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Abstract
Speech emotion recognition (SER) is a piv-001
otal technology for human-computer inter-002
action systems. However, 80.77% of SER003
papers yield results that cannot be repro-004
duced (Antoniou et al., 2023). We develop005
EMO-SUPERB, shorted for EMOtion Speech006
Universal PERformance Benchmark, aims at007
enhancing open-source initiatives for SER.008
EMO-SUPERB includes a user-friendly code-009
base to leverage 15 state-of-the-art speech self-010
supervised learning models (SSLMs) for ex-011
haustive evaluation across six open-source SER012
datasets. EMO-SUPERB streamlines result013
sharing via an online leaderboard, fostering col-014
laboration within a community-driven bench-015
mark and thereby enhancing the development016
of SER. On average, 2.58% annotations are an-017
notated using natural language. SER relies on018
classification models and is unable to process019
natural languages, leading to the discarding of020
these valuable annotations. We prompt Chat-021
GPT to mimic annotators, comprehend natu-022
ral language annotations, and subsequently re-023
label the data. By utilizing labels generated by024
ChatGPT, we consistently achieve an average025
relative gain of 3.08% across all settings. We026
make all resources open-source to facilitate fu-027
ture developments in SER. The source code and028
complete analysis are on the project website 1029

1 Introduction030

Speech Emotion Recognition (SER) aims to dis-031

cern emotional cues from speech inputs, represent-032

ing a pivotal technology for human-computer in-033

teraction systems. Recent years have witnessed034

significant advancements in SER. However, there035

are some unsolved problems in the SER domain:036

Issue 1: Devoted annotators prefer using natu-037

ral language rather than traditional emotion labels038

when annotating data, resulting in typed descrip-039

tions (e.g., “Slightly Angry, calm” to notify the040

1EMO-SUPERB Website

intensity of emotion). While these descriptions are 041

highly valuable, SER models, designed as classi- 042

fication models, cannot process natural languages 043

and thus discard them. Notably, approximately 044

2.58% (on average) of the annotations across all 045

datasets use typed descriptions. 046

Issue 2: The author of SAIL-IEMOCAP (Busso 047

et al., 2008), the most renowned SER dataset, has 048

demonstrated that over 80.77% of SER papers pro- 049

duce results that cannot be reproduced (Antoniou 050

et al., 2023) due to the absence of released codes. 051

Issue 3: Official data partitioning guidelines are 052

lacking in most SER datasets. Consequently, dif- 053

ferent papers adopt varying partitioning strategies, 054

leading to potential data leakage problems: Typ- 055

ically, SER datasets comprise dialogues between 056

two participants, denoted as Speaker A and Speaker 057

B. In the process of segmenting these dialogues 058

to isolate individual utterances, it is common to 059

encounter scenarios where Speaker A’s segments 060

contain speech from Speaker B. This can cause is- 061

sues because many studies adopt a straightforward 062

approach to dividing the dataset. They possibly 063

allocate utterances from Speaker A for training 064

and those from Speaker B for testing. However, 065

this approach inadvertently exposes the model to 066

Speaker B’s speech during training, leading to data 067

leakage. Studies employing this cheating partition 068

role, with data leakage, tend to achieve 4.011% 069

performance improvements than those without it 070

(Antoniou et al., 2023). However, comparing set- 071

tings with data leakage to those without it is unfair. 072

We introduce EMO-SUPERB to advance open- 073

source initiatives in SER. Then, we detail how to 074

address the above three issues individually. 075

• For Issue 1, we employ ChatGPT to mimic 076

annotators, comprehend typed descriptions, 077

and re-label the data accordingly, as shown 078

in Section 2. With labels generated by Chat- 079

GPT, we consistently achieve relatively 3.08% 080
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Figure 1: Demonstration for the EMO-SUPERB platform: Developers design and evaluate SER models using our
standardized dataset partition files and evaluation criteria. Developers then contribute these prediction results to the
online leaderboard, enriching the benchmark database and enabling comparative analyses with other SER models.
Finally, developers harness the visualization and statistical tools on the website to compare performance, gathering
invaluable insights for future works. From the user’s standpoint, they can upload datasets and select appropriate
models tailored to their individual applications.

performance improvements across all settings.081

• For Issue 2, we develop a codebase to harness082

15 SSLMs, renowned for enhancing state-of-083

the-art performance in speech emotion recog-084

nition, for exhaustive evaluation across all085

open-source SER datasets in Section 3.2. De-086

velopers can utilize a single command line to087

execute both training and evaluation processes088

seamlessly, and we will release the easy-to-089

follow codebase.090

• For Issue 3, we partition six open-source SER091

datasets and address potential data leakage is-092

sues during the partitioning process, as shown093

in Section 3.3.094

Finally, we make all datasets labeled with Chat-095

GPT, data partition files, codes, and checkpoints096

open source to the community.097

2 Empower by ChatGPT098

2.1 Importance of typed descriptions099

Emotion datasets (Busso et al., 2008; Chou et al.,100

2017; Lotfian and Busso, 2017) allow annotators to101

employ natural language to describe their percep-102

tion of emotion corresponding to the given data103

if the provided label options are insufficient to104

capture their emotional perception fully. These105

descriptions, articulated in natural language, are106

called typed descriptions. Typed descriptions like107

“Slightly Angry, calm” serve to indicate the inten- 108

sity of emotion, while “Haaapy” is used to empha- 109

size happiness. Appendix D shows more examples 110

of the typed descriptions. 111

Although typed descriptions account for only ap- 112

proximately 2.58% of annotations across the four 113

emotion databases that include them, they contain 114

valuable information for emotion perception (Lot- 115

fian and Busso, 2019; Chou et al., 2022). Because 116

typing down the natural language to describe the 117

emotion perception takes more time than choosing 118

labels from label options. Only motivated anno- 119

tators will use typed descriptions. In fact, annota- 120

tors are compensated based on their working hours 121

rather than the volume of data they handle (Lotfian 122

and Busso, 2019). Moreover, exemplary annotators 123

receive additional bonuses. Some annotators invest 124

extra time to ensure a comprehensive description 125

of emotions to get more bonuses. However, SER, 126

primarily based on classification models, cannot 127

process natural language and consequently over- 128

looks these valuable typed descriptions. 129

2.2 Why using ChatGPT for relabeling 130

ChatGPT (Achiam et al., 2023) exhibits a remark- 131

able ability to comprehend and analyze natural lan- 132

guage. Kheiri and Karimi (2023) had used Chat- 133

GPT to do effective sentiment analysis. Hence, we 134

utilize ChatGPT to mimic annotators, summariz- 135

ing their thoughts to re-label the data with typed 136
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ChatGPT

PromptTyped description 

inspired, proud,
inspired, gratitude

Relabel the data. Inspiration, pride, 
and gratitude are 
strongly positive, 

increasing 'happy'.

Reason

Reference distribution Adjusted distribution 

Figure 2: Labeling process using ChatGPT. Three in-
puts are Typed description, Reference distribution,
and Prompt. Two outputs are Reason and Adjusted
distribution. Notice that the reference distribution is
calculated by the number of votes for emotion classes.
In the raw annotations of an example, there are instances
of disgust, contempt, fear, neutrality, and happiness (*6),
resulting in values of 0.6 for happiness and 0.1 for each
of the remaining appearing emotions.

