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Abstract

The language model (LM) approach based on001
acoustic and linguistic prompts, such as VALL-002
E, has achieved remarkable progress in the field003
of zero-shot audio generation. However, ex-004
isting methods still have some limitations: 1)005
repetitions, transpositions, and omissions in the006
output synthesized speech due to limited align-007
ment constraints between audio and phoneme008
tokens; 2) challenges of fine-grained control009
over the synthesized speech with autoregressive010
(AR) language model; 3) infinite silence genera-011
tion due to the nature of AR-based decoding, es-012
pecially under the greedy strategy. To alleviate013
these issues, we propose ELLA-V1, a simple014
but efficient LM-based zero-shot text-to-speech015
(TTS) framework, which enables fine-grained016
control over synthesized audio at the phoneme017
level. The key to ELLA-V is interleaving018
sequences of acoustic and phoneme tokens,019
where phoneme tokens appear ahead of the cor-020
responding acoustic tokens. The experimen-021
tal findings reveal that our model outperforms022
VALL-E in terms of accuracy and delivers more023
stable results using both greedy and sampling-024
based decoding strategies. The code of ELLA-025
V will be open-sourced after cleanups2. Audio026
samples are available at https://anonymous.027
4open.science/w/ELLAV_anonymous/.028

1 Introduction029

Recently, deep generative AI has achieved remark-030

able results in various tasks, leading to the emer-031

gence of many transformative real-world applica-032

tions (Brown et al., 2020; Ramesh et al., 2022; Ho033

et al., 2020). With the advancement of genera-034

tive models, there have been rapid developments035

in the field of speech synthesis as well. In par-036

ticular, zero-shot TTS technology has gained in-037

1ELLA-V is the word “VALL-E” spelled backwards, to
highlight that our model changes the sequence order of VALL-
E input.

2VALL-E is not officially open source. We reproduced it
and open-sourced it in this repository.

creasing attention because it can synthesize high- 038

quality target voices without the need of speci- 039

fied speaker’s training data. As a state-of-the-art 040

generative model family, diffusion models (Sohl- 041

Dickstein et al., 2015; Ho et al., 2020; Song and 042

Ermon, 2020) progressively add noise to the train- 043

ing data and then learn the reverse process to gen- 044

erate samples. By leveraging diffusion models and 045

their variants (Sohl-Dickstein et al., 2015; Ho et al., 046

2020; Lipman et al., 2023), many works have suc- 047

cessfully applied them to the audio domain (Huang 048

et al., 2022, 2023; Shen et al., 2023). Another ma- 049

jor class of generative models is language modeling 050

based on Transformer (Vaswani et al., 2017). AR 051

language models use a decoder-only architecture to 052

predict the next token in a sequence as the training 053

objective, which has demonstrated extremely pow- 054

erful few-shot and zero-shot capabilities in many 055

generative tasks (Brown et al., 2020; Thoppilan 056

et al., 2022; Chowdhery et al., 2023). In light of 057

this, VALL-E (Wang et al., 2023a) and subsequent 058

works (Kharitonov et al., 2023; Rubenstein et al., 059

2023; Wang et al., 2023b) have successfully em- 060

ployed decoder-only language model for zero-shot 061

TTS. These approaches first quantize the speech 062

signal into a series of discrete acoustic tokens. Sub- 063

sequently, they employ an AR language model to 064

predict coarse-grained acoustic tokens, eliminat- 065

ing the necessity for explicit duration predictors or 066

speaker encoders. Once trained on a large-scale cor- 067

pus, these approaches are capable of synthesizing 068

speech with competitive fidelity and naturalness in 069

a zero-shot manner. 070

While VALL-E and its variants have achieved 071

numerous impressive milestones, they still pos- 072

sess certain limitations that impact practical de- 073

ployment. For instance, existing methods (Wang 074

et al., 2023a; Kharitonov et al., 2023) directly con- 075

catenate phoneme tokens and acoustic tokens as 076

a whole sequence to train language models. It 077

is potentially unstable to learn the alignment be- 078
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tween audio and phoneme sequences through the079

