved by the
model along training in several previous works (Cao et al., 2018; Xu et al., 2019; Jian et al., 2020;
Gu et al., 2021; Nguyen et al., 2022). Here, we use it as an upper bound for all the other model
selection strategies and to check the reproducibility of previous works.

Small Labeled Target Set (1-SHOT and 100-RND). For real-world applications in an industry
setting, it is unlikely that a model will be deployed without the very least of an estimate of its
performance for which target labels are required. Therefore, one can imagine a situation where a
PDA method is used and a small set of target samples is available. Thus, we will compute the target
accuracy with 1 labeled sample per class (1-SHOT) and 100 random labeled target samples (100-
RND) as model selection strategies. One could argue that the 100 random samples could have been
used in the training with semi-supervised domain adaptation methods. However, note that we do not
know how many classes we have on the target domain so it is hard to form a split when we have
uncertainty of classes. For instance, 100-RND represents possibly less than 2 samples per class for
one of our real-world dataset, as we do not know the number of classes, making a potential split
between a train and validation target sets not possible.

3 PARTIAL DOMAIN ADAPTATION METHODS

In this section, we give a brief description of the PDA methods considered in our study. They can
be grouped into two families: adversarial training and divergence minimization.

Adversarial training. To solve the UDA problem, Ganin et al. (2016) aligned the source and target
domains with the help of a domain discriminator trained adversarially to be able to distinguish the
samples from the two domains. However, when applied to the PDA problem this strategy leads to
negative transfer and the model performs worse than a model trained only on source data. Cao et al.
(2018) proposed PADA that introduces a PDA specific solution to adversarial domain adaptation: the
contribution of the source-only class samples to the training of both the source classifier and the
domain adversarial network is decreased. This is achieved through class weights that are calculated
by simply averaging the classifier prediction on all target samples. As the source-only classes should
not be predicted in the target domain, they should have lower weights. More recently, Jian et al.
(2020) proposed BA3US which augments the target mini-batch with source samples to transform the
PDA problem into a vanilla DA problem. In addition, an adaptive weighted complement entropy
objective is used to encourage incorrect classes to have uniform and low prediction scores.

Divergence minimization. Another standard direction to align the source and target distributions
in the feature space of a neural network is to minimize a given divergence between distributions of
domains. Xu et al. (2019) empirically found that target samples have low feature norm compared to
source samples. Based on this insight, they proposed SAFN which progressively adapts the feature
norms of the two domains by minimizing the Maximum Mean Feature Norm Discrepancy (Gretton
et al., 2012). Other approaches are based on optimal transport (OT) (Bhushan Damodaran et al.,
2018) with mini-batches (Peyré & Cuturi, 2019; Fatras et al., 2020; 2021b). For the PDA problem
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PDA Methods PADA, SAFN, BA3US AR, JUMBOT, MPOT

Model Selection Strategies S-ACC, ENT, DEV, SND, 1-SHOT, 100-RND, ORACLE

Architecture ResNet50 backbone ⊕ linear bottleneck ⊕ linear classification head

Experimental protocol 3 seeds on the 12 tasks of OFFICE-HOME and 2 tasks of VISDA

Table 2: Summary of our considered methods, model selection strategies, architecture and datasets.

Method Architecture Runs Model Selection
(bottleneck) per task Hyper-Parameters Along Training

PADA Linear 1 IWCV (lacks details) ORACLE
SAFN Non-Linear 3 Unknown ORACLE
BA3US Linear 3 Unknown ORACLE
AR Non-Linear 1 IWCV (lacks details) ORACLE
JUMBOT Linear 1 ORACLE FINAL
MPOT Linear 3 Unknown ORACLE

Table 3: Summary of the experimental protocol used for SOTA partial domain adaptation methods.
We refer to Appendix A.1 for additional details.

in specific, (Fatras et al., 2021a) developed JUMBOT, a mini-batch unbalanced optimal transport that
learns a joint distribution of the embedded samples and labels. The use of unbalanced OT is critical
for the PDA problem as it allows to transport only a portion of the mass limiting the negative transfer
between distributions. Based on this work, (Nguyen et al., 2022) investigated the partial OT variant
(Chapel et al., 2020), a particular case of unbalanced OT, proposing M-POT. Finally, another line
of work is to use the Kantorovich-Rubenstein duality of optimal transport to perform the alignment
similarly to WGAN (Arjovsky et al., 2017). This is precisely the work of Gu et al. (2021) that
proposed, AR. In addition, source samples are reweighted in order to reduce the negative transfer
from the source-only class samples. The Kantorovich-Rubenstein duality relies on a one Lipschitz
function which is approximated using adversarial training like the PDA methods described above.

4 EXPERIMENTAL PROTOCOL

In this section, we discuss our choices regarding the training details, datasets and neural network
architecture. We then discuss the hyper-parameter tuning used in this work. We summarize the
PDA methods, model selection strategies and experimental protocol used in this work in Table 2.
The main differences in the experimental protocol of the different published state-of-the-art (SOTA)
methods is summarized in Table 3. To perform our experiments we developed a PyTorch (Paszke
et al., 2019) framework: BenchmarkPDA. We make it available for other researchers to use and
contribute with new algorithms and model selection strategies:

https://anonymous.4open.science/r/BenchmarkPDA-7F73

It is the standard in the literature when proposing a new method to report directly the results of its
competitors from the original papers (Cao et al., 2018; Xu et al., 2019; Jian et al., 2020; Gu et al.,
2021; Nguyen et al., 2022). As a result some methods differ for instance in the neural network
architecture implementation (AR (Gu et al., 2021), SAFN (Xu et al., 2019)) or evaluation protocol
JUMBOT (Fatras et al., 2021a) with other methods. These changes often contribute to an increased
performance of the newly proposed method leaving previous methods at a disadvantage. Therefore
we chose to implement all methods with the same commonly used neural network architecture,
optimizer, learning rate schedule and evaluation protocol. We discuss the details below.

4.1 METHODS, DATASETS, TRAINING AND EVALUATION DETAILS

Methods. We implemented 7 PDA methods by adapting the code from the Official GitHub reposi-
tories of each method: Source Only, PADA (Cao et al., 2018), SAFN (Xu et al., 2019), BA3US (Jian
et al., 2020), AR (Gu et al., 2021), JUMBOT (Fatras et al., 2021a), MPOT (Nguyen et al., 2022). We
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METHOD A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg

S. ONLY† 46.33 67.51 75.87 59.14 59.94 62.73 58.22 41.79 74.88 67.40 48.18 74.17 61.35
S. ONLY (Ours) 45.43 68.91 79.53 55.59 57.42 65.23 59.32 40.80 75.80 69.88 47.20 77.31 61.87

PADA† 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.60 77.09 62.06
PADA (Ours) 50.53 67.45 80.14 57.30 54.47 64.55 61.07 40.94 79.55 73.09 54.63 80.93 63.72

SAFN†∗ 58.93 76.25 81.42 70.43 72.97 77.78 72.36 55.34 80.40 75.81 60.42 79.92 71.84
SAFN* (Ours) 59.98 79.85 85.18 72.02 73.73 78.54 76.09 59.32 83.25 80.04 64.20 84.44 74.72
SAFN (Ours) 49.57 68.55 78.26 57.91 59.29 66.81 59.87 45.29 75.98 69.08 51.68 77.29 63.30

BA3US† 60.62 83.16 88.39 71.75 72.79 83.40 75.45 61.59 86.53 79.25 62.80 86.05 75.98
BA3US (Ours) 63.26 82.75 89.16 69.91 71.93 77.58 75.73 59.94 86.89 80.93 66.77 86.93 75.98

AR†∗ 62.13 79.22 89.12 73.92 75.57 84.37 78.42 61.91 87.85 82.19 65.37 85.27 77.11
AR* (Ours) 62.75 81.55 89.07 71.63 73.41 82.94 75.88 61.03 85.70 79.86 62.93 85.30 76.00
AR (Ours) 57.33 79.61 86.31 69.45 71.88 79.94 70.28 53.57 83.78 77.26 59.68 83.72 72.73

JUMBOT† 62.70 77.50 84.40 76.00 73.30 80.50 74.70 60.80 85.10 80.20 66.50 83.90 75.47
JUMBOT (Ours) 61.87 78.19 88.11 77.69 76.75 84.15 76.83 63.72 84.80 81.79 64.70 87.17 77.15

MPOT† 64.60 80.62 87.17 76.43 77.61 83.58 77.07 63.74 87.63 81.42 68.50 87.38 77.98
MPOT (Ours) 64.48 80.88 86.78 76.22 77.95 82.59 75.18 64.60 84.87 80.59 67.04 86.52 77.31

Table 4: Comparison between reported (†) accuracies on partial OFFICE-HOME from published
methods with our implementation using the ORACLE model selection strategy. * denotes differ-
ent bottleneck architectures.

provide the links to the different official repositories in Appendix A.1. A comparison with previous
reported results can be found in Table 4 and we postpone the discussion to Section 5.