descriptions. While GPT models have been previ-137

ously utilized for data labeling tasks, our approach138

stands out due to its innovative application in gen-139

erating a distribution of labels instead of assigning140

a single label. We show that this approach leads141

to consistent improvements across all experimental142

settings as shown in Table 3.143

3 EMO-SUPERB platform144

3.1 Prompt ChatGPT145

We design a carefully crafted prompt to transform146

the released version of GPT-4 Turbo, a variant of147

ChatGPT, into a knowledgeable assistant psycholo-148

gist. Its primary function is to generate a distribu-149

tion across emotion labels based on the input typed150

descriptions from annotators.151

As shown in Figure 2, three inputs are provided152

to ChatGPT: the typed descriptions, reference dis-153

tributions, and a well-designed prompt. When we154

prompt ChatGPT to refer to the distribution label,155

it fails to provide the distribution unless we supply156

the reference distribution. The format of the output157

emotion label is also a distribution. Guided by the158

prompt, the ChatGPT can adjust or maintain the159

reference distribution based on the typed descrip-160

tions. In the prompt, we also let ChatGPT explain161

why it changes or doesn’t change the reference dis-162

tributions. Without this, ChatGPT might default163

to laziness, consistently avoiding modifying the164

reference distributions. For detailed information165

and the final prompt, please refer to Table 11 in166

Appendix D.1 due to space limitations. 167

We choose the MSP-PODCAST (P) dataset to 168

verify the efficacy of our proposed prompt method 169

in utilizing typed descriptions to improve SER, as 170

it is the largest dataset and has the highest per- 171

centage (6.08%) of typed descriptions among all 172

other datasets. Figure 5 and the Appendix D.1.3 173

show the label distributions between original and 174

re-label ones. ChatGPT can understand the typed 175

distribution and output reasonable distributions. 176

Ultimately, we achieved an average performance 177

improvement of approximately 3.08% across the 178

16 models on the MSP-PODCAST (P) as shown 179

in Table 3 of Section 5.2. Designing an effective 180

prompt can enhance the accuracy of the re-labeling 181

process. This paper opens the door to utilizing 182

large language models for comprehending typed 183

descriptions. We welcome the community to use 184

our user-friendly codebase to evaluate their datasets 185

relabeled by large language models. 186

As shown in Figure 1, our platform is designed 187

to empower developers with seamless access to 188

replicate our results, evaluate their custom SER 189

models, compare model characteristics, and foster 190

future SER development. This is facilitated by 191

integrating three essential components: an easy-to- 192

follow codebase, unified dataset partition files, and 193

a community-driven leaderboard website. Users 194

can select SER models for their own usage. 195

3.2 SSLM-based codebase 196

3.2.1 Framework 197

Self-supervised learning (SSL) is a promising direc- 198

tion for developing speech models. This approach 199

entails training a large model with large-scale unla- 200

beled data to obtain robust and general representa- 201

tions. Notably, after pre-training, one can achieve 202

nearly SOTA performance on downstream tasks by 203

employing the fixed SSLMs alongside task-specific 204

lightweight prediction heads (Yang et al., 2021; 205

Feng et al., 2023). Furthermore, SSLMs signifi- 206

cantly enhance SER and demonstrate SOTA perfor- 207

mance, as evidenced in (Wagner et al., 2023). 208

Inspired by achievements evidenced by (Yang 209

et al., 2021; Tsai et al., 2022; Feng et al., 2023), and 210

in an effort to enhance open-source initiatives, we 211

develop a comprehensive codebase. This codebase 212

leverages 15 speech-supervised learning models 213

as feature extractors and trains lightweight heads 214

for exhaustive evaluation across 6 open-source 215

SER datasets with 9 common settings, as shown 216
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Figure 3: Illustration of SSLM-based SER

in Figure 3. The six datasets adopted are SAIL-217

IEMOCAP, CREMA-D (Cao et al., 2014), MSP-218

IMPROV (Busso et al., 2017), MSP-PODCAST,219

BIIC-NNIME (Chou et al., 2017), and BIIC-220

PODCAST (Upadhyay et al., 2023).221

3.2.2 Self-supervised learning models222

In our codebase, we include two mainstream cate-223

gories of SOTA SSLMs, pre-trained using genera-224

tive losses and discriminative losses. We summa-225

rize them in Table 1 and details can be found in226

Appendix B due to space limitation.227

3.2.3 Pros of the codebase228

The codebase has the following merits:229

• High-performance: Our choice to utilize230

SSLMs is based on their ability to consis-231

tently achieve SOTA results in speech emotion232

recognition, aligning with our goal to boost233

open-source efforts in this domain.234

• Affordability: The computing barrier is235

greatly diminished by leveraging pre-trained236

SSLMs and solely fine-tuning a lightweight237

head, enhancing affordability for researchers238

from diverse backgrounds.239

Model Loss

Autoregressive Predictive Coding (APC) (Chung et al., 2019) Generative loss
VQ-APC (Chung et al., 2020) Generative loss
Non-autoregressive Predictive Coding (NPC) (Liu et al., 2020a) Generative loss
Mockingjay (Liu et al., 2020b)) Generative loss
TERA (Liu et al., 2021) Generative loss
DeCoAR 2 (Ling and Liu, 2020) Generative loss
WavLM (Chen et al., 2022) Discriminative loss
Hubert (Hsu et al., 2021) Discriminative loss
wav2vec 2.0 (W2V2) (Baevski et al., 2020) Discriminative loss
Data2Vec (Baevski et al., 2022) Discriminative loss
XLS-R (Babu et al., 2021) Discriminative loss
VQ wav2vec (VQ-W2V) (Baevski et al., 2019) (Ling and Liu, 2020) Discriminative loss
wav2vec (W2V) (Schneider et al., 2019) Discriminative loss
Contrastive Predictive Coding (CPC) (M CPC)(Oord et al., 2018)) Discriminative loss

Table 1: Summary of SSLMs

• Reproducibility: All codes, data partition 240

files, and checkpoints are released, ensuring 241

easy reproducibility of results. 242

• Easy-to-follow: Developers can employ a sin- 243

gle command line to execute all training and 244

evaluation processes, making it exceptionally 245

user-friendly. 246

3.3 Unified dataset partition rules 247

Typically, emotion databases are collected from 248

dialogues (Busso et al., 2008, 2017; Chou et al., 249

2017; Lotfian and Busso, 2017). These dialogues 250

often involve multiple speakers engaging in inten- 251

sive turn-taking, overlap, and interruption. The 252

segmented utterances for each speaker commonly 253

include speech from their conversation partners. 254

For example, consider the SAIL-IEMOCAP cor- 255

pus, which comprises 5 dyadic interactions (di- 256

alogues between two speakers) involving a total 257

of ten speakers. In 50% of previous studies, re- 258

searchers randomly divide the recordings of these 259

ten speakers into train and test sets (Antoniou et al., 260

2023). However, due to overlap often present 261

across speaker’s segments, this practice can lead 262

to data leakage because speaker B’s speech has al- 263

ready been used for the model training, mentioned 264

in section 1 (Issue 3). 265

In this study, we establish partition rules that 266

adhere to speaker-independent criteria to mitigate 267

the risk of leakage. Specifically, we ensure that 268

all utterances from both speakers involved in dia- 269

logues are assigned to either the training or testing 270

set. Further details regarding partitioning the six 271

emotion databases can be found in Appendix C. 272

We provide the standardization of the training 273

and testing splits and setups across the six public 274

SER datasets. 275

3.4 Community-driven leaderboard 276

The leaderboard website holds significant impor- 277

tance within EMO-SUPERB, continuously expand- 278

ing and welcoming submissions worldwide, evolv- 279

ing it into a dynamic benchmark that goes beyond 280

showcasing our own evaluation results. To miti- 281

gate the participation barrier, the website accepts 282

submissions with participants’ own models, espe- 283

cially when migrating their codes to the codebase 284

in Section 3.2 is not straightforward. Participants 285

simply need to adhere to the data partition files 286

outlined in Section 3.3, evaluate their trained mod- 287

els, and submit the results. The website also offers 288
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useful visualization (e.g. radar chart Figure 9 in289