self-attention in the transformer. Additionally, the080

decoder-only language model architecture can lead081

to potential attention degradation issues (Fu et al.,082

2023), where the alignment quality between the083

target audio sequence and the source phoneme084

sequence deteriorates as the generated sequence085

increases, resulting in inaccurate or low-quality086

speech outputs.087

Another limitation stems from the nature of AR088

language modeling. AR models predict the cur-089

rent tokens solely based on the historical tokens090

without users’ control in the inference process, and091

sometimes generate semantic repetitions or inco-092

herence in the generated output (Yang et al., 2019;093

Brown et al., 2020). In the TTS task, correspond-094

ingly, VALL-E cannot directly determine which095

segment of the output audio corresponds to which096

prompt phoneme, thus there is no trivial way to097

promptly detect and prevent issues occurring in098

the generation process. These drawbacks can man-099

ifest as meaningless phoneme repetitions, trans-100

positions, omissions, or even catastrophic infinite101

silence, i.e., during the process of generation, the102

model anomalously outputs silence or noise tokens103

for an extended period of time without stopping.104

Specifically, Table 1 demonstrates the word error105

rate (WER) and the probability of the infinite si-106

lence in VALL-E samples at different threshold107

top-p for nuclear sampling (Holtzman et al., 2019).108

The detailed experimental setup is described in Sec-109

tion 4. Notably, a shift in the decoding strategy of110

VALL-E from fully sampling-based to fully greedy-111

based leads to a marked decline in sample quality.112

It should be emphasized that while sampling-based113

stochastic decoding strategies have advantages in114

terms of synthesis diversity, deterministic decoding115

strategies (e.g., beam search and its variants) are116

more suitable for cases where there is less tolerance117

for synthesis errors and more emphasis on fluency118

and coherence (Ippolito et al., 2019).119

Faced with the pros and cons of the existing120

methods, we introduce ELLA-V, a simple but ef-121

fective language model approach for zero-shot TTS.122

ELLA-V proposes a generalized AR (GAR) lan-123

guage model to generate the first layer of residual124

vector quantizer (RVQ) codes of a neural codec125

model. Then as with VALL-E, ELLA-V employs126

a non-autoregressive (NAR) language model to ob-127

tain codes of the other RVQs. Our core innovation128

can be summarized in three key aspects:129

Table 1: Comparison of VALL-E’s zero-shot TTS per-
formance across various top-p thresholds in nuclear sam-
pling. INF% denotes the probability of infinite silence,
which refers to instances where generation continues
without stopping even when its duration exceeds twice
the original length.

Top-p WER% INF%

1 5.47 0.00
0.99 5.00 0.20
0.95 10.99 19.06
0.9 20.85 41.43
0.7 37.71 76.76
0.4 46.59 84.39
0.0 (greedy) 49.26 87.29

• Phoneme Token Insertion: ELLA-V inserts 130

phoneme tokens into corresponding positions 131

in the acoustic sequence, effectively captur- 132

ing local dependencies between phoneme and 133

acoustic modalities. 134

• Loss Computation: Instead of maximizing 135

the expected log-likelihood of the hybrid se- 136

quence, ELLA-V computes loss only on 137

acoustic and special tokens (EndOfPhone and 138

EndOfSentence). This approach not only re- 139

duces redundant computation but also allows 140

fine-grained control in inference, preventing 141

abnormal phoneme synthesis. 142

• Local Advance: We introduce local ad- 143

vance by shifting EndOfPhone and next-word 144

phoneme tokens a few frames ahead in the 145

input sequence. This adjustment enhances the 146

GAR model’s utilization of local dependen- 147

cies for better phoneme prediction. 148

Experimental results, using comparable model 149

configurations and 960 hours of speech data from 150

LibriSpeech (Panayotov et al., 2015) as a training 151

set, demonstrate the superiority of ELLA-V. Com- 152

pared to the strong zero-shot TTS baseline VALL- 153

E, ELLA-V significantly improves the accuracy of 154

synthesized speech, and demonstrates comparable 155

or superior speaker similarity and speech natural- 156

ness on a series of subjective and objective experi- 157

ments. ELLA-V achieves a WER of 2.28% on the 158

test-clean set of LibriSpeech. Notably, ELLA-V 159

works well on a wide spectrum of decoding strate- 160

gies – even greedy decoding, and still has a sub- 161

stantially better speech accuracy than the best of 162

VALL-E. We further conducted ablation experi- 163

ments to investigate the effects of our proposed 164

modifications. The results indicate that the global 165

advance in ELLA-V significantly improves the 166
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model’s performance, while the local advance en-167

