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Abstract. Abdomen organ segmentation has many important clinical
applications. However, the manual annotating process is time-consuming
and labor-intensive. In the "Fast and Low-resource semi-supervised Ab-
dominal oRgan sEgmentation in CT" challenge, the organizer provide
massive unlabeled CT images. To effectively utilize unlabeled cases, we
propose a self-pretrained V-net. Inspired by the preservational contrastive
representation learning (PCRL), the proposed method consists of two
steps: 1) using a large amount of unlabeled data to obtain a pre-trained
model, 2) using a small amount of labeled data to perform fully super-
vised fine-tuning on the basis of the former. The feature extraction part
used in both stages uses the same backbone network. The difference is
that the pre-training stage introduces the additional image reconstruc-
tion branch and the corresponding momentum branch to construct image
reconstruction and contrastive learning, and the fully-supervised model
downstream uses a fully convolutional network for segmentation predic-
tion. In the pre-training stage, by incorporating diverse image reconstruc-
tion tasks into the contrastive learning, the representation ability of the
backbone network for specific image data during the upstream feature ex-
traction process is enhanced. Besides, the half-precision (Float16) is used
in the prediction stage, which reduces the GPU load by about 36% with-
out losing the prediction accuracy and the maximum used GPU mem-
ory is 1719 MB. Quantitative evaluation on the FLARE2022 validation
cases, this method achieves the average dice similarity coefficient (DSC)
of 0.4811 and average normalized surface distance (NSD) of 0.4513.

Keywords: Self-supervised learning · Self-transfer learning · Organ Seg-
mentation.

1 Introduction

Abdominal organ segmentation plays an important role in clinical practice, the
state-of-the-art methods have achieved inter-observer performance in several
benchmark datasets. However, most of the existing abdominal datasets only
contain single-center, single-phase, single-vendor, or single-disease cases, and it
is unclear whether the excellent performance can be generalized on more diverse
datasets. Some SOTA methods have good general applicability. However, when
the training data is limited and the task is complex, it is difficult for the model to

https://orcid.org/0000-0003-0680-781X


2 Jiapeng Zhang

be fully trained. Moreover, many SOTA methods use model ensembles to boost
performance, but these solutions usually have a large model size and cost exten-
sive computational resources, which are impractical to be deployed in clinical
practice.

Compared with labeled data, unlabeled data is usually easier to obtain be-
cause the manual labeling process is omitted. To make full use of the massive un-
labeled cases, self-supervised learning has been widely adopted[2]. Based on the
massive unlabeled data provided by the Fast and Low-resource semi-supervised
Abdominal oRgan sEgmentation in CT challenge, we attempted to design our
method based on V-Net[7], and PCRL[12].

Specifically, the backbone uses the encoder-decoder style architecture with
skip connection [8]. The vast majority of successful algorithms for image segmen-
tation in the medical domain such as V-net [7] and Dense U-net [10] are based
on this U-shape structure. For unlabeled data, we use the method of retain-
ing contrastive representation learning to obtain a pre-training weight through
self-supervised learning. Then, perform full supervision finetuning through lim-
ited annotated data. Note that this pre-trained model was trained from the
unlabeled cases provided by the challenge, and no additional pre-trained mod-
els were used in the process. Compared with methods that only use contrastive
learning, PCRL can generate stronger representations of image information in
the upstream feature extraction network by reconstructing different contexts.
Besides, to take into account the use of GPU memory and the preservation of
information between multiple organs and backgrounds, we adopt a horizontal
plane scaling and vertical sliding window strategy to train the model. Mean-
while, due to the limitation of GPU resources, we use a smaller input size to
reduce resource consumption.

The main contributions of this work are summarized as follows:
1) We propose a PCRL-based self-pretrained multi-organ segmentation frame-

work to make full use of the massive unlabeled cases.
2) To reduce resoure consumption and speed up the inference process, we

compress the input size and utilize a smaller width for the network.

2 Method

As mentioned in Fig 1, this whole segmentation framework is composed of a
selfsupervised pretrain stage and a full-supervised finetuning stage. The detail
description of the method is as follows.

2.1 Preprocessing

The proposed method includes the following preprocessing steps:

– Cropping strategy: Crop the training dataset to the non-zero region.
– Resampling method for anisotropic data: First, the images are reoriented

to a unified direction. To obtain a larger receptive field during the train-
ing process, we tend to use a relatively complete patch for training. In this
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way the model can capture better relative relationship between the various
organs. Constrained by hardware conditions, the original image is downsam-
pled to 160 × 160 for clises in the transverse section, and the spacing of
inferior-superior axis is unified to 2.5. Both in-plane and out-of-plane with
third-order spline interpolation.

– Intensity normalization method: First, the images is clipped to the range
[-320, 320]. Then a z-score normalization is applied based on the mean and
standard deviation of the intensity values[11].

2.2 Proposed Method
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Fig. 1. Self-supervised pretrain and full-supervised fine-tuning framework

The unlabeled data are used to construct a self-supervised learning process to
obtain a pre-trained model for augmenting the fully supervised training process.
The encoder and the decoder in both pretarin stage and finetuning stage are
conncected via a U shape architecture.