Appendix E) and statistical tools for comparing de-290

tailed characteristics of different models, thereby291

enhancing future model development.292

Additionally, our platform encourages commu-293

nity contributions of prompts and datasets with294

newly re-labeled typed descriptions. Submitters295

can conveniently evaluate the quality of their la-296

beled datasets using a single command line on our297

codebase introduced in Section 3.2.298

3.5 Artifacts299

Modern deep learning models present a repro-300

ducibility challenge, even with released codes, due301

to the potential impacts of minor hyperparameter302

change or package version disparities on perfor-303

mance. To assist users in debugging their training304

procedures, we offer Tensorboard files, hyperpa-305

rameters, and pre-trained weights in our codebase.306

Furthermore, we provide downstream prediction307

files for several state-of-the-art models, enabling308

users to visualize and analyze results easily.309

4 Experimental setup310

4.1 Datasets311

We include the six public emotion datasets in the312

work. Some datasets use both primary emotions313

(denoted as (P)) and secondary emotions (marked314

as (S)) to allow annotators to choose single and315

multiple emotions, respectively. The Appendix A316

presents detailed information, and Table 5 sum-317

marizes statistical data regarding the six emotion318

databases. Appendix A.1 outlines the license terms319

and usage issues. We provide details of partitions320

in Appendix C to avoid issue 2 in Section 1, data321

leakage. The key information about these datasets322

is summarized as follows.323

4.1.1 The IEMOCAP324

The SAIL-IEMOCAP (Busso et al., 2008), referred325

to as IEMOCAP, collects motion capture, audio,326

and video recordings from five dyadic conversa-327

tions acted by ten professional actors in English.328

The recorded sessions were manually segmented329

into 10,039 utterances. The emotional annotations330

contain ten emotions and typed descriptions.331

4.1.2 The CREMA-D332

The CREMA-D (Cao et al., 2014) contains high-333

quality audio-visual clips from 91 professional ac-334

tors. There are 43 female and 48 male actors. There335

are 7,442 clips in English annotated via a crowd- 336

sourcing platform. The process of perceptual anno- 337

tations has three scenarios: voice-only, face-only, 338

and audio-visual. In this work, we only use voice- 339

only emotional annotations. 340

4.1.3 The IMPROV 341

The MSP-IMPROV (Busso et al., 2017), referred to 342

as IMPROV, consists of high-quality audio-video 343

sessions acted by 12 actors in English. All sessions 344

are manually segmented into 8,438 clips. The an- 345

notation process has two scenarios: primary (P) 346

and secondary (S) emotions. The corpus collected 347

the typed descriptions. 348

4.1.4 The POD 349

The MSP-PODCAST (Lotfian and Busso, 2019), 350

referred to as POD, collected spontaneous and di- 351

verse emotional speech from various real-world 352

podcast recordings with a commercial license. The 353

labeling setting also contains primary and sec- 354

ondary scenarios. The major difference is the num- 355

ber of emotions in the given options. We use the re- 356

lease version 1.11 of the database, including 84,030 357

utterances in the train set, 19,815 in the develop- 358

ment set, 30,647 in the test1 set, and 14,815 in the 359

test2 set. We combine the test1 and test2 as the test 360

set. 361

4.1.5 The NNIME 362

The BIIC-NNIME (Chou et al., 2017), referred to 363

as NNIME, consists of video, audio, and physiol- 364

ogy recordings of dyadic conversations acted by 365

43 actors in Mandarin Chinese. All sessions are 366

manually segmented into 5,596 clips. We exclude 367

turns annotated by “other” from all annotators or by 368

less than three annotators. The corpus also collects 369

typed descriptions in Chinese. 370

4.1.6 The B-POD 371

The BIIC-PODCAST (Upadhyay et al., 2023), 372

referred to as B-POD, is a variant of MSP- 373

PODCAST in Mandarin Chinese. We use the re- 374

lease version 1.01. There are 48,815 utterances in 375

the train set, 10,845 in the development set, and 376

10,340 in the test set. At least five annotators anno- 377

tate each utterance, and the emotional annotators 378

contain primary emotions (P) and secondary emo- 379

tions (S), which is the same as MSP-PODCAST. 380
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Table 2: The table summarizes the overall performance of SSLMs across the 6 public emotion datasets. #Par.(M)
means the number of the SSLM parameters (frozen).

SSLM #Par. (M) Average IMPROV (P) CREMA-D POD (P) B-POD (P) IEMOCAP NNIME IMPROV (S) POD (S) B-POD (S)

XLS-R-1B 965 0.38352 0.552 0.676 0.331 0.266 0.329 0.209 0.422 0.384 0.283
WavLM 317 0.38334 0.559 0.673 0.350 0.252 0.336 0.209 0.430 0.369 0.272
Hubert 317 0.38331 0.553 0.675 0.342 0.262 0.337 0.197 0.427 0.383 0.274

W2V2 R 317 0.37874 0.555 0.672 0.331 0.251 0.339 0.196 0.433 0.363 0.269
Data2Vec-A 313 0.37334 0.536 0.659 0.329 0.254 0.331 0.188 0.414 0.378 0.270
DeCoAR 2 90 0.36229 0.512 0.646 0.308 0.256 0.320 0.187 0.405 0.353 0.274

W2V2 317 0.35851 0.469 0.669 0.321 0.255 0.306 0.178 0.396 0.353 0.281
APC 4 0.34975 0.497 0.608 0.298 0.249 0.316 0.186 0.389 0.340 0.266

VQ-APC 5 0.34594 0.497 0.603 0.296 0.246 0.312 0.181 0.389 0.331 0.259
TERA 21 0.34547 0.493 0.596 0.295 0.253 0.308 0.193 0.385 0.337 0.249
W2V 33 0.34212 0.448 0.612 0.300 0.246 0.304 0.188 0.387 0.336 0.258

Mockingjay 85 0.33592 0.485 0.576 0.275 0.244 0.308 0.185 0.379 0.318 0.253
NPC 19 0.33150 0.470 0.570 0.274 0.240 0.304 0.172 0.364 0.333 0.256

VQ-W2V 34 0.33127 0.442 0.605 0.292 0.246 0.294 0.156 0.361 0.325 0.260
M CPC 2 0.31508 0.453 0.529 0.265 0.228 0.285 0.175 0.337 0.318 0.246

FBANK 0 0.19099 0.305 0.144 0.186 0.199 0.242 0.120 0.184 0.170 0.168

4.2 Preprossessing381

4.2.1 Data Format382

We ensure the presence of audio recordings and ex-383

tract them from video clips if the original datasets384

lack separate audio files. If the audio is in stereo385

format, we convert it to a monophonic channel.386

Furthermore, we resample the audio to 16 kHz as387

it is the most common sampling rate for speech388

processing. Prior to passing the speech input into389

modeling, we normalize it by subtracting the mean390

and dividing it by the standard deviation of the391

training set across all our experiments.392

4.2.2 Selection of emotions393

Most SER prior studies (Atmaja and Sasou, 2022;394

Achiam et al., 2023) only choose anger, happiness,395

sadness, and neutral state emotions as target emo-396

tions. In addition, they regard the excitement/joy397

annotations as happiness; however, excitement and398

happiness are not the same emotions (Cowen and399

Keltner, 2017), though those two emotions have400

correlations (Mogilner et al., 2011).401

In contrast to previous approaches, we retain402

all original emotion labels and refrain from merg-403

ing any emotions into others to balance the data404

(e.g., combining excitement with happiness). This405

strategy allows us to accurately assess performance406

and mirror natural emotion perceptions under real-407

world conditions.408

4.2.3 Label representation409

Inspired by Semantics Space Theory (Cowen and410

Keltner, 2021), we gather numerous annotations411

and compute a distribution-like (soft label) repre-412

sentation, aiming to more accurately capture the413

high-dimensional nature of emotion perception. 414

Notice that these distribution-like labels are the 415

same as the reference distribution used for Chapt- 416

GPT as the reference label in section 3.1. 417

Here is one example: Let’s assume we gather 418

five annotations from five distinct raters for a single 419

sample. These annotations comprise neutral (N), 420

anger (A), anger (A), sadness (S), and sadness (S). 421

Subsequently, we compute the label distributions, 422

which in this instance are represented as (N, A, S, 423

H) = (0.2, 0.4, 0.4, 0.0) for training SER systems. 424

Additionally, in order to enhance SER performance, 425

we employ the label smoothing technique proposed 426

by (Szegedy et al., 2016) to refine the vector, utiliz- 427

ing a smoothing parameter of 0.05. This approach 428

assigns a small probability to emotional classes 429

with zero values. 430

4.3 Evaluation metric 431

We use the macro-F1 score (Opitz and Burst, 2019) 432

to evaluate the SER performance via the Scikit- 433

learn (Pedregosa et al., 2011), considering re- 434

call and precision rates simultaneously. For the 435

distribution-like multi-label training target, we se- 436

lect target classes by applying thresholds on the 437

ground truth. A prediction is deemed successful if 438

the proportion for a class surpasses 1/C, where C 439

represents the number of emotional classes, align- 440

ing with the settings employed in prior research (Ri- 441

era et al., 2019). The example is in Appendix E.2 442

4.4 Objective function and training details 443

Inspired by the study (Cui et al., 2019), we adopt 444

the class-balanced cross-entropy loss, as our pri- 445

mary objective function due to the imbalanced label 446
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distributions across the six databases. Please refer447