hances the stability of the generated output.168

2 Related Work169

speech synthesis Speech synthesis has long been170

a significant topic in the fields of natural language171

processing, and speech processing. Early meth-172

ods were based on Statistical Parametric Speech173

Synthesis (Zen et al., 2009), typically involving174

complex components such as text analysis models,175

acoustic models, and vocoders. Later, end-to-end176

neural TTS models were introduced, which synthe-177

size Mel spectrograms and employ a vocoder (Oord178

et al., 2017; Prenger et al., 2019) for speech synthe-179

sis (Wang et al., 2017; Arık et al., 2017; Ren et al.,180

2019). Some methods, utilizing techniques such as181

VAE (Hsu et al., 2019; Lee et al., 2022), flow (Miao182

et al., 2020; Kim et al., 2020), diffusion (Jeong183

et al., 2021; Kim et al., 2022; Popov et al., 2021),184

and others (Wu and Shi, 2022), have achieved185

promising performance in end-to-end speech syn-186

thesis. On the other hand, models like VALL-187

E (Wang et al., 2023a) and AudioLM (Borsos et al.,188

2023) utilize autoregressive Transformers to model189

discrete audio tokens, achieving great in-context190

learning performance. When it comes to zero-191

shot speech synthesis, autoregressive Transformer-192

based models can predict and generate audio with-193

out the need for an additional duration model,194

which strikes a favorable balance between effi-195

ciency and performance, and has been garnering196

increasing attention.197

3 Method198

3.1 Overview199

Fig. 1 demonstrates the overall architecture of200

ELLA-V. ELLA-V primarily follows a two-stage201

framework similar to VALL-E, considering zero-202

shot TTS as a conditional codec language model-203

ing task. ELLA-V maps input text prompts and204

speech prompts into a unified vocabulary space205

with a text encoder and a neural codec, respectively.206

Different from VALL-E, an additional sequence or-207

der rearranging step is performed to the text-audio208

token sequence, after which, ELLA-V utilizes a209

decoder-only language model to learn to perform210

conditional generation on the hybrid sequences of211

phoneme and audio tokens. Detailed information212

about the language model will be presented in Sec-213

tion 3.2.214

To obtain discrete audio representations, we em-215

ploy a pre-trained neural audio codec model, En-216

Codec (Défossez et al., 2023), following VALL- 217

E (Wang et al., 2023a). EnCodec transforms 24 218

kHz raw waveforms into 75 Hz discrete tokens us- 219

ing L RVQ layers. In our experiments, we use the 220

same settings as VALL-E, with L = 8. For each 221

quantizer, we set the codebook size to 1024. In this 222

setting, each second of the waveform is represented 223

by 75× 8 discrete tokens from RVQ. 224

To obtain phoneme sequences, we apply the 225

Montreal Forced Aligner (MFA) (McAuliffe et al., 226

2017) to the input audio and text transcriptions. 227

Notably, MFA not only serves as a text tok- 228

enizer but also extracts alignment relationships 229

between phonemes and the corresponding speech. 230

The forced alignment information is essential for 231

ELLA-V to change sequence order. In Sec- 232

tion 3.2, we will provide a detailed explanation 233

of how this information is used to construct the 234

target sequence. 235

3.2 Training: Codec Language Model 236

ELLA-V employs a Generalized Autoregressive 237

Codec language model for the prediction of the 238

first quantization layer in the EnCodec, which cor- 239

responds to capturing semantic information and 240

coarse-grained acoustic profiles. Subsequently, a 241

non-autoregressive language model is utilized to 242

generate codes for the subsequent quantization lay- 243

ers, aimed at reconstructing fine-grained acous- 244

tic details. Specifically, given a speech corpus 245

D = {xi,yi}, where x represents an audio sam- 246

ple, and y is its text transcription. We utilize the 247

EnCodec to extract the discrete representation of x, 248

formulated as CT×8 = EnCodec(y), where C rep- 249

resents the two-dimensional acoustic code matrix, 250

and T is the downsampled utterance length. 251

We employ MFA to obtain the phoneme se- 252

quence P1:n corresponding to the transcription y, 253

while also extracting forced alignment informa- 254

tion between the audio x and the transcription y: 255

(P1:n, l1:n) = MFA(x,y), where n is the number 256

of phonemes of the audio sample x, and li denotes 257

the length of the i-th phoneme of the discrete au- 258

dio sequence. MFA treats silence also as a kind 259

of phoneme, so that the original audio sequence 260

is partitioned into n consecutive intervals corre- 261

sponding to n phonemes. Specifically, let ⟨Ci⟩li×8
262

represent the audio sequence corresponding to the 263

i-th phoneme, C is the concatenation of ⟨Ci⟩, and 264

we have ⟨Ck⟩1:lk = C∑k−1
i=1 li+1:

∑k
i=1 li

265

After quantization, we utilize the EnCodec de- 266

coder to reconstruct the audio waveform from 267
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Input
text

Input
audio

Neural Codec EncoderPhoneme Conversion

Change Sequence Order

Neural Codec Language model

Neural Codec Decoder

Phoneme-controllable speech

...... Prompts

Model
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Figure 1: The overall architecture of ELLA-V. Input an audio prompts and text prompts, ELLA-V first changes
sequence order – sandwiching each phoneme’s audio ⟨Ck⟩: between the k-th phoneme and a EOP token and
prepending the phoneme sequence to the beginning. By learning on the mixed sequence, ELLA-V can generate
audio sequence of the text prompts while maintaining the acoustic and environmental conditions of the audio
prompts.