Datasets. We consider two standard real-world datasets used in DA. Our first dataset is OFFICE-
HOME (Venkateswara et al., 2017). It is a difficult dataset for unsupervised domain adaptation
(UDA), it has 15,500 images from four different domains: Art (A), Clipart (C), Product (P) and Real-
World (R). For each domain, the dataset contains images of 65 object categories that are common
in office and home scenarios. For the partial OFFICE-HOME setting, we follow Cao et al. (2018)
and select the first 25 categories (in alphabetic order) in each domain as a partial target domain. We
evaluate all methods in all 12 adaptation scenarios. VISDA (Peng et al., 2017) is a large-scale dataset
for UDA. It has 152,397 synthetic images as source domain and 55,388 real-world images as target
domain, where 12 object categories are shared by these two domains. For the partial VISDA setting,
we follow Cao et al. (2018) and select the first 6 categories, taken in alphabetic order, in each domain
as a partial target domain. We evaluate the models in the two possible scenarios. We highlight that
we are the first to investigate the performance of JUMBOT and MPOT on partial VISDA.

Model Selection Strategies We consider the 7 different strategies for model selection described
in Section 2: S-ACC, DEV, ENT, SND, ORACLE, 1-SHOT, 100-RND. We use them both for hyper-
parameter tuning as well selecting the best model along training. Since S-ACC, DEV and SND require
a source validation set, we divide the source samples into a training subset (80%) and validation
subset (20%). Regardless of the model selection strategy used, all methods are trained using the
source training subset. This is in contrast with previous work that uses all source samples, but
necessary to ensure a fair comparison of the model selection strategies. We refer to Appendix A.2
for additional details.

Architecture. Our network is composed of a feature extractor with a linear classification layer on
top of it. The feature extractor is a ResNet50 (He et al., 2016), pre-trained on ImageNet (Deng et al.,
2009), with its last linear layer removed and replaced by a linear bottleneck layer of dimension 256.

Optimizer. We use the SGD (Robbins & Monro, 1951) algorithm with momentum of 0.9, a weight
decay of 5e−4 and Nesterov acceleration. As the bottleneck and classifier layers are randomly
initialized, we set their learning rates to be 10 times that of the pre-trained ResNet50 backbone. We
schedule the learning rate with a strategy similar to the one in (Ganin et al., 2016): χp = χ0

(1+µi)−ν ,
where i is the current iteration, χ0 = 0.001, γ = 0.001, ν = 0.75. While this schedule is slightly
different than the one reported in previous work, it is the one implemented in the different official
code implementations. We elaborate in the Appendix A.3 on the differences and provide additional
details. Finally, as for the mini-batch size, JUMBOT and M-POT were designed with a stratified
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Dataset Variant BA3US JUMBOT MPOT SAFN
ENT DEV SND ENT DEV SND ENT DEV SND ENT DEV SND

OFFICE-HOME
Naive 52.60 63.10 44.48 52.30 26.75 17.67 49.01 16.72 30.63 32.12 49.67 5.01

Heuristic 58.45 63.10 60.96 56.24 45.79 55.16 49.01 45.61 30.63 46.27 49.67 49.67

VISDA
Naive 39.06 36.99 1.14 35.89 54.53 11.99 75.04 55.33 36.11 52.82 53.26 0.83

Heuristic 67.50 34.94 38.76 47.23 54.53 66.42 75.04 55.33 85.36 52.82 53.26 52.82

Table 5: Comparison between the naive model selection strategy and our heuristic approach. Accu-
racy on AC task for OFFICE-HOME and SR task for VISDA. Best results in bold.

sampling, i.e., a balanced source mini-batch with the same number of samples per class. This allows
to reduce the negative transfer between domains and is crucial to their success. On the other hand, it
was shown that for some methods (e.g. BA3US) using a larger mini-batch, than what was reported,
leads to a decreased performance (Fatras et al., 2021a). As a result, we used the default mini-batch
strategies for each method. JUMBOT and M-POT use stratified mini-batches of size 65 for OFFICE-
HOME and 36 for VISDA. All other methods use a standard random uniform sampling strategy with
a mini-batch size of 36.

Evaluation Protocol. For the hyper-parameters chosen with each model selection strategy, we run
the methods for each task 3 times, each with a different seed (2020, 2021, 2022). We tried to control
for the randomness across methods by setting the seeds at the beginning of training. Interestingly, as
we discuss in more detail in Section 5, some methods demonstrated a non-negligible variance across
the different seeds showing that some hyper-parameters and methods are not robust to randomness.

4.2 HYPER-PARAMETER TUNING

Previous works (Gulrajani & Lopez-Paz, 2021; Musgrave et al., 2021; 2022) perform random
searches with the same number of runs for each method. In contrast, we perform hyper-parameter
grid searches for each method. As a result, the hyper-parameter tuning budgets differs across the
methods depending on the number of hyper-parameters and the chosen grid. While one can argue
this leads to an unfair comparison of the methods, in practice in most real-world applications one
will be interested in using the best method and our approach will capture precisely that.

The hyper-parameter tuning needs to be performed for each task of each dataset, but that would
require a significant computational resources without a clear added benefit. Instead for each dataset,
we perform the hyper-parameter tuning on a single task: A2C for OFFICE-HOME and S2R for VISDA.
This same strategy was adopted in (Fatras et al., 2021a) and the hyper-parameters were found to
generalize to the remaining tasks in the dataset. We conjecture that this may be due to the fact that
information regarding the number of target only classes is implicitly hidden in the hyper-parameters.
See Appendix A.4 for more details regarding the hyper-parameters.

Several runs in our hyper-parameter search for JUMBOT, M-POT and BA3US were unsuccessful with
the optimization reaching its end without the model being trained at all. This poses a challenge to
DEV, SND and ENT and its one of the failures modes accounted for in (Saito et al., 2021). Follow-
ing their recommendations, for JUMBOT, M-POT and BA3US, before applying the model selection
strategy, we discard models whose source domain accuracy is below a certain threshold thr, which
is set with the heuristic as thr = 0.9 · Acc. Here Acc denotes the source domain accuracy of the
Source-Only model. In our experiments, this leads to select models whom the source accuracy is at
least of thr = 69.01% for the A2C task on OFFICE-HOME and thr = 89.83% for the S2R task on
VISDA. We choose this heuristic because the ablation study of some methods showed that doing the
adaptation decreased slightly the source accuracy (Bhushan Damodaran et al., 2018). Table 5 shows
that our heuristic leads to improved results.