to Appendix E.1 for detailed descriptions of class-448

balanced cross-entropy loss. We use the AdamW449

optimizer (Loshchilov and Hutter, 2019) with a450

0.0001 learning rate and the batch size is 32. We451

choose the best models according to the lowest452

value of the class-balanced cross-entropy loss on453

the development set. We use the Nvidia Tesla v100454

GPUs with 32 GB memory for all results. The total455

of GPU hours is around 3,300 hours. According456

to (Yang et al., 2021; Tsai et al., 2022; Feng et al.,457

2023), SSLMs usually result in consistent results458

and consume large computations, all results in the459

work are single-run. We also verify it by running460

experiments for small SSLMs, the variance is only461

1% on average.462

5 Results and Analysis463

5.1 SSLMs for SER464

We mainly use SSLMs as our backbone models to465

train SER systems in the work.466

5.1.1 Overall results467

Table 2 summarizes macro-F1 scores obtained by468

16 SSLMs and FBANK across six datasets under469

nine conditions. FBANK, the most commonly470

used speech feature, is the baseline for compari-471

son with SSLMs. We have the following obser-472

vations: (1) All SSLMs exhibit significantly supe-473

rior performance compared to FBANK. Notably,474

XLS-R-1B achieves a remarkable improvement of475

relatively 100.8% compared to FBANK. (2) The476

XLS-R-1B model demonstrates the highest average477

performance, surpassing WavLM, which typically478

achieves state-of-the-art results in most speech-479
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Figure 4: The layerwise weights analysis.

processing tasks. Despite this, WavLM still main- 480

tains considerable strength, achieving the highest 481

performance in three out of nine conditions. (3) 482

Surprisingly, despite its modest 90 million model 483

parameters, the DeCoAR 2 model outperforms the 484

W2V2 model, which has 317 million parameters. 485

This finding suggests that DeCoAR 2 could be an 486

attractive choice for developers of SER facing com- 487

putational resource constraints. 488

5.1.2 Layer analysis 489

Our training strategy involves extracting features 490

from each layer of the SSLM, multiplying these 491

features with layer-specific weights, and then ag- 492

gregating the weighted features. These aggregated 493

features are then fed into the downstream model. 494

Only the layer weights and the downstream model 495

are trainable. A large weight assigned to a specific 496

layer suggests that the layer encodes rich emotional 497

information. Additionally, we conduct a layer-wise 498

analysis of the SSLMs. We select SSLMs with 499

top-five performance, each with the same number 500

of layers: WavLM, Hubert, W2V2 R, Data2Vec- 501

A, and W2V2. We extract the layer weights from 502

the best checkpoint of each model and normalize 503

them using the softmax function to ensure values 504

between 0 and 1. If emotion datasets contain mul- 505

tiple partitions (e.g., IEMOCAP and CREMA-D), 506

we average the layer-wise weights. We show main 507

results and additional layer-wise analysis can be 508

found in Appendix F.1. 509

From the model perspective (Figure 4a), where 510

we sum the layer weights across all datasets for 511

each model and plot the resulting curves. We have 512

the following observations: Different models have 513

higher weights on different layers. For instance, 514

the W2V2 R has the highest weight on the 17th 515

layer, but the Data2Vec-A’s is on the third layer. 516

Also, the other three models have similar patterns 517

in emphasizing all layers. Additionally, it’s worth 518

noting that the weights of W2V2 R in layers 22 519

to 24 are considerably lower compared to those 520

in other layers. We observe that the SSLMs act 521

differently and have no clear patterns in the work. 522

Figure 4b illustrates the layer weights for the 523

state-of-the-art model, XLS-R-1B. Similar to other 524

models, it exhibits a tendency to prioritize the shal- 525

low layers. However, there are two notable peak 526

weights observed on the 30th layer, particularly 527

trained on the POD (P) and POD (S) datasets. 528
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Table 3: The table presents macro-F1 scores using the
integration of labels from ChatGPT.

SSLM wo ChatGPT labels w ChatGPT labels Relative gain

WavLM 0.350 0.353 0.77%
W2V2 R 0.331 0.335 1.08%

XLS-R-1B 0.331 0.341 3.09%
Data2Vec-A 0.329 0.338 2.74%

Hubert 0.342 0.350 2.22%
W2V2 0.321 0.325 1.28%

VQ-W2V 0.292 0.300 2.74%
W2V 0.301 0.305 1.58%
CPC 0.265 0.290 9.45%

DeCoAR 2 0.308 0.317 3.14%
TERA 0.295 0.306 3.52%

Mockingjay 0.275 0.298 8.49%
NPC 0.275 0.290 5.75%

VQ-APC 0.296 0.310 4.94%
APC 0.298 0.307 3.19%

FBANK 0.186 0.186 0.00%

Average 0.298 0.307 3.08%

5.2 Results with re-labeled data529

Figure 5 shows a random selected example to530

compare the original distribution and relabeled531

distribution by ChatGPT (data sample “POD-532

CAST_1631_0043_0001.wav”). We observe that533

ChatGPT effectively comprehends the typed de-534

scriptions conveying positive emotions, thereby535

assigning greater weight to the “happy” emotion536

category. More examples can be found in Figure 8a537

to Figure 8d and Table 10 in Appendix D.1.3.538

Table 3 presents the macro-F1 scores of the ex-539

periment along with the effects of incorporating540

data labeled by ChatGPT. We denote “w/o Chat-541

GPT labels” and “w/ ChatGPT labels” to signify542

an
gr

y
sa

d

dis
gu

st

co
nt

em
pt fea

r

ne
ut

ra
l

su
rp

ris
e

ha
pp

y

Original 0.00 0.00 0.10 0.10 0.10 0.10 0.00 0.60

an
gr

y
sa

d

dis
gu

st

co
nt

em
pt fea

r

ne
ut

ra
l

su
rp

ris
e

ha
pp

y

Adjusted 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.80

MSP-PODCAST_1631_0043_0001.wav
Reason: Inspiration, pride, and gratitude are strongly positive, increasing 'happy'.

Typed Descriptions: Inspired, Proud, Inspired, gratitude

Figure 5: Original and adjusted distributions. The orig-
inal distribution, determined by tallying the votes for
each emotion class, is compared with the adjusted dis-
tribution resulting from ChatGPT’s re-labeling. In the
raw annotations of the example, there are instances of
disgust, contempt, fear, neutrality, and happiness (*6),
resulting in values of 0.6 for happiness and 0.1 for each
of the remaining emotions.

results without and with ChatGPT labels, respec- 543

tively, while maintaining all other settings the same. 544

We note the following observations: (1) The exper- 545

iments involved 16 models, resulting in an average 546

relative performance gain of 3.08%. (2) Particu- 547

larly noteworthy is the case of CPC, which exhibits 548

a substantial 9.45% relative improvement. 549

5.3 Takeaways 550

Here are some takeaways: (1). DeCoAR 2 achieves 551

considerate results on SER within a modest model 552

size, making it an appealing option for developers 553

constrained by computation resources. (2). SSL 554

models trained for SER exhibit a tendency to assign 555

greater weight to shallow layers, which are used 556

to encode emotional information. (3). Leveraging 557

ChatGPT for relabeling typed descriptions holds 558

significant promise in boosting SER performance. 559

6 Ethical Considerations and Limitations 560

In terms of limitations, our study solely focused 561

on emotion datasets in English and Chinese, omit- 562

ting datasets in other languages. Additionally, the 563

absence of recordings featuring elderly and child 564

speech, coupled with unknown annotator details, 565

may hinder the representation of emotional per- 566

ception across certain demographics. We do not 567

address potential performance biases related to 568

speaker gender within the SER systems. We only 569

utilize ChatGPT for relabeling typed descriptions 570

in the PODCAST dataset, given the considerable 571

expense associated with utilizing the ChatGPT API. 572

The task of designing improved prompts and label- 573

ing typed descriptions for other datasets remains 574

for future investigation. We haven’t attempted fine- 575

tuning the entire SSLMs due to the significant com- 576

putational resources required. 577

7 Conclusion and Future Work 578

We propose EMO-SUPERB, an ecosystem contain- 579

ing user-friendly codebases, ChatGPT re-labeled 580

datasets, pre-trained models, fair data partition files, 581

and a community-driven leaderboard for SER. We 582

effectively address open questions in SER, includ- 583

ing (1) boosting reproducibility, (2) addressing data 584

leakage, and (3) leveraging unused typed descrip- 585

tions. We encourage the community to use EMO- 586

SUPERB to develop and evaluate the SER systems. 587

We plan to expand our investigation in future work 588

by incorporating additional evaluation angles, such 589

as calibration error and gender bias. 590
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A Details of Emotion Dataset795