the discrete acoustic sequence C, formulated as268

x̂ ≈ DeCodec(C).269

For the zero-shot TTS task, the optimization ob-270

jective is max p(C|P, Ĉ), where Ĉ is the acoustic271

prompt of the unseen speaker. We use language272

modeling to generate acoustic tokens for the unseen273

speaker, by learning on the mixed sequence com-274

posed of phonemes and codec codes, consistent275

with previous works (Wang et al., 2023a; Ruben-276

stein et al., 2023).277

Unlike existing approaches, ELLA-V does not278

concatenate phoneme tokens and acoustic tokens279

directly to form the target sequence for training the280

language model. Instead, ELLA-V interleaves281

phoneme and acoustic tokens in order to make282

it easier for language models to learn the align-283

ment between audio and text. Specifically, we in-284

sert each phoneme token Pi (except the silence285

phoneme) into the corresponding position of the au-286

dio sequence, so that each phoneme’s audio ⟨Ci⟩287

is sandwiched between Pi and EOP tokens. We288

also prepend the phoneme sequence to the begin-289

ning of the mixed sequence, which is referred to as290

global advance. In Section 3.4, we further propose291

a variant sequence order with higher generation292

stability, named local advance, which moves the293

non-acoustic tokens of the sequence several frames294

forward.295

3.2.1 Generalized Autoregressive (GAR)296

Codec Language Model297

As shown in Figure 2, ELLA-V first constructs298

a hybrid sequence H:,1 of acoustic and phoneme299

BOS EOP EOP

Neural Codec Language Model (GAR)

BOS EOP EOP EOS

Source

Target^

Compute loss on ,  not on ^

Figure 2: The illustration of Generalized Autoregressive
language model of ELLA-V.

tokens, structured as: [P1, P2, . . . , Pn, BOS, P1, 300

⟨C1⟩:,1, EOP, P2, ⟨C2⟩:,1, EOP, . . . , Pn, ⟨Cn⟩:,1, 301

EOP, EOS]. It is worth noting that the MFA (Mon- 302

treal Forced Aligner) treats silence as a distinct 303

phoneme, whereas our phoneme sequence P ex- 304

clusively comprises phonemes other than silence. 305

To clarify, we retain the acoustic component asso- 306

ciated with silence but do not sandwich it with an 307

EOP and a specific silence phoneme, nor do we use 308

a silence phoneme in the global advance part. 309

We design a GAR language model to learn the 310

continuation task on the aforementioned hybrid 311

sequence, to generate the discrete acoustic code se- 312

quence C:,1. The GAR model consists of multiple 313

Transformer decoder layers (Vaswani et al., 2017). 314

After training, it can generate discrete audio codes 315

for a specified text prompt and acoustic prompt. 316

GAR is also responsible for predicting EOP and 317

EOS to indicate the conclusion of a phoneme and 318

the entire sentence, respectively. 319

The optimization of GAR is achieved by maxi- 320

mizing the likelihood of the acoustic part C:,1 of 321
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the hybrid sequence H:,1, as well as the special EOP322

and EOS tokens. Under forward factorization, this323

process is formulated as:324

max
θGAR

log p(C̃:,1 |P; θGAR)

=
n∑

i=1

li∑
t=0

log p
(〈
C̃i

〉
t,1
|
〈
C̃i

〉
<t,1

,
〈
C̃<i

〉
:,1
,

P; θGAR

)
=

TH∑
t=0

Ht,1 ̸=BOS
Ht,1 /∈{P}

log p (Ht,1 |H<t,1; θGAR)