Lastly, when choosing the hyper-parameters, we only consider the model at the end of training,
discarding the intermediate checkpoint models in order to select hyper-parameters which do not
lead to overfitting at the end of training and better generalize to the other tasks. Following the above
protocol, for each dataset we trained 468 models in total in order to find the best hyper-parameters.
Then, to obtain the results with our neural network architecture on all tasks of each dataset, we
trained an additional 1224 models for OFFICE-HOME and 156 models for VISDA. We additionally
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DATASET METHOD S-ACC ENT DEV SND 1-SHOT 100-RND ORACLE

OFFICE-HOME

S. ONLY 60.38±0.5 60.73±0.2 60.22±0.3 59.55±0.3 58.92±0.4 60.34±0.4 61.87±0.3
PADA 63.08±0.3 59.74±0.5 52.72±2.8 62.36±0.4 62.00±0.5 63.22±0.1 63.72±0.3
SAFN 62.09±0.2 61.37±0.3 62.03±0.4 62.59±0.1 49.30±0.7 62.36±0.2 63.30±0.2

BA3US 68.32±1.1 73.36±0.6 62.25±7.1 75.37±0.8 65.56±7.6 75.19±0.4 75.98±0.3
AR 65.68±0.3 70.58±0.4 64.32±0.9 70.25±0.2 70.56±0.7 70.34±0.2 72.73±0.3

JUMBOT 62.89±0.2 74.61±0.8 61.28±0.1 72.29±0.2 74.95±0.1 75.74±0.3 77.15±0.4
MPOT 66.24±0.1 64.46±0.1 61.37±0.2 46.92±0.4 68.28±0.2 73.06±0.3 77.31±0.5

VISDA

S. ONLY 55.15±2.4 55.24±3.2 55.07±1.2 55.02±2.9 55.72±2.2 58.16±0.6 59.48±0.4
PADA 47.48±4.8 32.32±4.9 43.43±5.3 56.83±1.0 53.15±2.9 54.38±2.7 54.57±2.6
SAFN 58.20±1.7 42.83±6.3 58.62±1.3 44.82±8.8 56.89±2.1 59.09±2.8 62.64±1.5

BA3US 55.10±3.7 65.58±1.4 58.40±1.4 51.07±4.3 64.77±1.4 67.44±1.2 67.67±1.3
AR 66.68±1.0 64.27±3.6 67.20±1.5 55.69±0.9 70.29±1.7 72.60±0.8 73.85±0.9

JUMBOT 60.63±0.7 62.42±2.4 59.86±0.6 77.69±4.2 78.34±1.9 83.49±1.9 84.01±1.9
MPOT 70.02±2.0 74.64±4.4 61.62±1.3 78.40±3.9 70.96±3.7 86.69±5.1 86.95±5.0

Table 6: Task accuracy average over seeds 2020, 2021, 2022 on Partial OFFICE-HOME and Partial
VISDA for the PDA methods and model selection strategy. For each method, we highlight the best
and worst label-free model selection strategies in green and red, respectively.

trained 231 models with the different neural network architectures for AR and SAFN. In total, 2547
models were trained to make this study and we present the different results in the next section.

5 PARTIAL DOMAIN ADAPTATION EXPERIMENTS

We start the results section by discussing the differences between our reproduced results and the pub-
lished results from the different PDA methods. Then, we compare the performance of the different
model selection strategies. Finally, we discuss the sensitivity of methods to the random seed.

5.1 REPRODUCIBILITY OF PREVIOUS RESULTS

We start by ensuring that our reimplementation of PDA methods was done correctly by comparing
our reproduced results with previously reported results in Table 4. As such the model selection
strategy used is ORACLE. On OFFICE-HOME, both PADA and JUMBOT achieved higher average task
accuracy (1.6 and 1.7 percentage points, respectively) in our reimplementation, while for BA3US and
MPOT we recover the reported accuracy in their respective papers. However, we saw a decrease in
performance for both SAFN and AR of roughly 8 and 5 percentage points respectively. This is to be
expected due to the differences in the neural network architectures. While we use a linear bottleneck
layer, SAFN uses a nonlinear bottleneck layer. As for AR, they make two significant changes: the
linear classification head is replaced by a spherical logistic regression (SLR) layer (Gu et al., 2020)
and the features are normalized (the 2-norm is set to a dataset dependent value, another hyper-
parameter that requires tuning) before feeding them to the classification head. While we account for
the first change by comparing to AR (w/ linear) results reported in (Gu et al., 2021), in our neural
network architecture we do not normalize the features. These changes, nonlinear bottleneck layer
for SAFN and feature normalization for AR, significantly boost the performance of both methods.
When now comparing our reimplementation with the same neural network architectures, our SAFN
reimplementation achieves a higher average task accuracy by 3 percentage points, while our AR
reimplementation is now only 1 percentage points below. The fact that AR reported results are from
only one run, while ours are averaged across 3 distinct seeds, justifies the small remaining gap.
Moreover, we report higher accuracy or on par on 4 tasks of the 12 tasks. Given all the above and
further discussion of the VISDA dataset results in Appendix B, our reimplementations are trustworthy
and give validity to the results we discuss in the next sections.

5.2 RESULTS FOR MODEL SELECTION STRATEGIES

Model Selection Strategies (w/ vs w/o target labels) All average accuracies on the OFFICE-HOME
and VISDA datasets can be found in Table 6. For all methods on OFFICE-HOME, we can see that the
results for model selection strategies which do not use target labels are below the results given by
ORACLE. For some pairs, the drop of performance can be significant, leading some methods to
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perform on par with the S. ONLY method. That is the case on OFFICE-HOME when DEV is paired
with either BA3US, JUMBOT and MPOT. Even worse is MPOT with SND as the average accuracy is
more than 10 percentage points below that of S. ONLY with any model selection strategy. Overall
on OFFICE-HOME, except for MPOT, all methods when paired with either ENT or SND give results
that are at most 2 percentage points below compared to when paired with ORACLE.

A similar situation can be seen over the VISDA dataset where the accuracy without target labels can
be down to 25 percentage points. Yet again, some model selection strategies can lead to scores even
worse than S. ONLY. That is the case for PADA, SAFN and BA3US. Contrary to OFFICE-HOME, all
model selection strategies without target labels lead to at least one method with results on par or
worse in comparison to the S. ONLY method. Overall, no model selection strategy without target
labels can lead to score on par to the ORACLE model selection strategy. Finally, PADA performs
worse than S. ONLY for most model selection strategies, including the ones which use target labels.
However, when combined with SND it performs better than with ORACLE on average, although still
within the standard deviation. This is a consequence of the random seed dependence mentioned
before on VISDA: as the hyper-parameters were chosen by performing just one run, we were simply
“unlucky”. In general, all of this confirms the standard assumption in the literature regarding the
difficulty of the VISDA dataset.

Model Selection Strategies (w/ target labels) We recall that the ORACLE model selection strategy
uses all the target samples to compute the accuracy while 1-SHOT and 100-RND use only subsets: 1-
SHOT has only one sample per class for a total of 25 and 6 on OFFICE-HOME and VISDA, respectively,
while 100-RND has 100 random target samples. Our results show that using only 100 random target
labeled samples is enough to reasonably approximate the target accuracy leading to only a small
accuracy drop (one percentage point in almost all cases) for both datasets. Not surprisingly, the
gap between the 1-SHOT and ORACLE model selection strategies is even bigger, leading in some
instances to worse results than with a model selection strategy that uses no target labels. This poor
performance of the 1-SHOT model selection strategy also highlights that semi-supervised domain
adaptation (SSDA) methods are not a straightforward alternative to the 100-RND model selection
strategy. While one could argue that the target labels could be leveraged during training like in
SSDA methods, one still needs labeled target data to perform model selection. However our results
suggest that we would need at least 3 samples per class for SSDA methods. In addition, knowing
that we have a certain number of labeled samples per class provides information regarding which
classes are target only, one of the main assumptions in PDA. In that case, PDA methods could be
tweaked. This warrants further study that we leave as future work. Finally, we have also investigated
a smaller labeled target set of 50 random samples (50-RND) instead of 100 random samples. The
accuracies of methods using 50-RND were not as good as when using 100-RND. All results of pairs
of methods and 50-RND can be found in Appendix B. The smaller performance show that the size
of the labeled target set is an important element and we suggest to use at least 100 random samples.

Model Selection Strategies (w/o target labels) Only the (BA3US, ENT) pair achieved average task
accuracies within 3 percentage points of its ORACLE counterpart (i.e., (BA3US, ORACLE)), while still
improving over S. ONLY model. Our experiments show that there is no model selection strategy
which performs well for all methods. That is why to deploy models in a real-world scenario, we
advise to test selected models on a small labeled target set (i.e., 100-RND)) to assess the performance
of the models as model selection strategies without target labels can perform poorly.