Table 5 summarizes six public emotion datasets,796

detailing the number of citations for each, the to-797

tal length of audio recordings (partitioned length),798

original recording sampling rates, and length statis-799

tics. Additionally, it provides statistics on seg-800

mented utterances, speaker and annotator informa-801

tion, and collection settings for all datasets.802

A.1 License of Emotion Dataset803

Table 4 offers a concise summary of the licensing804

details for six emotion datasets to facilitate their805

accessibility within the research community. It’s806

important to note that the majority of these datasets807

are restricted to academic use. However, the POD-808

CAST and BIIC-PODCAST datasets stand out as809

they also offer the option for commercial licensing,810

albeit for a fee.811

A.2 The SAIL-IEMOCAP812

The SAIL-IEMOCAP dataset, referenced in this813

document as IEMOCAP, was meticulously assem-814

bled from the motion capture, audio, and video815

recordings of dyadic conversations involving ten816

professional English-speaking actors (Busso et al.,817

2008). This dataset uniquely captures a blend of818

scripted and spontaneous dialogues, focusing pri-819

marily on scenarios that portray lovers in a rela-820

tionship to elicit a rich spectrum of emotions. Each821

recording session featured a pair of speakers, one822

female and one male, engaging in interactions de-823

signed to provoke distinct emotional responses.824

To ensure a diverse emotional range, the ac-825

tors were provided with scripts curated to trigger826

specific feelings. The completed recordings were827

subsequently divided into 10,039 segments, each828

meticulously transcribed to facilitate further analy-829

sis.830

Annotators then reviewed these segments, se-831

lecting emotions from a predefined list that en-832

compassed ten distinct states: neutral, happiness,833

Table 4: The table summarizes license information of
the six public emotion databases. The license can be
accessed by clicking the word, Agreement or Website.

Dataset License Commercial Purposes

SAIL-IEMOCAP Agreement No
CREMA-D Agreement No

MSP-IMPROV (P) Agreement No
MSP-PODCAST Agreement YES

BIIC-NNIME Agreement No
BIIC-PODCAST Website YES

sadness, anger, surprise, fear, disgust, frustration, 834

excitement, and an "other" category for emotions 835

outside the listed spectrum. Additionally, a pro- 836

vision for typed descriptions allowed for a more 837

nuanced annotation, accommodating the labeling 838

of complex emotions that might not fit neatly into 839

predefined categories. Notably, the annotation pro- 840

cess permitted the selection of multiple emotions 841

for a single utterance, with each segment being 842

evaluated by at least three individuals from a pool 843

of twelve annotators, comprised equally of actors 844

and untrained (naive) annotators. 845

A significant aspect of the IEMOCAP dataset 846

is its focus on both self-perception and observed 847

perception annotations, differentiating it from other 848

emotional databases. This dual approach provides 849

a more comprehensive understanding of the emo- 850

tional landscape captured within the dataset. 851

To address challenges related to data repro- 852

ducibility, highlighted in previous research (An- 853

toniou et al., 2023), we have included detailed 854

information on the dataset splits in Appendix 855

refss:cviemocap. This is especially crucial con- 856

sidering the absence of standard split sets within 857

the original corpus, a gap that our documentation 858

aims to bridge. 859

A.3 The CREMA-D 860

The CREMA-D dataset, introduced by (Cao et al., 861

2014), is a valuable resource comprising high- 862

quality audio-visual clips featuring performances 863

from 91 professional actors, including 43 females 864

and 48 males. These actors were tasked with 865

recording one of twelve predetermined sentences, 866

expressing six distinct emotions: anger, disgust, 867

fear, happiness, sadness, and a neutral state. 868

A notable aspect of this dataset is its extensive 869

annotation process, involving 7,442 clips in En- 870

glish, evaluated by 2,443 unique annotators through 871

a crowdsourcing platform. Each clip received feed- 872

back from at least six annotators, with each an- 873

notator attributing one of the six aforementioned 874

emotions to the utterance. The perceptual annota- 875

tion process unfolds across three distinct scenar- 876

ios: voice-only, face-only, and audio-visual. In the 877

voice-only scenario, annotators solely listen to the 878

audio of the clips. Conversely, in the face-only 879

scenario, annotators observe the facial expressions 880

of the actors without accompanying audio. Finally, 881

the audio-visual scenario allows annotators to as- 882

sess both facial expressions and audio simultane- 883

ously. 884
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Table 5: The table summarizes other detailed information of the 6 public emotion databases.

Database IMPROV CREMA-D PODCAST B-PODCAST IEMOCAP NNIME

Citation (Paper) 323 562 271 1 3181 46
Length (hrs) 9.53 5.26 235.94 147.43 12.44 3.26

Length (Train, Dev., Test) (hrs) (6.35, 1.59, 1.59) (3.15, 1.05, 1.05) (134.34, 31.72, 69.88) (102.51, 22.32, 22.61) (7.46, 2.49, 2.49) (1.96, 0.65, 0.65)
Sampling Rate (K Hz) 44.1 16 16 16 16 16

Max. Length (sec.) 31.91 5.01 11.94 16.02 34.14 71.81
Avg. Length (Std.) (sec.) 4.09 (2.89) 2.54 (0.51) 5.69 (2.35) 7.58 (3.31) 4.46 (3.06) 2.32 (2.81)

Min. Length (sec.) 0.41 0.51 1.91 0.51 0.58 0.128
No. of Utt. 8385 7442 149307 70000 10039 5028

Excluded Utt. 53 0 2347 0 0 568
No. of Speaker 12 91 2172+Unknown Unknown 10 43

Speaker Gender 6F; 6M 43F; 48M 904F;1268M;Unknown Unknown 5F; 5M 24F; 19M
Transcriptions V V V V V
Other Modality Video Video Video Video, Physiology

Labels/Utt. 7.36 9.84 5.72 3.33 3.24 5.12
Raters/Utt. (Min.) 5 6 5 5 3 3

Raters/Utt. (Mean/Std.) 7.31 9.84 5.72 (2.29) 3.33 (0.75) 3.24 (0.43) 4.97 (0.67)
Raters/Utt. (Max.) 50 12 32 9 4 6

No. of Rators Unknown 2443 14363 Unknown 12 6
Perception Observed Observed Observed Observed 6 Observed, 6 Self Observed
Stimulus Audio-visual Voice-only Voice-only Audio-visual Audio-visual

Emotions (P) 4 6 8 8
Emotions (S) 10 16 16 9 11

Setting Scripted+Improvised Scripted Real-world Real-world Scripted+Improvised Improvised
Context V V V
Speakers Actors Actors Real-world Real-world Actors Actors