325

where H has a size of TH × 8, {P} denotes326

the phoneme set,
〈
C̃i

〉
is the concatenation of327

⟨Ci⟩ along with its broadcast trailing EOP and/or328

EOS tokens, C̃ is then the concatenation of ⟨Ci⟩,329

and θGAR represents neural network parameters330

of GAR model. The factorization of the train-331

ing objective naturally encapsulates the core intu-332

ition of the GAR model: GAR generates the audio333

sequence phoneme-by-phoneme. GAR produces334

maximum likelihood predictions for each phoneme335

token successively, indicating the end of generating336

a specified phoneme by predicting EOP. Through337

global advancement, GAR can directly infer the338

next phoneme to be generated without relying on339

network predictions. After the prediction for the340

last phoneme is completed, GAR stops the gen-341

eration process by predicting EOS. The generated342

sequence by GAR is self-aligned, as it can instantly343

know the corresponding position of any generated344

acoustic token in relation to the phoneme prompt.345

During training, we apply a bidirectional mask346

to the phoneme sequence before BOS in the hybrid347

sequence, while a unidirectional mask is used for348

the part after BOS. We frame the training as a next-349

token-prediction language modeling task on the350

hybrid sequence. However, it’s important to note351

that the model does not predict phonemes (or BOS).352

In other words, as shown in Figure 2, we only353

compute loss when the token to be predicted is not354

a phoneme (or BOS). During inference, whenever355

the model predicts an EOP for a phoneme, the next356

phoneme token is directly appended to the end of357

the sequence, as discussed in Section 4.358

3.2.2 Non-Autoregressive (NAR) Codec359

Language Model360

In the second stage, the NAR language model is361

employed to predict the codes from the second to362

the last quantization layers in parallel. The input-363

BOS EOP

BOS EOP > F seconds EOP

BOS EOP EOP

Force

Force

Predict

EOP

Figure 3: The illustration of the inference process of
ELLA-V.

output sequence construction of the NAR model 364

follows the same pattern as used in the GAR model 365

discussed in Section 3.2.1. Specifically, the i-th 366

column H:,i of the hybrid sequence matrix H is 367

structured as: [P1, P2, . . . , Pn, BOS, P1, ⟨C1⟩:,i, 368

EOP, P2, ⟨C2⟩:,i, EOP, . . . , Pn, ⟨Cn⟩:,i, EOP, EOS]. 369

And in practice if Pi represents the silence, C:,i 370

will not be sandwiched by Pi and EOP. 371

The NAR model takes the previously generated 372

hybrid sequence of the previous j − 1 layers as 373

input and predicts the codes of the j-th layer in 374

parallel, formulated as: 375

max
θNAR

8∑
j=2

log p(C:,j |H:,<j ,P; θNAR)

=
8∑

j=2

TH∑
t=0

Ht,j∈{C:,j}

log p(Ht,j |H:,<j ,P; θNAR)

376

where {C:,j} denotes the acoustic token set of the 377

j-th quantizer. In this formulation, The embed- 378

dings of tokens from the previous j − 1 quantizers 379

are summed up to feed the NAR model to pre- 380

dict the j-th layer. Intuitively, both the GAR and 381

NAR model of ELLA-V compute the loss on the 382

acoustic tokens of the target sequence, and GAR 383

additionally computes loss for EOP and EOS. 384

3.3 Inference 385

ELLA-V can use a short clip of speech from an 386

unseen speaker as an acoustic prompt to synthe- 387

size speech for a specified text prompt. Figure 3 388

illustrates the inference process of the GAR model. 389

While VALL-E may get stuck in an infinite loop 390

during inference, resulting in the synthesis of either 391

infinite silence or repetitive pronunciation (Wang 392

et al., 2023a), ELLA-V is capable of generat- 393

ing EOP and promptly truncating abnormally long 394

phonemes. Following an EOP, we can directly ap- 395

pend the next phoneme token to the end of the gen- 396

erated sequence, ensuring the proper generation 397

of speech without abnormal pauses or repetitions. 398

For the GAR model, we employ a sampling-based 399

decoding strategy, whereas for the NAR model, we 400
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BOS EOP EOP

Advance Advance

tokens tokens

Figure 4: Local advance. A phoneme can locally have
access to information about the next phoneme token
advanced by Adv frames, allowing it to anticipate the
upcoming phoneme token’s characteristics.