Our conclusion is that the model selection for PDA methods is still an open problem. We conjecture
that it is also the case for domain adaptation as the considered metrics were developed first for this
setting. For future proposed methods, researchers should specify not only which model selection
strategy should be used, but also which hyper-parameter search grid should be considered, in order
to deploy them in a real-world scenario.

5.3 RANDOM SEED DEPENDENCE

Ideally, PDA methods should be robust to the choice of random seed. This is of particular importance
when performing hyper-parameter tuning since typically only one run per set of hyper-parameters
is done (that was the case in our work as well). We investigate this robustness by averaging all
the results presented over three different seeds (2020, 2021 and 2022) and reporting the standard
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TASK METHOD S-ACC ENT DEV SND 1-SHOT 100-RND ORACLE

S2R

S. ONLY 46.96 ± 1.5 48.17 ± 3.9 49.00 ± 0.9 48.17 ± 3.9 49.43 ± 0.8 50.01 ± 1.6 51.86 ± 1.4
PADA 44.56 ± 5.9 40.83 ± 11.3 41.04 ± 4.3 56.14 ± 9.7 52.94 ± 4.3 49.34 ± 8.4 49.34 ± 8.4
SAFN 52.04 ± 3.5 29.86 ± 16.7 52.42 ± 2.9 28.46 ± 16.5 49.97 ± 3.3 47.83 ± 0.6 56.88 ± 2.1

BA3US 44.21 ± 3.0 71.17 ± 1.9 48.78 ± 1.9 46.12 ± 7.8 66.79 ± 1.5 71.45 ± 0.8 71.77 ± 1.1
AR 68.39 ± 1.3 75.28 ± 2.9 68.54 ± 1.3 57.61 ± 0.4 70.11 ± 1.4 75.09 ± 5.2 76.33 ± 4.5

JUMBOT 55.23 ± 2.3 56.25 ± 2.1 54.35 ± 2.0 75.23 ± 8.4 81.27 ± 6.9 89.94 ± 1.1 90.55 ± 0.5
MPOT 64.57 ± 2.9 82.10 ± 2.0 57.02 ± 1.5 84.45 ± 0.4 71.33 ± 4.4 87.20 ± 2.3 87.23 ± 2.3

R2S

S. ONLY 63.34 ± 3.4 62.32 ± 2.7 61.13 ± 3.3 61.88 ± 2.3 62.00 ± 3.9 66.30 ± 2.0 67.11 ± 2.1
PADA 50.39 ± 3.8 23.80 ± 1.6 45.82 ± 9.2 57.53 ± 10.3 53.36 ± 1.7 59.43 ± 5.8 59.81 ± 6.2
SAFN 64.37 ± 0.7 55.80 ± 5.2 64.82 ± 0.5 61.19 ± 3.3 63.82 ± 1.0 70.34 ± 5.8 68.40 ± 1.2

BA3US 65.99 ± 4.6 59.99 ± 1.3 68.01 ± 1.9 56.01 ± 2.9 62.75 ± 2.6 63.44 ± 1.9 63.56 ± 1.8
AR 64.97 ± 0.8 53.26 ± 9.7 65.86 ± 3.5 53.78 ± 2.1 70.46 ± 4.7 70.11 ± 5.0 71.36 ± 5.5

JUMBOT 66.04 ± 1.0 68.59 ± 4.6 65.36 ± 0.8 80.16 ± 1.1 75.42 ± 4.8 77.03 ± 2.7 77.46 ± 3.3
MPOT 75.47 ± 3.8 67.18 ± 9.1 66.21 ± 1.2 72.36 ± 7.4 70.58 ± 3.1 86.18 ± 8.1 86.67 ± 7.8

Avg

S. ONLY 55.15 ± 2.4 55.24 ± 3.2 55.07 ± 1.2 55.02 ± 2.9 55.72 ± 2.2 58.16 ± 0.6 59.48 ± 0.4
PADA 47.48 ± 4.8 32.32 ± 4.9 43.43 ± 5.3 56.83 ± 1.0 53.15 ± 2.9 54.38 ± 2.7 54.57 ± 2.6
SAFN 58.20 ± 1.7 42.83 ± 6.3 58.62 ± 1.3 44.82 ± 8.8 56.89 ± 2.1 59.09 ± 2.8 62.64 ± 1.5

BA3US 55.10 ± 3.7 65.58 ± 1.4 58.40 ± 1.4 51.07 ± 4.3 64.77 ± 1.4 67.44 ± 1.2 67.67 ± 1.3
AR 66.68 ± 1.0 64.27 ± 3.6 67.20 ± 1.5 55.69 ± 0.9 70.29 ± 1.7 72.60 ± 0.8 73.85 ± 0.9

JUMBOT 60.63 ± 0.7 62.42 ± 2.4 59.86 ± 0.6 77.69 ± 4.2 78.34 ± 1.9 83.49 ± 1.9 84.01 ± 1.9
MPOT 70.02 ± 2.0 74.64 ± 4.4 61.62 ± 1.3 78.40 ± 3.9 70.96 ± 3.7 86.69 ± 5.1 86.95 ± 5.0

Table 7: Accuracy of different PDA methods based on different model selection strategies on the
2 Partial VISDA tasks. Average is done over three seeds (2020, 2021, 2022). For each method, we
highlight the best and worst label-free model selection strategies in green and red, respectively.

deviations. This is in contrast with previous work where only a single run is reported (Fatras et al.,
2021a; Gu et al., 2021). Other works (Cao et al., 2018; Xu et al., 2019; Jian et al., 2020) that report
standard deviations do not specify if the random seed is different across runs. Results for all tasks
on VISDA dataset are in Table 7 and on OFFICE-HOME in Appendix B due to space constraints.

Our experiments show that some methods express a non-negligible instabilities over randomness
with respect to any model selection methods. This is particularly true for BA3US when paired with
DEV and 1-SHOT as model selection strategies: there are several tasks where the standard deviation
is above 10%. While in this case this instability may stem from the poor performance of the model
selection strategies, it is also visible when ORACLE is the model selection strategy used. For instance,
the M-POT has a standard deviation of 3.3% on the AP task of OFFICE-HOME which corresponds to
a variance of 11%. On VISDA this instability and seed dependence is even larger.

6 CONCLUSION

In this paper, we investigated how model selection strategies affect the performance of PDA meth-
ods. We performed a quantitative study with seven PDA methods and seven model selection strate-
gies on two real-word datasets. Based on our findings, we provide the following recommendations:

i) Target label samples should be used to test models before using them in real-world scenario.
While this breaks the main PDA assumption, it is impossible to confidently deploy PDA models
selected without the use of target labels. Indeed, model selection strategies without target labels
lead to a significant drop in performance in most cases in comparison to using a small validation set.
We argue that the cost of labeling it outweighs the uncertainty in current model selection strategies.

ii) The robustness of new PDA method to randomness should be tested over at least three different
seeds. We suggest to use the seeds (2020, 2021, 2022) to allow for a fair comparison with our results.

iii) An ablation study should be considered when a novel architecture is proposed to quantify the
associated increase of performance.

As our work focus on a quantitative study of model selection methods and reproducibility of state-
of-the-art partial domain adaptation methods, we do not see any potential ethical concern. Future
work will investigate new model selection strategies which can achieve similar results as model
selection strategies which use label target samples.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 214–223,
International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL http://
proceedings.mlr.press/v70/arjovsky17a.html.

Bharath Bhushan Damodaran, Benjamin Kellenberger, Remi Flamary, Devis Tuia, and Nicolas
Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation.
In The European Conference on Computer Vision (ECCV), September 2018.

Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin Wang. Partial adversarial domain adaptation.
In Proceedings of the European Conference on Computer Vision (ECCV), pp. 135–150, 2018.

Laetitia Chapel, Mokhtar Z. Alaya, and Gilles Gasso. Partial optimal transport with applications on
positive-unlabeled learning. In Advances in Neural Information Processing Systems, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Kilian Fatras, Younes Zine, Rémi Flamary, Remi Gribonval, and Nicolas Courty. Learning with
minibatch wasserstein : asymptotic and gradient properties. In Silvia Chiappa and Roberto
Calandra (eds.), Proceedings of the Twenty Third International Conference on Artificial Intel-
ligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 2131–
2141, Online, 26–28 Aug 2020. PMLR. URL http://proceedings.mlr.press/v108/
fatras20a.html.
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A Reproducible and Realistic Evaluation of Partial
Domain Adaptation Methods

Supplementary material

Outline. The supplementary material of this paper is organized as follows:

• In Section A, we give more details on our experimental protocol.
• In Section B, we provide additional results from our experiments.