For the purpose of our study on Speech Emo-885

tion Recognition (SER), we focus exclusively on886

emotional annotations derived from the voice-only887

scenario. Notably, while many previous SER inves-888

tigations utilized annotations from the audio-visual889

scenario as a learning target, or failed to specify890

annotation details altogether, we opt to leverage an-891

notations solely from the voice-only setting for our892

analysis. Furthermore, we provide comprehensive893

details regarding the dataset splits employed in our894

paper, as outlined in Appendix C.2.1.895

A.4 The MSP-IMPROV896

The MSP-IMPROV dataset, also known as IM-897

PROV (Busso et al., 2017), comprises high-quality898

audio-video recordings featuring interactions acted899

out by 12 actors in English. These sessions encom-900

pass four distinct emotions: anger, happiness, sad-901

ness, and a neutral state. Notably, each dyadic in-902

teraction involves one male and one female speaker903

and is recorded in four different scenarios: prepara-904

tion, scripted, improvised, and improvised-scripted905

scenes.906

To ensure comprehensive annotation, all sessions907

within the MSP-IMPROV dataset are manually seg-908

mented into 8,438 clips, each evaluated by at least909

five annotators via a crowdsourcing platform. Uti-910

lizing the quality control method proposed by (Bur-911

mania et al., 2016), the dataset employs mecha-912

nisms to identify and eliminate unreliable annota-913

tors. 914

The annotation process within MSP-IMPROV 915

presents two scenarios: primary (P) and secondary 916

(S) emotions. In the primary scenario, annotators 917

select one emotion from a set of five options: anger, 918

happiness, sadness, neutral state, or "other." Sec- 919

ondary emotions, on the other hand, encompass 920

a broader range, including frustration, depression, 921

disgust, excitement, fear, and surprise. Notably, 922

53 utterances annotated as "other" by annotators 923

are excluded from the dataset, although annota- 924

tors have the option to provide textual descriptions 925

when choosing this category. 926

Given that the dataset does not include prede- 927

fined train, development, and test sets, we intro- 928

duce our proposed split sets in Appendix C.2 for 929

the sake of clarity and consistency in subsequent 930

analyses. 931

A.5 The MSP-PODCAST 932

The MSP-PODCAST dataset, or PODCAST (Lot- 933

fian and Busso, 2019), offers a rich collection 934

of spontaneous and diverse emotional speech ex- 935

tracted from real-world podcast recordings ob- 936

tained under commercial licenses. Initially, the 937

podcast recordings are segmented into individual 938

utterances, which are then annotated via a crowd- 939

sourcing platform. Similar to MSP-IMPROV, the 940

dataset implements quality control measures based 941

on the methodology outlined by (Burmania et al., 942
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2016) to ensure the reliability of annotators.943

The annotation framework within MSP-944

PODCAST encompasses both primary (P) and945

secondary (S) scenarios. In the primary scenario,946

annotators select from a set of nine predefined947

emotions: anger, sadness, happiness, surprise, fear,948

disgust, contempt, neutral, and "other," with the949

option to provide additional textual descriptions if950

necessary. The secondary scenario expands upon951

the primary emotions, incorporating an additional952

eight classes: amusement, frustration, depression,953

concern, disappointment, excitement, confusion,954

and annoyance, totaling 17 options.955

Each utterance within the dataset is evaluated by956

at least five unique annotators, ensuring robustness957

in the annotation process. The dataset version 1.11958

consists of 84,030 utterances in the train set, 19,815959

in the development set, 30,647 in the combined test960

set (test1 and test2), and 2,347 in the test3 set,961

which is excluded from analysis due to its private962

nature lacking annotations.963

In total, the dataset encompasses contributions964

from over 2,172 distinct speakers and involves965

14,363 annotators, providing a comprehensive re-966

source for studying emotional speech.967

A.6 The BIIC-NNIME968

The BIIC-NNIME dataset, also known as NNIME969

(Chou et al., 2017), is a comprehensive resource970

featuring video, audio, and physiology recordings971

of dyadic conversations acted out by 43 actors in972

Mandarin Chinese. These sessions are character-973

ized by spontaneous, unscripted interactions set in974

everyday home environments, encompassing six975

emotional scenes: anger, frustration, happiness,976

sadness, surprise, and neutral states.977

Each session within the NNIME dataset is metic-978

ulously segmented into 5,596 clips. To maintain979

annotation quality, utterances labeled as "other" by980

annotators or those annotated by fewer than three981

annotators are excluded from analysis. Notably,982

NNIME stands out from other emotion datasets983

due to its annotation of both speech and non-verbal984

behaviors, such as laughter, sighing, sobbing, and985

other vocal expressions.986

With a total of 43 unique speakers and anno-987

tations from six different annotators, the labeling988

process within NNIME resembles that of the SAIL-989

IEMOCAP dataset. Annotators view clips sequen-990

tially and select emotions from a pool of 12 op-991

tions: anger, frustration, disappointment, sadness,992

fear, surprise, excitement, happiness, relaxation,993

joy, neutral state, and "other." Moreover, annota- 994

tors have the flexibility to express emotional per- 995

ceptions using Chinese words. 996

Given the absence of standard split sets for train- 997

ing deep-learning models within the corpus, we 998

provide details of our proposed split sets in Ap- 999

pendix C.3 to ensure reproducibility and facilitate 1000

further research using the NNIME dataset. 1001

A.7 The BIIC-PODCAST 1002

The BIIC-PODCAST dataset, or B-PODCAST 1003

(Upadhyay et al., 2023), presents a Mandarin Chi- 1004

nese variant of the MSP-PODCAST, featuring au- 1005

dio recordings sourced from real-world podcasts 1006

under commercial licenses. Notably, the dataset 1007

diverges from MSP-PODCAST in its labeling pro- 1008

cess, employing college students as annotators in- 1009

stead of utilizing a crowdsourcing platform. This 1010

approach aims to enhance quality control and en- 1011

sure the reliability of annotations, a methodology 1012

similar to MSP-PODCAST’s quality assessment 1013

standards. 1014

Version 1.01 of the B-PODCAST dataset in- 1015

cludes 48,815 utterances in the train set, 10,845 1016

in the development set, and 10,340 in the test set. 1017

Each utterance undergoes evaluation by a mini- 1018

mum of five annotators. The emotional annotations 1019

within B-PODCAST encompass both primary (P) 1020

and secondary (S) emotions, mirroring the structure 1021

of MSP-PODCAST. 1022

The primary emotions (P) include the same set 1023

of nine options as MSP-PODCAST, comprising 1024

anger, sadness, happiness, surprise, fear, disgust, 1025

contempt, neutral, and "other." Similarly, the sec- 1026

ondary emotions (S) expand upon the primary emo- 1027

tions with additional classes, maintaining consis- 1028

tency with MSP-PODCAST. 1029

Overall, B-PODCAST serves as a valuable re- 1030

source for studying emotional speech in Mandarin 1031

Chinese, offering a curated dataset with robust an- 1032

notations and quality control measures. 1033

B SSLM introductions 1034

In our codebase, we include two mainstream cat- 1035

egories of SSLMs, pre-trained using generative 1036

loss, DeCoAR 2 (Ling and Liu, 2020), Autoregres- 1037

sive Predictive Coding (APC) (Chung et al., 2019), 1038

VQ-APC (Chung et al., 2020), Non-autoregressive 1039

Predictive Coding (NPC) (Liu et al., 2020a), 1040

TERA (Liu et al., 2021), and Mockingjay (Liu 1041

et al., 2020b)), and discriminative loss (XLS-R-1B) 1042
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(Babu et al., 2021), WavLM (Chen et al., 2022),1043