use a greedy decoding approach to strike a balance401

between efficiency and performance.402

3.4 Local Advance403

One intuition is that the pronunciation of a404

phoneme is strongly related to the pronunciation405

of the phonemes just before and after it. However,406

due to the autoregressive nature of the GAR model,407

an acoustic token cannot attend to the following408

phoneme tokens, even though we can leverage the409

transformer’s ability to model long-term dependen-410

cies through global advance to provide complete411

context for the acoustic token generation. To fur-412

ther harness the powerful capability of the trans-413

former in modeling local dependencies, ELLA-V414

introduces an additional change in the sequence415

order based on Section 3.2. Specifically, we move416

the phoneme token and the EOP token ahead by a417

few frames, referred to as local advance.418

4 Experiments419

4.1 Experimental Setup420

Data & Tasks: We trained ELLA-V using the421

publicly available Librispeech (Panayotov et al.,422

2015) 960h training dataset. We utilized Mon-423

treal Forced Aligner (MFA)3 (McAuliffe et al.,424

2017) to obtain forced alignment information for425

the audio-transcription pairs. Sentences with un-426

recognized or unknown phones by MFA were ex-427

cluded. The open-source 24kHz checkpoint4 of428

EnCodec(Défossez et al., 2023) was used as the429

codec to generate discrete acoustic tokens. The430

LibriSpeech training data was upsampled to 24431

kHz before feeding it into EnCodec.432

In evaluating the model, two zero-shot TTS tasks433

were considered. For the zero-shot TTS continua-434

tion task, we adhered to methodologies established435

by previous works (Wang et al., 2023a; Le et al.,436

3https://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner

4https://github.com/facebookresearch/encodec

2023; Wang et al., 2023c), selecting examples rang- 437

ing from 4 seconds to 10 seconds from the Lib- 438

riSpeech test-clean dataset as our test set. In this 439

task, we used the complete phoneme transcription 440

as the text prompt and the first 3 seconds of the test 441

audio sample as the acoustic prompt. The model 442

was required to generate continuations. 443

For the zero-shot TTS cross-speaker task, we 444

designed a hard case set comprising 100 hard sen- 445

tences, as outlined in the demo page. These sen- 446

tences included challenging phonetic patterns and 447

unusual (abnormal) combinations of words that 448

might pose difficulties for a TTS system to gen- 449

erate natural-sounding speech. In this case, we 450

randomly picked 3-second sentences from the Lib- 451

riSpeech test-clean set as the acoustic prompt. We 452

then concatenated the transcription of this segment 453

and the target phoneme sequence in the hard case 454

set to form the text prompt. The model was tasked 455

with cloning the voice of the speaker to say the 456

specified hard target sentence. 457

Training configuration: For both GAR and 458

NAR models, we stacked 12 Transformer decoder 459

layers with an embedding dimension of 1024, a hid- 460

den state dimension of 1024, and a feed-forward 461

layer dimension of 4096. All models were trained 462

in parallel using 8 NVIDIA Tesla V100 GPUs with 463

a batch size of 16384 tokens for GAR and 12288 464

tokens for NAR per GPU, respectively, learning a 465

total of 320k steps. We used the AdamW optimizer 466

with β1 = 0.9, β2 = 0.999, ϵ = 10−9. We em- 467

ployed an inverse-sqrt learning rate scheduler with 468

warm-up. For the first 32000 updates, we linearly 469

increased the learning rate from 10−7 to a peak of 470

5× 10−4. The weight decay was 0.01. 471

Baseline: In this paper, we benchmarked the per- 472

formance of zero-shot speech synthesis against 473

VALL-E (Wang et al., 2023a). This system was 474

originally trained on a substantial 60k hours of au- 475

dio from the Librilight dataset (Kahn et al., 2020). 476

To ensure a rigorous evaluation, we reproduced the 477

VALL-E model and adapted it to train on the Lib- 478

riSpeech 960h dataset. We also adjusted the model 479

dimensions and the number of layers to match 480

the parameter settings of ELLA-V and VALL- 481

E. Both GAR (AR) and NAR models of VALL-E 482

and ELLA-V have 154.3M parameters. Moreover, 483

to mitigate potential bias introduced by the audio 484

codec, we processed the authentic speech samples 485

using EnCodec’s encoder and decoder. We also in- 486

clude the result for Encodec reconstructed speech 487
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Table 2: Subjective and Objective performance com-
parison between ELLA-V and VALL-E on zero-shot
TTS continuation task. † indicates that ground-truth
audios were passed through the encoder and decoder of
Encodec to evaluate the influence of neural audio codec.

Models WER(%) (↓) SPK (↑) CMOS (↑) SMOS (↑)