A ADDITIONAL DETAILS ON EXPERIMENTAL PROTOCOL

A.1 IMPLEMENTATIONS IN BENCHMARKPDA

In order to reimplement the different PDA methods, we adapted the code from the official repository
associated with each of the paper. We list them in Table 8.

Method Code Repository

PADA https://github.com/thuml/PADA/blob/master/pytorch/src/

SAFN https://github.com/jihanyang/AFN/blob/master/partial/OfficeHome/SAFN/code/

BA3US https://github.com/tim-learn/BA3US/

AR https://github.com/XJTU-XGU/Adversarial-Reweighting-for-Partial-Domain-Adaptation

JUMBOT https://github.com/kilianFatras/JUMBOT

M-POT https://github.com/UT-Austin-Data-Science-Group/Mini-batch-OT/tree/master/PartialDA

Table 8: Office Github code repositories for the PDA methods considered in this work.

One of our main claims regarding previous work is the use of target labels to choose the best model
along training. This can be easily verified by inspecting the code. For PADA it can be seen on line
240 of the script “train pada.py”, for BA3US in line 116 for the script “run partial.py”, for M-POT
it can be seen line 164 of the file “run mOT.py”, for SAFN it can be seen in the “eval.py” file and
finally for AR in line 149 of the script “train.py”.

For JUMBOT and M-POT which are based on optimal transport, we used the optimal transport solvers
from (Flamary et al., 2021).

A.2 MODEL SELECTION

DEV requires learning a discriminative model to distinguish source samples from target samples. Its
neural network architecture must be specified as well the training details. You et al. (2019) (DEV)
use a multilayer perceptron, while Saito et al. (2021) (SND) use a Support Vector Machine in their
reimplementation of DEV. We empirically observed the latter to yield more stable weights and so
that was the one we used. In order to train the SVM discriminator, following (Saito et al., 2021),
we take 3000 feature embeddings from source samples used in training and 3000 random feature
embeddings from target samples, both chosen randomly. We do a 80/20 split into training and test
data. The SVM is trained with a linear kernel for a maximum of 4000 iterations. Of 5 different
SVM models trained with decay values spaced evenly on log space between 10−2 and 104 the one
that leads to the highest accuracy (in distinguishing source from target features) on the test data split
is the chosen one.

As for SND, it also requires specifying a temperature for temperature scaling component of the
strategy. We used the default value of 0.05 that is suggested in (Saito et al., 2021).

Finally, we mention that the samples used for 100-RND were randomly selected and their list is
made available together with the code. As for the samples used for 1-SHOT, they are the same as the
ones used in semi-supervised domain adaptation.
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Method HP Values

PADA λ [0.1, 0.5, 1.0, 5.0, 10.0]

BA3US
λwce [0.1, 0.5, 1, 5, 10]
λent [0.01, 0.05, 0.1, 0.5, 1]

SAFN
λ [0.005, 0.01, 0.05, 0.1, 0.5]
∆r [0.01, 0.1, 1.0]

AR

ρ0 [2.5, 5.0, 7.5, 10.0]
Aup [5.0, 10.0]
Alow −Aup

λent [0.01, 0.1, 1.0]

JUMBOT

τ [0.001, 0.01, 0.1]
η1 [0.00001, 0.0001, 0.001, 0.01, 0.1]
η2 [0.1, 0.5, 1.]
η3 [5, 10, 20]

MPOT

ϵ [0.5, 1.0, 1.5]
η1 [0.0001, 0.001, 0.01, 0.1, 1.0]
η2 [0.1, 1.0, 5.0, 10.0]
m [0.1, 0.2, 0.3, 0.4]

Table 9: Hyper-Parameter values for each PDA method considered in the grid search.

A.3 OPTIMIZER

In general, all methods claim to adopt Nesterov’s acceleration method as the optimization method
with a momentum of 0.9 and setting the weight decay set to 5× 10−4. The learning rate follows the
annealing strategy as in Ganin et al. (2016):

µp = µ0(1 + αp)−β ,

where p is the training progress linearly changing from 0 to 1, µ0 = 0.01 and α = 10 and β = 0.75.

However, inspecting the Official code repo for each PDA method, the actual learning schedule is
given by

µi = µ0(1 + αi)−β ,

where i is the iteration number in the training procedure, µ0 = 0.01 and α = 0.001 and β = 0.75.
Only when the total number of iterations is 10000 do the learning rate schedules match. In this work,
we followed the latter since it is the one indeed used. For OFFICE-HOME, all methods are trained for
5000 iterations, while for VISDA they are trained for 10000 iterations, with the exception of the S.
ONLY which is trained for 1000 iterations on OFFICE-HOME and 5000 iterations on VISDA.

A.4 HYPER-PARAMETERS

In Table 9, we report the values used for each hyper-parameter in our grid search. We report in Table
10 the hyper-parameters chosen by each model selection strategy for each method on both datasets.
In addition, for the reproducibility of AR with the proposed architecture in Gu et al. (2021),a feature
normalization layer is added in the bottleneck which requires specifying r, the value to which the
2-norm is set. This hyper-parameter is therefore included in the hyper-parameter grid search with
the possible values of {5, 10, 20} which are the different values used in the experiments in (Gu et al.,
2021).

B ADDITIONAL DISCUSSION OF RESULTS

In this section, we provide additional results that we could not add to the main paper due to the space
constraints.
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Method Dataset HP ORACLE 1-SHOT 50-RND 100-RND S-ACC ENT DEV SND

PADA
OFFICE-HOME λ 0.5 0.1 0.1 0.5 0.1 1.0 5.0 0.5

VISDA λ 0.5 1.0 10.0 0.5 1.0 0.5 5.0 0.1

SAFN
OFFICE-HOME

λ 0.005 0.1 0.005 0.01 0.005 0.01 0.005 0.005
∆r 0.1 0.01 0.01 0.01 0.01 0.1 0.1 0.1

VISDA
λ 0.005 0.005 0.05 0.05 0.005 0.05 0.005 0.05
∆r 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01

BA3US
OFFICE-HOME

λwce 5.0 10.0 5.0 5.0 5.0 0.1 10.0 1.0
λent 0.05 0.05 0.01 0.05 0.01 0.1 0.05 0.01

VISDA
λwce 1.0 1.0 0.1 1.0 5.0 1.0 5.0 5.0
λent 0.5 0.5 0.5 0.5 0.05 0.5 0.05 1.0

AR

OFFICE-HOME

ρ0 2.5 2.5 5.0 5.0 2.5 5.0 7.5 10.0
Aup 5.0 5.0 10.0 5.0 5.0 10.0 10.0 10.0
Alow -5.0 -5.0 -10.0 -5.0 -5.0 -10.0 -10.0 -10.0
λent 0.1 0.1 1.0 1.0 0.01 1.0 0.01 1.0

VISDA

ρ0 2.5 2.5 2.5 2.5 2.5 7.5 2.5 10.0
Aup 10.0 10.0 10.0 10.0 5.0 10.0 10.0 10.0
Alow -10.0 -10.0 -10.0 -10.0 -5.0 -10.0 -10.0 -10.0
λent 0.1 0.1 0.1 0.1 0.01 0.1 0.01 0.01

JUMBOT

OFFICE-HOME

τ 0.01 0.01 0.01 0.001 0.1 0.01 0.01 0.001
η1 0.0001 0.0001 0.001 0.0001 0.01 1e-05 0.01 1e-05
η2 0.5 1.0 0.5 0.1 0.1 0.5 1.0 1.0
η3 10.0 5.0 5.0 5.0 5.0 20.0 10.0 5.0

VISDA

τ 0.01 0.01 0.01 0.01 0.001 0.01 0.001 0.01
η1 0.001 0.001 0.001 0.001 0.01 1e-05 0.01 0.0001
η2 1.0 1.0 0.5 1.0 0.1 0.5 1.0 1.0
η3 5.0 5.0 5.0 5.0 10.0 5.0 20.0 5.0

MPOT

OFFICE-HOME

ϵ 0.5 0.5 1.0 0.5 1.0 1.5 1.0 1.5
η1 0.01 0.01 0.01 0.01 0.001 0.0001 1.0 0.01
η2 10.0 1.0 1.0 1.0 1.0 10.0 0.1 1.0
m 0.3 0.1 0.1 0.2 0.3 0.4 0.2 0.4

VISDA

ϵ 0.5 0.5 0.5 0.5 1.0 1.0 1.0 0.5
η1 0.01 0.001 0.01 0.01 0.001 0.0001 0.0001 0.01
η2 1.0 1.0 1.0 1.0 1.0 10.0 1.0 10.0
m 0.3 0.1 0.3 0.3 0.2 0.4 0.2 0.3

Table 10: Hyper-parameters selected for the different methods for each model selection strategy on
both OFFICE-HOME and VISDA.