Hubert (Hsu et al., 2021), wav2vec 2.0 (W2V2)1044

(Baevski et al., 2020), VQ wav2vec (VQ-W2V)1045

(Baevski et al., 2019), wav2vec (W2V) (Schneider1046

et al., 2019), and Contrastive Predictive Coding1047

(CPC) (M CPC)(Oord et al., 2018)).1048

APC employs a pretraining strategy similar to1049

language models on a sequence of acoustic fea-1050

tures (FBANK). It utilizes unidirectional RNNs1051

to predict future FBANK frames based on past1052

ones. VQ-APC improves APC’s representation by1053

integrating vector-quantization (VQ) layers. NPC1054

boosts APC’s efficiency by replacing RNNs with1055

CNNs for faster inference. Mockingjay consists of1056

Transformer encoders. It masks segments of input1057

acoustic features along the time axis and recon-1058

structs them during training. TERA builds upon1059

Mockingjay’s architecture by extending the mask-1060

ing strategy to frequency bins.1061

DeCoAR 2.0 refines Mockingjay’s design by1062

incorporating a VQ layer just before final predic-1063

tions, similar to VQ-APC’s approach. Its training1064

involves larger input masks, increased batch sizes,1065

and the utilization of more unlabeled data to im-1066

prove performance. Wav2vec introduced several1067

architectural enhancements to refine CPC’s perfor-1068

mance. VQ-wav2vec integrates a VQ module into1069

wav2vec, discretizing speech into tokens post after1070

InfoNCE pretraining. These discrete tokens are1071

used for training a BERT model, to get contextu-1072

alized representations. Wav2vec 2.0 streamlines1073

the vq-wav2vec pipeline into an end-to-end frame-1074

work. This involves employing time masking in1075

the latent space and substituting BERT’s token pre-1076

diction with InfoNCE’s negative sampling. XLS-R1077

builds upon wav2vec 2.0, expanding its capabilities1078

to encompass multiple languages and augmenting1079

the dataset size. HuBERT enables BERT’s token1080

prediction through offline clustering of representa-1081

tions. Predictions are made based on the clustered1082

labels at masked locations. WavLM, based on Hu-1083

bert, introduces noise during pretraining to enhance1084

the robustness of SSL features.1085

C Partition Setting1086

In the speaker-independent scenario, where the1087

model is trained on data from certain speakers and1088

tested on data from speakers not seen during train-1089

ing, ensuring fair and robust evaluation is crucial.1090

Here are the details about data partitions for ex-1091

periments on the SAIL-IEMOCAP, MSP-IMPROV,1092

CREMA-D, and BIIC-NNIME datasets. 1093

C.1 The IEMOCAP 1094

Table 6 summarizes the partitioning settings for the 1095

IEMOCAP corpus. Considering each session, we 1096

define five speaker-independent splits (i.e., Dyad 1 1097

to Dyad 5). Each session consists of two speakers 1098

engaged in dyadic interactions. In our experiments, 1099

we conduct a 5-fold cross-validation as illustrated 1100

in Table 6, where each fold includes a unique com- 1101

bination of training, development, and test sets to 1102

ensure comprehensive evaluation of the model’s 1103

performance across different dyadic interactions 1104

within the IEMOCAP corpus. 1105

Table 6: IEMOCAP corpus partitions.

Partition Training Set Development Set Test Set

1 Dyad 1,2,3 Dyad 4 Dyad 5
2 Dyad 2,3,4 Dyad 5 Dyad 1
3 Dyad 3,4,5 Dyad 1 Dyad 2
4 Dyad 1,4,5 Dyad 2 Dyad 3
5 Dyad 1,2,4 Dyad 3 Dyad 4

C.2 The IMPROV 1106

In the speaker-independent scenario, the MSP- 1107

IMPROV corpus is partitioned into six folds for 1108

cross-validation. Each fold consists of a unique 1109

combination of training, development, and test sets, 1110

as illustrated in Table 7. This partitioning strategy 1111

ensures that the model is trained on interactions 1112

involving different sets of speakers and evaluated 1113

on unseen speaker combinations, facilitating robust 1114

evaluation of model generalization across various 1115

dyadic conversations within the MSP-IMPROV cor- 1116

pus. 1117

Table 7: MSP-IMPROV corpus partitions.

Partition Training Set Development Set Test Set

1 Dyad 1,2,3,4 Dyad 5 Dyad 6
2 Dyad 1,2,3,6 Dyad 4 Dyad 5
3 Dyad 1,2,5,6 Dyad 3 Dyad 4
4 Dyad 1,4,5,6 Dyad 2 Dyad 3
5 Dyad 3,4,5,6 Dyad 1 Dyad 2
6 Dyad 2,3,4,5 Dyad 6 Dyad 1

C.2.1 The CREMA-D 1118

In the speaker-independent scenario, the CREMA- 1119

D corpus is divided into five sets based on speaker 1120

IDs. Each set consists of a different combina- 1121

tion of male and female speakers, as well as a 1122

distinct range of speaker IDs, as summarized in 1123

Table 8. This partitioning strategy allows for a 1124
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fair and balanced evaluation of models trained on1125

CREMA-D data by ensuring that the test sets con-1126

tain speakers not seen during training, thereby as-1127

sessing the model’s ability to generalize across dif-1128

ferent speaker characteristics and expressions. The1129

standard partitions follow a similar methodology1130

as the one mentioned for the IEMOCAP dataset in1131

section C.1.1132

Table 8: The CREMA-D sessions. M represents male
and F represents female.

Session Gender Speaker ID

1 7M;11F 1037-1054

2 12M;6F 1001-1018

3 13M;6F 1073-1091

4 9M;9F 1055-1072

5 15M;3F 1019-1036

C.3 The NNIME1133

In the speaker-independent scenario, the NNIME1134

corpus is randomly split into five sets based on1135

speaker IDs. Each set comprises a different com-1136

bination of male and female speakers, as well as a1137

distinct set of speaker IDs, as summarized in Table1138

8. This partitioning strategy enables a fair and unbi-1139

ased evaluation of models trained on NNIME data1140

by ensuring that the test sets include speakers not1141

encountered during training, thereby assessing the1142

model’s generalization capabilities across various1143

speakers and expressions. The standard partitions1144

follow a similar methodology as the one mentioned1145

for the IEMOCAP dataset in section C.1.1146

Table 9: The NNIME sessions. M represents male and
F represents female.

Session Gender Speaker ID

1 6M;3F 01,02,03,04,22

2 4M;4F 05,06,07,08

3 1M;7F 09,10,11,12

4 2M;6F 13,14,15,16]

5 6M;4F 17,18,19,20,21

D Typed Descriptions1147

Figure 6 displays a word cloud generated from1148

typed descriptions collected in the POD emotion1149

dataset. Word clouds are visual representations that1150

highlight the frequency of words in a text corpus,1151

with larger font sizes indicating higher frequencies.1152

Figure 6: The figures shows typed descriptions of the
MSP-PODCAST for an example.

In this context, the word cloud provides insight into 1153

the types of words or phrases used by annotators to 1154

describe their emotional responses in the dataset. 1155

Analyzing typed descriptions can be valuable 1156

for understanding the nuances of human emotion 1157

and improving the comprehensiveness of emotion 1158

recognition systems. By incorporating natural lan- 1159

guage processing techniques, researchers can ex- 1160

tract valuable insights from typed descriptions to 1161

enhance the accuracy and granularity of emotion 1162

annotation in datasets like POD. 1163

D.1 Prompt for ChatGPT 1164

D.1.1 Design of Prompt 1165

Table 11 shows the well-designed prompt, which 1166

contains five parts: objective, input format, exam- 1167

ple, output format, and refine and iterate. In the 1168

objective part, we clearly describe the goal of task. 1169

Then, we define the input format, including de- 1170

scriptions and reference emotion. Afterwards, we 1171

provide an example that provide the template the 1172

ChatGPT can follow. Finally, we ask the ChatGPT 1173

output the file in JSON format. Notice that the 1174

current version of prompt is the 14th version. In 1175

the refine and iterate part, we show the more rules 1176

that can enhance the accuracy of the output of the 1177

ChatGPT. We encourage the community to provide 1178

the designed prompt. 1179

D.1.2 Parameters and Cost of ChatGPT API 1180

Listing shows the simple code of ChatGPT API. 1181

We setup the temperature as 0. and seed as 7 in the 1182

work to keep the reproducibility. We choose the 1183

version, "gpt-4-0125-preview", as the main model. 1184

The average cost per data sample is $0.0045 1185

USD. The target emotion is represented by an 8- 1186

dimensional distribution vector. During training 1187

and development, ChatGPT examined 34.21% and 1188

33.32% of the data, respectively. Out of the total 1189
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Figure 7: The figures shows comparisons of original and
re-labeled label distribution. Emotion includes anger
(A), sadness (S), happiness (H), surprise (U), fear (F),
disgust (D), contempt (C), and neutral (N).