Ground Truth 1.41 0.923 0.29 4.39
Ground Truth-Encodec† 1.62 0.913 0.22 4.33

VALL-E 5.00 0.868 0.00 3.56
ELLA-V(ours) 2.28 0.870 0.10 3.56

for reference, denoted as Ground-Truth Encodec.488

Evaluation Metrics: We evaluated our system489

with several objective metrics. Speaker similarity490

(SPK) and WER served as our primary measures.491

SPK was assessed using the fine-tuned WavLM-492

TDNN model5 (Chen et al., 2022), scoring similar-493

ity on a scale of -1 to 1, with values above 0.86 in-494

dicate the same speaker identity (This value comes495

from the released model card page). The WER was496

determined by comparing the synthesized speech497

to the original text using the Conformer-Transducer498

model6 (Gulati et al., 2020).499

In addition to these standard metrics, we intro-500

duced two novel measures: INF% and CUT%.501

INF% quantified the frequency of generating in-502

finitely long audio, indicative of a failure in syn-503

thesis. A higher INF% indicates poorer generation504

stability. In the practical implementation, gener-505

ation that takes more than twice as long as the506

original is approximated as infinite generation. On507

the other hand, for ELLA-V, we forcibly truncate508

the synthesis of phonemes with a length greater509

than 0.4 seconds. CUT% is used to measure the510

frequency of forced cuts of phonemes in synthe-511

sis. For each objective metric, we reported average512

values over three experimental runs with different513

random seeds.514

For subjective analysis, we relied on the mean515

opinion score (MOS). 30 test samples were chosen516

for this purpose, with each sample being evaluated517

by at least 15 listeners for aspects like naturalness518

and speaker similarity. The comparative mean op-519

tion score (CMOS) and the similarity mean op-520

tion score (SMOS) were the key subjective metrics521

used. SMOS was rated on a 1 to 5 scale, in 0.5-522

point increments, to gauge speaker similarity, while523

CMOS, ranging from -1 to 1, assessed the overall524

naturalness and quality of the synthesized speech525

against the baseline.526

5https://huggingface.co/microsoft/
wavlm-base-plus-sv

6https://huggingface.co/nvidia/stt_en_
conformer_transducer_xlarge

Table 3: WER comparison between ELLA-V and
VALL-E on 100 particularly hard synthesis cases. Sub,
Del, and Ins refer to Substitution, Deletion, and Inser-
tion error rates, respectively.

Models WER(%) Sub(%) Del(%) Ins(%)

VALL-E 28.39 17.79 5.36 5.24
ELLA-V 12.79 7.76 3.40 1.63

Table 4: The ablation study to investigate the impact of
global and local phoneme information.

Models WER(%) (↓) SPK (↑)

VALL-E 5.00 0.868

ELLA-V 2.28 0.870
ELLA-V-noglobal 5.00 0.859
ELLA-V-nophn 3.51 0.868

4.2 Results 527

Zero-Shot TTS continuation task. We present 528

the evaluation results in Table 2, where a com- 529

parison between ELLA-V and VALL-E is shown. 530

First, regarding speaker similarity, both subjective 531

(SMOS) and objective (SPK) results indicate that 532

ELLA-V and VALL-E performed similarly, which 533

can be attributed to their shared backbone approach, 534

combining (G)AR and NAR. Meanwhile, CMOS 535

testing shows that ELLA-V achieved a +0.10 score, 536

demonstrating a higher generation quality (i.e., 537

naturalness) compared to VALL-E. Additionally, 538

WERs calculated between the recognized text of 539

synthesized audio and the ground-truth text show 540

that ELLA-V is significantly better than VALL-E 541

(2.28 versus 5.00). This underscores ELLA-V’s 542

enhanced capability in synthesizing higher-quality 543

and more robust speech. Overall, ELLA-V sub- 544

stantially improved the synthesis accuracy and ro- 545

bustness of the language model-based TTS frame- 546

work without affecting the naturalness and speaker 547

similarity. This conclusion is not only corroborated 548

by this easy continuation task, but also validated 549

via the challenging synthesis sets in the subsequent 550

section. 551

Zero-shot TTS cross-speaker task on hard cases. 552

VALL-E utilized a traditional AR model that fre- 553

quently resulted in alignment errors, including rep- 554

etitions, transpositions, and omissions, particularly 555

in more challenging synthesis cases (see Section 556

4.1 for details of the challenging synthesis set). Ta- 557

ble 3 presents the WER comparison of VALL-E 558

and ELLA-V on the 100 particularly hard synthe- 559

sis sentences. In contrast to VALL-E, ELLA-V 560

demonstrates markedly lower WER, signifying its 561

enhanced robustness. This substantial reduction in 562

errors translates to more accurate and reliable voice 563
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Figure 5: Ablations on decoding strategies. The figures demonstrate the trends of three metrics, INF (for VALL-E),
CUT (for ELLA-V), and WER (for both), with respect to the variations in top_p in nuclear sampling.