In Table 11, we show the accuracy per task on OFFICE-HOME averaged over three different seeds
(2020, 2021, 2022) for all pairs of methods and model selection strategies.

In Table 12, we compare previously reported results with ours on VISDA. While proposed methods
reported results on OFFICE-HOME, only PADA and AR results are reported in the original papers
for VISDA. Gu et al. (2021) AR) also report results for BA3US. Analysing the results, we see a 9
percentage point decrease in average task accuracy for PADA, but our experiments show that there
is a significant seed dependence which we discuss in detail below. This is particularly important
since Cao et al. (2018) (PADA) report results from a single run. Comparing our best seeds for
PADA on the SR and RS tasks, we achieve 58.01% and 67.9% accuracy versus a reported 53.53%
and 76.5%. Moreover, we point out that the official code repository for PADA does not include the
details to reproduce the VISDA experiments, so it is possible that minor tweaks (e.g learning rate) are
necessary. As for BA3US, our results are within the standard deviation being better on the SR task
and worse on the RS task. Finally as for AR we see a decrease in performance which, as the results
on OFFICE-HOME show, can be explained by the differences in the neural network architecture.
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METRIC METHOD A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg

S-ACC

S. ONLY 44.50 ± 1.7 67.71 ± 2.4 78.37 ± 0.3 52.56 ± 0.9 54.81 ± 0.1 62.88 ± 0.9 58.77 ± 0.5 39.28 ± 0.8 75.08 ± 0.5 68.90 ± 0.6 45.33 ± 1.0 76.34 ± 0.7 60.38 ± 0.5
PADA 50.15 ± 2.8 66.93 ± 1.2 76.73 ± 1.7 58.00 ± 1.4 56.13 ± 1.4 66.45 ± 0.8 60.33 ± 2.1 43.50 ± 1.2 76.70 ± 0.4 69.27 ± 3.5 53.93 ± 1.3 78.88 ± 0.8 63.08 ± 0.3
SAFN 47.36 ± 0.1 66.82 ± 1.9 77.62 ± 0.2 57.85 ± 0.6 57.89 ± 0.7 66.92 ± 0.9 58.80 ± 0.7 42.49 ± 0.6 75.46 ± 0.4 67.92 ± 0.0 49.73 ± 0.1 76.23 ± 0.8 62.09 ± 0.2

BA3US 54.89 ± 4.7 71.34 ± 0.8 81.91 ± 3.9 61.68 ± 5.2 67.13 ± 3.9 72.96 ± 1.0 68.90 ± 5.0 55.92 ± 1.3 79.13 ± 4.7 72.27 ± 3.5 51.84 ± 0.5 81.85 ± 4.1 68.32 ± 1.1
AR 51.12 ± 1.2 72.79 ± 0.7 77.91 ± 0.2 63.21 ± 1.5 60.54 ± 4.0 72.76 ± 0.9 63.39 ± 3.1 48.36 ± 1.7 78.02 ± 1.7 70.00 ± 1.1 52.52 ± 1.0 77.55 ± 2.6 65.68 ± 0.3

JUMBOT 49.07 ± 0.2 65.45 ± 0.4 77.14 ± 0.3 60.09 ± 0.1 59.59 ± 1.3 66.67 ± 1.3 60.24 ± 1.0 43.60 ± 0.0 74.43 ± 0.9 70.19 ± 0.5 51.12 ± 1.1 77.12 ± 1.3 62.89 ± 0.2
MPOT 53.07 ± 0.3 72.61 ± 1.2 78.50 ± 0.7 61.92 ± 0.5 64.16 ± 1.8 70.22 ± 0.2 64.13 ± 0.9 50.87 ± 1.1 77.40 ± 0.1 70.40 ± 0.6 53.99 ± 1.5 77.61 ± 0.3 66.24 ± 0.1

ENT

S. ONLY 45.27 ± 1.1 68.91 ± 1.4 79.26 ± 0.7 54.21 ± 2.1 55.52 ± 0.6 63.19 ± 0.3 56.96 ± 1.5 38.75 ± 0.6 75.65 ± 1.3 69.24 ± 1.0 45.31 ± 1.0 76.47 ± 0.8 60.73 ± 0.2
PADA 46.03 ± 2.9 62.09 ± 2.8 76.05 ± 1.4 55.07 ± 2.7 47.28 ± 0.1 60.92 ± 2.4 56.69 ± 2.8 38.43 ± 3.0 77.08 ± 0.2 69.48 ± 1.3 49.73 ± 3.5 78.00 ± 1.7 59.74 ± 0.5
SAFN 47.08 ± 2.0 66.83 ± 0.5 77.73 ± 0.2 56.54 ± 2.2 59.07 ± 0.7 66.22 ± 0.5 56.75 ± 2.1 39.58 ± 2.0 73.90 ± 0.9 67.80 ± 0.2 48.76 ± 0.1 76.23 ± 0.7 61.37 ± 0.3

BA3US 59.26 ± 0.9 76.38 ± 1.5 86.03 ± 0.6 68.96 ± 1.8 71.07 ± 0.8 76.22 ± 1.2 73.16 ± 0.6 57.91 ± 2.5 85.59 ± 1.2 78.11 ± 1.4 62.85 ± 2.7 84.84 ± 0.6 73.36 ± 0.6
AR 54.91 ± 1.8 78.45 ± 1.8 84.23 ± 0.9 64.86 ± 2.3 68.16 ± 3.5 80.45 ± 0.8 67.58 ± 0.4 52.34 ± 1.0 82.48 ± 1.9 74.75 ± 2.1 55.64 ± 1.2 83.06 ± 1.2 70.58 ± 0.4

JUMBOT 57.69 ± 5.6 75.44 ± 1.4 85.24 ± 2.7 75.97 ± 1.4 74.85 ± 3.3 79.75 ± 1.2 72.85 ± 2.4 60.18 ± 0.9 83.21 ± 1.1 81.97 ± 1.0 61.81 ± 4.6 86.33 ± 1.6 74.61 ± 0.8
MPOT 52.94 ± 2.0 68.94 ± 1.2 75.98 ± 0.6 60.58 ± 0.8 65.99 ± 2.2 71.51 ± 0.8 58.28 ± 0.9 49.87 ± 2.6 73.77 ± 1.3 64.98 ± 0.4 57.53 ± 0.6 73.17 ± 2.7 64.46 ± 0.1

DEV

S. ONLY 43.74 ± 1.8 67.81 ± 1.2 78.28 ± 0.7 51.42 ± 2.7 54.55 ± 1.2 63.94 ± 1.7 57.94 ± 0.9 39.40 ± 0.9 74.91 ± 0.6 69.27 ± 1.0 45.33 ± 1.0 75.99 ± 1.3 60.22 ± 0.3
PADA 44.70 ± 1.3 61.61 ± 5.4 68.99 ± 11.3 35.08 ± 13.1 24.24 ± 20.5 61.66 ± 2.4 57.91 ± 1.7 38.03 ± 0.6 73.11 ± 3.4 66.33 ± 0.7 29.97 ± 21.0 71.07 ± 11.3 52.72 ± 2.8
SAFN 48.12 ± 0.4 67.30 ± 0.5 77.43 ± 0.5 56.75 ± 0.3 58.17 ± 1.2 65.64 ± 1.3 59.08 ± 0.5 43.00 ± 1.1 74.64 ± 0.4 68.11 ± 0.9 50.53 ± 0.6 75.65 ± 0.5 62.03 ± 0.4