35,352 data samples available, only 12.65% were1190

not modified by ChatGPT. This translates to a total1191

experimental cost of approximately $160 USD.1192
1193

1 response =1194
client.chat.completions.create(1195

2 temperature = 0.,1196
3 seed = 7,1197
4 model="gpt -4-0125- preview",1198
5 response_format ={’type’:1199

’json_object ’ },1200
6 messages =[1201
7 {1202
8 "role": "system",1203
9 "content": prompt},1204

10 {"role": "user",1205
11 "content": input_data}1206
12 ])12071208

Listing 1: ChatGPT API Python Code

D.1.3 Output of ChatGPT1209

Figure 7 and 8 shows the changes of label distribu-1210

tions between original labels and re-label one. The1211

ChatGPT increased the number of fear and happi-1212

ness and decreased the other emotions. In addtion,1213

the Table 10 shows ten examples including typed1214

descriptions and reasons provided by ChatGPT.1215

E Experiments1216

E.1 Class-balanced cross-entropy loss1217

This approach proposed by the study (Cui et al.,1218

2019) helps mitigate the impact of class imbal-1219

ance by giving more weight to minority classes dur-1220

ing the optimization process, leading to improved1221

model performance, especially for datasets with1222

imbalanced class distributions. The main idea is1223

to add a weighting factor to adjust the values of1224

the used loss function based on the inverses of the1225

class frequency considering the training set. The1226

factor is 1−β
1−βnj , where nj is the number of positive1227

samples in the jth emotion class in the train set,1228

and β ∈ (0, 1] is a hyperparameter. The number of 1229

factors to weigh the loss values equals to the num- 1230

ber of target emotions. The CBCE value can be 1231

calculated using Eq. 1, where LCE
(j) is the value 1232

of cross-entropy loss for the jth emotion. 1233

LCBL =
K∑
j=1

(
1− β

1− βnj
· LCE

(j)). (1) 1234

E.2 Evaluation Example 1235

For instance, consider a four-class emotion recog- 1236

nition task, and the emotion classes contain neu- 1237

tral, anger, sadness, and happiness. Assume we 1238

consider the predictions for three different mod- 1239

els: (0.2,0.35,0.35,0.1), (0.1,0.45,0.45,0.0), and 1240

(0.45,0.1,0.0,0.45). The three predictions are trans- 1241

formed into (0,1,1,0), (0,1,1,0), and (1,0,0,1), re- 1242

spectively, using the threshold. In these cases, only 1243

the first two predictions are fully corrected. 1244

F Analysis 1245

Figure 10 and 11 show the weights across layers. 1246

F.1 Layer-wise Analysis 1247

In Figure 10, the patterns of POD (P) and POD 1248

(S) diverge from those of other datasets. This vari- 1249

ance could be attributed to the incorporation of 1250

more real-life data, which likely includes additional 1251

background noise and a wider range of speakers. 1252

Concerning Chinese datasets, namely B-POD (P), 1253

B-POD (S), and NNIME, the layer weights remain 1254

relatively stable. This consistency may stem from 1255

the fact that the SSLMs were trained using English 1256

data. Across all datasets, it appears that the later 1257

layers (22nd-24th) of W2V2 are of lesser signif- 1258

icance. Examining IEMOCAP, IMPROV (P and 1259

S), and CREMA-D, it is evident that earlier layers 1260

receive higher weighting when utilizing Data2Vec- 1261

A. 1262

In Figure 11, our observations align with those 1263

reported in the study by Li et al. (2023), indicating 1264

a concentration of the model’s focus on the shallow 1265

layers (1st-5th). However, it is noteworthy that Li 1266

et al. (2023) identified the sixth layer as the one 1267

providing the most effective representation for the 1268

SER task. Additionally, the DeCOAR model relies 1269

on the later layers for the SER task. 1270
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Table 10: Relabeled examples of typed descriptions with ChatGPT. ChatGPT also provides the reason to change the
reference distribution or not. Change denotes whether the reference distribution label is changed or not.

Change Index Typed Descriptions Reason

Yes

01 calm,Slightly Angry,calm Increased disgust to reflect slight anger.
02 Sarcastic ,Sarcastic Sarcasm can be mistaken for happiness but has underlying sadness or neutrality.
03 Curious,Curious Increased surprise and happiness for curiosity.
04 hopeful,hopeful Increased neutral and happy due to hopeful; decreased disgust.
05 Inspired,Proud,Inspired,gratitude Inspiration, pride, and gratitude are strongly positive, increasing ’happy’.

No

06 Tranquil Maintained high neutral for tranquil’s peacefulness without strong emotions.
07 mellow,Contented Kept happy at maximum for contentedness and mellowness.
08 praising Kept ’happy’ at 1.0 due to ’praising’ indicating strong positive feedback.
09 Cocky,Mocking Cockiness and mocking suggest contempt, but also a high degree of happiness.
10 pride Pride is a positive emotion, strongly associated with happiness.

Table 11: The Prompt for ChatGPT.

Objective:

As a knowledgeable assistant psychologist, your role is to analyze the given words and reference
labels. You generate emotion label distributions. The emotions to consider are: ’angry,’ ’sad,’
’disgust,’ ’contempt,’ ’fear,’ ’neutral,’ ’surprise,’ and ’happy.’ The order of emotions is very
important. Please provide 8-dimensional emotion distributions for these 8 emotion classes
based on the user input.

Input format:

The user input has two parts separated by #: The first part is the description. The second part
is 8-dimensional reference emotion distribution, ’angry,’ ’sad,’ ’disgust,’ ’contempt,’ ’fear,’
’neutral,’ ’surprise,’ and ’happy.’ The order of reference emotion is very important.
The input has the format "descriptions#reference emotion distribution". Also give the reason
for each data point why you want to change the reference emotion distribution.
When given the answer, you should focus 25% on the "descriptions" and 75% on the "reference
emotion distributions".

Example:

I will give you one example:
User Input: Concerned,Interest#0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0.
Generated Labels: {’angry’: 0.1, ’sad’: 0.2, ’disgust’: 0.2, ’contempt’: 0.3, ’fear’: 0.0, ’neutral’:
0.2, ’surprise’: 0.0, ’happy’: 0.0, "reason": ""}

Output format:

Reminder for the give data, It’s very important to output the JSON format with index.

Refine and Iterate :

I will give you 30 data points each time. Each data is separated by "|". It’s very important. It’s
very important to make sure that you complete every response for 30 data points each time.
Please reminder it. Output the JSON file that contains adjusted emotion label distributions
based on reference distributions and detailed reasons why you adjust the reference emotion
distributions each word by each word. It’s very important. It’s very important that the JSON
output file must contain the reference distributions and reasons. It’s very important that do
not contain the reference distributions and words. It’s very important that use 15 to 20 words
to explain the reason you want to change the reference distributions. It’s very important that
the sum of label distributions equals 1. It’s very important to make sure that you explain the
reasons for each word in descriptions.

17



an
gr

y
sa

d

dis
gu

st

co
nt

em
pt fea

r

ne
ut

ra
l

su
rp

ris
e

ha
pp

y

Original 0.10 0.00 0.30 0.00 0.00 0.50 0.00 0.10

an
gr

y
sa

d

dis
gu

st

co
nt

em
pt fea

r

ne
ut

ra
l

su
rp

ris
e

ha
pp

y

Adjusted 0.12 0.00 0.44 0.00 0.00 0.44 0.00 0.00

MSP-PODCAST_0061_0169.wav
Reason: Increased disgust to reflect slight anger.
Typed Descriptions: calm, Slightly Angry, calm

(a) The second GPT modified example.
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MSP-PODCAST_0091_0075.wav
Reason: Increased surprise and happiness for curiosity.

Typed Descriptions: Curious, Curious

(b) The third GPT modified example.
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Reason: Sarcasm can be mistaken for happiness but has underlying sadness or neutrality.

Typed Descriptions: Sarcastic, Sarcastic

(c) The fourth GPT modified example.
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Reason: Increased neutral and happy due to hopeful; decreased disgust.

Typed Descriptions: hopeful, hopeful

(d) The fifth GPT modified example.

Figure 8: The original distribution and adjusted distri-
bution after ChatGPT re-labeling.
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Figure 9: Demonstration of radar chart to compare four
models, W2V, DeCoAR 2, XLS-R-1B and FBANK
across 9 conditions.
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(a) The layerwise weights of the WavLM.
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(b) The layerwise weights of the Hubert.
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(c) The layerwise weights of the W2V2 R.
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(d) The layerwise weights of the W2V2.
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(e) The layerwise weights of the Data2Vec-A.

Figure 10: The layerwise weights analysis across 5
models.
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(c) The layerwise weights of the DeCoAR 2.

Figure 11: The layerwise weights analysis across three
models.
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