synthesis applications, significantly improving user564

experience in real-world scenarios.565

Regarding VALL-E’s tendency to fall into in-566

finite silence, an intuitive explanation is that the567

silence patterns in the training data are relatively568

simple and many of them are repetitive. In this case,569

a traditional language model is prone to overfitting570

to these patterns. During testing, when the model571

encounters silence, it assigns a high probability to572

silence. This leads to issues such as beam search,573

which is based on maximum likelihood, getting574

stuck in a loop. However, ELLA-V does not face575

this problem.576

Analysis of Decoding Strategies. To demon-577

strate the stability of ELLA-V under different de-578

coding strategies, we conducted an ablation study,579

testing the decoding performance with different580

top-p values for nuclear sampling, by varying p ∈581

{1, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2,582

0.1, 0.0(greedy)}. The results are shown in583

Figure 5. We can observe that as top_p decreases,584

the accuracy of VALL-E’s synthesized speech585

significantly decreases. At this point, VALL-E586

is more prone to generating a large number of587

overfit silence tokens, leading to a significant588

increase in INF%. And compared to VALL-E, the589

audio synthesized by ELLA-V is less sensitive590

to rate changes in the top_p sampling strategy,591

whose WER consistently outperforms VALL-E.592

When the local advance is set to 5 or 10 tokens,593

the generated audio exhibits significant stronger594

robustness. On the other hand, as shown in Figure595

5 (right), as top_p decreases, VALL-E tends to get596

stuck in infinite loops of failed generation, while597

the generation of ELLA-V remains significantly598

stable. Moreover, ELLA-V can promptly handle599

(truncate) the synthesis of exceptional phonemes,600

resulting in significantly higher robustness.601

Ablation Study. In this paragraph, we conduct602

ablation experiments. (1) To investigate the im-603

pact of global phoneme information on synthesized604

speech, we removed the global phoneme sequence 605

at the beginning of the trained sequence (abbr. 606

ELLA-V-noglobal). (2) To investigate whether 607

it is necessary to provide the specific phoneme 608

token before its corresponding acoustic tokens dur- 609

ing both training and inference, rather than just 610

using the EOP separator, we removed all phoneme 611

tokens following BOS in the mixed sequence (abbr. 612

ELLA-V-nophn). The experimental results are 613

shown in Table 4. It is observed that the accu- 614

racy of synthesized speech significantly deterio- 615

rated either when global phoneme tokens were not 616

used or when local phoneme tokens were disabled 617

within the hybrid sequence. It is also notable that 618

even in the absence of global advance (i.e., in the 619

ELLA-V-noglobal configuration), the SPK and 620

WER of the synthesized audio were comparable 621

to those of VALL-E. These findings indicate the 622

importance of both local and global information in 623

achieving more accurate synthesized audios, mean- 624

while, combining both of them potentially leads to 625

further enhancements in accuracy. 626

5 Conclusion 627

In this paper, we introduce ELLA-V, a simple and 628

efficient two-stage zero-shot TTS framework based 629

on language modeling. By learning interleaved se- 630

quences of acoustic and text tokens, our proposed 631

GAR model can provide fine-grained control over 632

synthesized audio at the phoneme level and can bet- 633

ter leverage local dependencies to predict the pro- 634

nunciation of the current phoneme. Experimental 635

results demonstrate that ELLA-V achieves higher 636

accuracy and more stable results under different 637

threshold top-p for nuclear sampling. We aspire 638

for this work to advance research in enhancing the 639

robustness of speech generation. 640

Limitations 641

Scalability. ELLA-V was trained on the pub- 642

licly available LibriSpeech (Panayotov et al., 2015) 643
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dataset, which comprises 960 hours of English644

speech. We were unable to scale up the model645

and data, and we hope that future work can test646

a larger scale. In a similar vein, we have not val-647

idated whether ELLA-V performs well on lan-648

guages other than English. Additionally, we did649

not explore the impact of training audio quality on650

the model. Generally, low-quality speech audio651

containing noise and interference can disrupt the652

model’s understanding of speech signals, hinder-653

ing model training. Further experiments are still654

needed to determine the sensitivity of ELLA-V to655

the quality of training data.656

Expressiveness. ELLA-V primarily focuses on657

improving the accuracy of synthesized speech but658

lacks means to control the emotional aspects of659

synthesized speech. Specifically, ELLA-V can660

only implicitly maintain environmental and emo-661

tional information through audio prompts but can-662

not explicitly and accurately specify the emotion663

of synthesized speech. Future work will explore664

this further.665

Ethics Statement666

This paper introduced a zero-shot TTS model based667

on language modeling approach, named ELLA-V.668

The model can maintain the speaker identity of any669

unseen speaker and synthesize specified speech.670

Due to this capability, ELLA-V has potential risks671

of misuse, such as synthesizing fraudulent infor-672

mation, hate speech, or other harmful content. To673

minimize these potential negative impacts, we an-674

ticipate that the next step in our research direction675

will be to efficiently add watermarks to distinguish676

whether the audio is generated by the generative677

model.678
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A.1 Subjective Evaluation 838

For CMOS, listeners are instructed to compare a 839

pair of speech segments and indicate which of the 840

two sentences is more natural and of higher qual- 841

ity. The relative scoring range is from -1 to 1. For 842

SMOS, listeners are required to assess the similar- 843

ity between the synthesized speech segment and 844

10

https://openreview.net/forum?id=gzCS252hCO
https://openreview.net/forum?id=gzCS252hCO
https://openreview.net/forum?id=gzCS252hCO
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=PqvMRDCJT9t
https://doi.org/10.21437/Interspeech.2017-1386
https://doi.org/10.21437/Interspeech.2017-1386
https://doi.org/10.21437/Interspeech.2017-1386


the speaker of the audio prompt. The scoring range845

is from 1 to 5. The screenshots of instructions for846

testers are shown in 6 and 7, respectively. We paid847

$8 to participants hourly and totally spent about848

$600 on participant compensation.849
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Figure 6: Screenshot of CMOS testing.

Figure 7: Screenshot of SMOS testing.
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