BA3US 41.67 ± 18.9 50.05 ± 28.7 63.74 ± 26.1 60.70 ± 2.2 59.08 ± 10.9 67.88 ± 0.9 64.62 ± 1.6 56.74 ± 1.3 75.21 ± 0.6 70.92 ± 2.0 58.39 ± 2.3 78.06 ± 1.3 62.25 ± 7.1
AR 49.25 ± 2.8 70.20 ± 1.7 79.73 ± 2.5 62.72 ± 1.0 61.85 ± 4.6 70.86 ± 5.6 61.65 ± 1.0 43.72 ± 0.7 76.29 ± 0.7 70.31 ± 1.7 49.61 ± 0.8 75.61 ± 0.4 64.32 ± 0.9

JUMBOT 46.11 ± 0.1 66.33 ± 0.6 76.42 ± 0.3 56.81 ± 0.1 56.36 ± 0.5 66.70 ± 0.8 58.03 ± 1.1 41.99 ± 0.8 74.97 ± 0.5 67.43 ± 0.3 48.12 ± 0.5 76.04 ± 0.1 61.28 ± 0.1
MPOT 46.07 ± 0.7 65.43 ± 0.8 76.46 ± 0.4 56.44 ± 1.0 57.95 ± 1.0 66.35 ± 1.0 57.64 ± 0.8 43.60 ± 0.6 74.86 ± 1.3 67.68 ± 0.5 48.12 ± 0.8 75.89 ± 0.4 61.37 ± 0.2

SND

S. ONLY 42.23 ± 1.3 68.91 ± 1.4 79.35 ± 0.6 51.76 ± 3.7 53.48 ± 2.1 63.94 ± 1.7 55.37 ± 0.6 37.35 ± 1.0 74.10 ± 2.8 68.53 ± 1.4 43.78 ± 0.6 75.84 ± 1.6 59.55 ± 0.3
PADA 50.43 ± 0.8 66.72 ± 1.5 79.72 ± 1.8 57.30 ± 1.9 52.10 ± 1.7 63.11 ± 1.9 60.82 ± 3.0 39.26 ± 2.0 79.33 ± 1.3 73.09 ± 1.5 45.77 ± 1.6 80.62 ± 0.4 62.36 ± 0.4
SAFN 49.57 ± 0.3 68.18 ± 1.3 77.86 ± 0.5 57.91 ± 0.3 58.17 ± 1.2 66.13 ± 1.0 59.14 ± 0.8 43.90 ± 0.5 75.81 ± 0.7 68.17 ± 1.6 49.59 ± 1.6 76.64 ± 0.5 62.59 ± 0.1

BA3US 62.21 ± 0.9 83.29 ± 0.4 88.50 ± 0.6 68.50 ± 0.9 71.45 ± 3.6 76.96 ± 0.6 76.19 ± 1.2 59.94 ± 1.7 86.31 ± 1.4 79.46 ± 1.4 65.35 ± 1.9 86.35 ± 0.9 75.37 ± 0.8
AR 54.37 ± 1.6 79.01 ± 2.2 84.54 ± 0.8 64.52 ± 1.6 68.05 ± 3.2 79.16 ± 2.8 65.60 ± 1.7 51.28 ± 1.6 83.05 ± 1.1 75.02 ± 1.6 55.02 ± 1.8 83.40 ± 0.9 70.25 ± 0.2

JUMBOT 56.60 ± 2.8 68.48 ± 1.5 84.70 ± 2.1 71.81 ± 1.8 71.84 ± 1.6 80.91 ± 0.9 70.28 ± 0.8 50.69 ± 4.9 83.89 ± 1.5 81.21 ± 0.6 58.85 ± 1.7 88.18 ± 0.4 72.29 ± 0.2
MPOT 32.96 ± 0.4 49.73 ± 1.1 57.39 ± 1.4 44.11 ± 2.4 38.66 ± 1.2 50.06 ± 1.0 43.74 ± 4.3 28.66 ± 2.6 58.40 ± 1.9 56.90 ± 1.9 39.34 ± 1.2 63.14 ± 0.6 46.92 ± 0.4

1-SHOT

S. ONLY 43.84 ± 1.7 66.52 ± 3.1 77.38 ± 0.9 50.47 ± 2.4 53.24 ± 2.0 61.77 ± 1.1 56.11 ± 1.7 37.35 ± 1.0 71.97 ± 1.8 68.96 ± 0.5 46.13 ± 2.0 73.33 ± 2.2 58.92 ± 0.4
PADA 52.98 ± 0.2 63.03 ± 1.6 78.06 ± 2.6 51.67 ± 5.0 56.28 ± 0.4 64.00 ± 1.4 58.92 ± 3.3 43.62 ± 1.0 74.27 ± 4.1 68.26 ± 3.1 54.25 ± 1.6 78.62 ± 0.4 62.00 ± 0.5
SAFN 31.40 ± 3.7 49.73 ± 4.3 62.82 ± 2.0 48.88 ± 2.4 45.27 ± 0.7 57.26 ± 2.2 42.33 ± 1.6 29.77 ± 2.6 63.52 ± 3.2 56.11 ± 3.2 37.55 ± 0.8 67.00 ± 1.4 49.30 ± 0.7

BA3US 44.60 ± 21.0 51.39 ± 29.8 65.47 ± 27.2 65.63 ± 1.4 59.78 ± 15.3 68.49 ± 1.3 68.38 ± 1.7 57.83 ± 1.3 82.05 ± 1.0 80.78 ± 1.1 63.10 ± 0.8 79.20 ± 1.1 65.56 ± 7.6
AR 56.00 ± 2.3 78.58 ± 1.9 82.77 ± 2.0 68.99 ± 0.2 68.35 ± 1.9 77.25 ± 1.4 69.67 ± 1.5 51.98 ± 1.8 78.72 ± 1.0 76.19 ± 0.7 55.48 ± 2.1 82.73 ± 1.0 70.56 ± 0.7

JUMBOT 61.59 ± 1.7 76.86 ± 3.4 86.45 ± 2.1 74.20 ± 0.9 73.43 ± 3.3 79.85 ± 0.3 74.96 ± 3.4 62.87 ± 0.6 81.83 ± 0.9 78.48 ± 2.0 61.59 ± 2.2 87.34 ± 0.2 74.95 ± 0.1
MPOT 53.97 ± 1.3 68.78 ± 1.7 78.04 ± 2.1 69.24 ± 0.4 65.88 ± 0.5 71.42 ± 0.7 70.31 ± 1.0 53.03 ± 0.7 76.88 ± 1.3 76.52 ± 0.4 57.39 ± 1.7 77.95 ± 1.4 68.28 ± 0.2

100-RND

S. ONLY 43.28 ± 1.6 68.76 ± 1.6 77.97 ± 1.2 53.75 ± 1.1 55.57 ± 2.2 63.94 ± 0.4 58.37 ± 0.4 39.12 ± 0.4 75.56 ± 1.3 69.02 ± 0.5 43.46 ± 0.2 75.28 ± 2.3 60.34 ± 0.4
PADA 50.41 ± 0.8 67.21 ± 1.8 79.97 ± 1.5 56.69 ± 1.5 53.86 ± 1.6 63.94 ± 1.3 60.27 ± 2.7 40.56 ± 1.8 78.91 ± 1.8 72.70 ± 1.4 53.39 ± 2.2 80.73 ± 0.9 63.22 ± 0.1
SAFN 47.58 ± 0.8 67.53 ± 0.8 77.91 ± 0.4 56.47 ± 1.0 58.19 ± 0.4 65.88 ± 0.2 59.69 ± 0.1 43.14 ± 1.7 75.00 ± 0.7 69.64 ± 1.0 50.85 ± 0.3 76.41 ± 0.8 62.36 ± 0.2

BA3US 62.53 ± 2.0 82.09 ± 0.8 88.28 ± 0.4 69.15 ± 1.2 71.65 ± 1.5 77.21 ± 0.6 75.15 ± 1.3 58.17 ± 1.0 85.92 ± 1.3 79.86 ± 2.1 66.57 ± 1.5 85.66 ± 1.0 75.19 ± 0.4
AR 54.89 ± 2.0 78.54 ± 1.4 84.34 ± 0.6 64.95 ± 2.4 69.00 ± 3.7 79.57 ± 0.2 66.73 ± 0.3 50.85 ± 1.4 82.39 ± 1.9 74.66 ± 2.3 55.42 ± 1.6 82.80 ± 0.4 70.34 ± 0.2

JUMBOT 61.07 ± 0.9 77.87 ± 1.4 86.01 ± 1.3 74.56 ± 0.4 76.40 ± 1.4 81.54 ± 1.7 72.60 ± 1.2 59.92 ± 0.4 84.63 ± 2.3 81.85 ± 1.7 64.84 ± 1.0 87.64 ± 0.7 75.74 ± 0.3
MPOT 61.59 ± 1.2 75.56 ± 1.7 82.59 ± 0.6 72.48 ± 1.0 69.77 ± 0.9 75.41 ± 0.5 72.64 ± 0.9 57.67 ± 1.6 82.02 ± 0.6 79.80 ± 0.5 64.64 ± 0.1 82.60 ± 0.5 73.06 ± 0.3

ORACLE

S. ONLY 45.43 ± 0.9 68.91 ± 1.4 79.53 ± 0.3 55.59 ± 0.7 57.42 ± 1.2 65.23 ± 0.8 59.32 ± 0.7 40.80 ± 0.9 75.80 ± 1.2 69.88 ± 0.9 47.20 ± 0.9 77.31 ± 0.1 61.87 ± 0.3
PADA 50.53 ± 0.7 67.45 ± 1.6 80.14 ± 1.4 57.30 ± 1.9 54.47 ± 1.7 64.55 ± 1.1 61.07 ± 3.0 40.94 ± 1.6 79.55 ± 1.4 73.09 ± 1.5 54.63 ± 0.9 80.93 ± 0.6 63.72 ± 0.3
SAFN 49.57 ± 0.3 68.55 ± 1.0 78.26 ± 0.2 57.91 ± 0.3 59.29 ± 0.5 66.81 ± 0.5 59.87 ± 0.7 45.29 ± 0.7 75.98 ± 0.6 69.08 ± 0.6 51.68 ± 0.8 77.29 ± 0.5 63.30 ± 0.2

BA3US 63.26 ± 1.0 82.75 ± 0.9 89.16 ± 0.2 69.91 ± 0.2 71.93 ± 1.6 77.58 ± 0.9 75.73 ± 1.3 59.94 ± 0.7 86.89 ± 0.5 80.93 ± 0.8 66.77 ± 1.5 86.93 ± 0.2 75.98 ± 0.3
AR 57.33 ± 1.7 79.61 ± 1.6 86.31 ± 0.4 69.45 ± 0.5 71.88 ± 0.9 79.94 ± 0.8 70.28 ± 1.0 53.57 ± 0.2 83.78 ± 1.0 77.26 ± 0.6 59.68 ± 1.1 83.72 ± 0.6 72.73 ± 0.3

JUMBOT 61.87 ± 1.4 78.19 ± 2.4 88.11 ± 1.5 77.69 ± 0.1 76.75 ± 0.8 84.15 ± 1.3 76.83 ± 1.9 63.72 ± 0.5 84.80 ± 1.3 81.79 ± 0.8 64.70 ± 1.1 87.17 ± 1.7 77.15 ± 0.4
MPOT 64.48 ± 1.2 80.88 ± 3.3 86.78 ± 0.5 76.22 ± 0.1 77.95 ± 1.3 82.59 ± 0.7 75.18 ± 1.3 64.60 ± 0.0 84.87 ± 1.4 80.59 ± 0.6 67.04 ± 0.6 86.52 ± 1.2 77.31 ± 0.5

Table 11: Average accuracy of different PDA methods based on different model selection strategies
on the 12 tasks of Partial OFFICE-HOME. Average is done over three seeds (2020, 2021, 2022). Best
results in bold.

Finally in Table 13, we show all the average task accuracies from all pairs of methods and model
selection strategies on the OFFICE-HOME and VISDA datasets including the 50-RND model selection
strategy.
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ALGORITHM S2R R2S Avg

S. ONLY† 45.26 64.28 54.77
S. ONLY (Ours) 51.86 67.11 59.48

PADA† 53.53 76.50 65.02
PADA (Ours) 49.34 59.81 54.57

SAFN† 67.65 - -
SAFN (Ours) 56.88 68.40 62.64

BA3US† 69.86 67.56 68.71
BA3US (Ours) 71.77 63.56 67.67

AR†∗ 85.30 74.82 80.06
AR (Ours) 76.33 71.36 73.85

JUMBOT† - - -
JUMBOT (Ours) 90.55 77.46 84.01

MPOT† - - -
MPOT (Ours) 87.23 86.67 86.95

Table 12: Comparison between reported (†) accuracies on partial VISDA from published methods
with our implementation using the ORACLE model selection strategy. * denotes different bottleneck
architectures.

DATASET METHOD S-ACC ENT DEV SND 1-SHOT 50-RND 100-RND ORACLE

OFFICE-HOME

S. ONLY 60.38±0.5 60.73±0.2 60.22±0.3 59.55±0.3 58.92±0.4 60.28±0.4 60.34±0.4 61.87±0.3
PADA 63.08±0.3 59.74±0.5 52.72±2.8 62.36±0.4 62.00±0.5 63.82±0.4 63.22±0.1 63.72±0.3
SAFN 62.09±0.2 61.37±0.3 62.03±0.4 62.59±0.1 49.30±0.7 62.00±0.2 62.36±0.2 63.30±0.2

BA3US 68.32±1.1 73.36±0.6 62.25±7.1 75.37±0.8 65.56±7.6 73.22±0.3 75.19±0.4 75.98±0.3
AR 65.68±0.3 70.58±0.4 64.32±0.9 70.25±0.2 70.56±0.7 70.26±0.2 70.34±0.2 72.73±0.3

JUMBOT 62.89±0.2 74.61±0.8 61.28±0.1 72.29±0.2 74.95±0.1 64.95±0.3 75.74±0.3 77.15±0.4
MPOT 66.24±0.1 64.46±0.1 61.37±0.2 46.92±0.4 68.28±0.2 69.90±0.5 73.06±0.3 77.31±0.5

VISDA

S. ONLY 55.15±2.4 55.24±3.2 55.07±1.2 55.02±2.9 55.72±2.2 57.90±1.1 58.16±0.6 59.48±0.4
PADA 47.48±4.8 32.32±4.9 43.43±5.3 56.83±1.0 53.15±2.9 55.67±2.5 54.38±2.7 54.57±2.6
SAFN 58.20±1.7 42.83±6.3 58.62±1.3 44.82±8.8 56.89±2.1 57.90±3.3 59.09±2.8 62.64±1.5

BA3US 55.10±3.7 65.58±1.4 58.40±1.4 51.07±4.3 64.77±1.4 66.66±2.4 67.44±1.2 67.67±1.3
AR 66.68±1.0 64.27±3.6 67.20±1.5 55.69±0.9 70.29±1.7 71.91±0.3 72.60±0.8 73.85±0.9

JUMBOT 60.63±0.7 62.42±2.4 59.86±0.6 77.69±4.2 78.34±1.9 82.85±2.9 83.49±1.9 84.01±1.9
MPOT 70.02±2.0 74.64±4.4 61.62±1.3 78.40±3.9 70.96±3.7 86.65±5.1 86.69±5.1 86.95±5.0

Table 13: Task accuracy average for the different PDA methods and model selection strategy pairs
on Partial Office-Home and Partial VisDA. The average is computed over three difference seeds
(2020, 2021, 2022).
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