For the pretrain stage, the PCRL contains three different encoders and one
shared decoder. The three different encoders are ordinary encoder, momentum
encoder, and cross-mixup encoder, where the momentum encoder is obtained
from the exponential moving average to the ordinary encode, and the cross-
mixup encoder is the hybrid encoder mixed by both former encoders. Following
Zhou et al.[12], for a batch of input image, different data augmentataion meth-
ods, such as random crop, random flip and random rotation are first applied to
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Fig. 2. V-Net backbone, where the input size and the number of network layers are
modified accordingly to this task.

generate three batches of images corresponding to three encoders which are set
as the ground truth targets of the MSE loss after decoder. Then low-level pro-
cessing operations, including inpainting, outpainting are performed randomly to
generate the original encoder and the momentum encoder inputs. And the input
of the cross-mixup encoder is the mixup of these two inputs. The feature maps
output from the original encoder and the last layer of the momentum encoder are
deposited into the sequence K after global average pooling encoding to construct
the constractive learning[2].

For the fintuning stage, the weights from the pre-training phase are used. And
the difference is that a sigmoid layer is utilized after the decoder to perform the
downstream task of segmentation.

The detail of each layer, hyper-parameters, such as stride, weight size, etc.
of the backbone are shown in Fig 2

Loss function: During self-pretrain stage, the contrastive loss and MSE loss
are used; During the fine-tuning stage, we use the summation between general-
ized Dice loss and cross entropy loss because it has been proved to be robust [5]
in medical image segmentation tasks.

To reduce resource consumption, a smaller input size to reduce resource con-
sumption. Besides, existing network frameworks (such as PyTorch) usually use
full precision (Float64) for prediction. However, for intensive prediction tasks
such as 3D image segmentation, the use of full-precision model parameters will
greatly increase the hardware burden in the deduction process. In this work, the
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half-precision (Float32) is used in the prediction stage, which reduces the GPU
load by about 36% without losing the prediction accuracy.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2022 dataset is curated from more than 20 medical groups under
the license permission, including MSD [9], KiTS [3,4], AbdomenCT-1K [6], and
TCIA [1]. The training set includes 50 labelled CT scans with pancreas disease
and 2000 unlabelled CT scans with liver, kidney, spleen, or pancreas diseases.
The validation set includes 50 CT scans with liver, kidney, spleen, or pancreas
diseases. The testing set includes 200 CT scans where 100 cases has liver, kidney,
spleen, or pancreas diseases and the other 100 cases has uterine corpus endome-
trial, urothelial bladder, stomach, sarcomas, or ovarian diseases. All the CT scans
only have image information and the center information is not available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 16.04.5 LTS
CPU Intel(R) Xeon(R) CPU E5-2640 V3 @2.60GHz
RAM 8×4GB; 2.4MT/s
GPU (number and type) 4 Nvidia Geforce RTX 2080 (8G)
CUDA version 11.1
Programming language Python 3.9
Deep learning framework Pytorch (Torch 1.8.1, torchvision 0.9.0)
Specific dependencies V-Net1 / PCRL2

Training protocols The training protocols of the baseline method is shown in
Table 2. During self-supervised pretraining, random crop, random flip, random
rotation, inpainting, outpainting and gaussian blur are used for constraction of
contrastive learning. During the full-supervised fine-tuning, an area with a length
of 80 on the axis is randomly cropped to obtain a 3D input patch of height 80
pixels, note that each patch contains at least one foreground class.
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Table 2. Training protocols.

Network initialization “he" normal initialization
Batch size 4
Patch size 80×160×160
Total epochs 2000
Optimizer Adam
Initial learning rate (lr) 0.0001
Learning rate decay schedule MultiStepLR: milestones=[100, 200, 500], gamma=0.5
Training time 11.4 day (self-pretrain) + 22.5 hours (fine-tuning)

Loss Contrast Loss + MSE Loss (self-pretrain);
GDice Loss + CE Loss (fine-tuning)

Number of model parameters 43.60M3

Number of flops 218.7G4

4 Results and discussion

4.1 Quantitative results on validation set

Table 3. Quantitative results on validation set in terms of DSC. The 1st row represents
the method without self-pretrained, and the 2nd row represents the method with self-
pretrained. (where the Liv., RK, Spl., Pan., Aor, IVC, RAG, LAG, Gal., Eso., Sto.,
Duo, and LK are Liver, Right Kidney, Spleen, Pancreas, Aorta, inferior vena cava, right
adrenal gland, left adrenal gland, gallbladder, esophagus, stomach, duodenum, and left
kidney, respectively.)

Organ Liv. RK Spl. Pan. Aor. IVC RAG LAG Gal. Eso. Sto. Duo. LK Mean
DSC(%) 83.10 67.97 69.26 49.44 76.14 64.45 2.00 4.00 40.03 39.02 55.45 40.46 68.65 50.77
DSC(%) 73.89 59.06 61.14 34.64 74.31 59.32 40.50 32.06 26.56 41.63 41.58 32.09 57.75 48.67

Table 3 illustrate the quantitative results on the provided validation set. In-
cluding the mean DSC and individual DSC for liver (Liv.), right kidney (RK),
spleen(Spl.), pancreas (Pan.), aorta (Aor.), inferior vena cava (IVC), right adrenal
gland (RAG), left adrenal gland (LAG), gallbladder (Gal.), esophagus (Eso.),
stomach (Stm.), duodenum (Duo.) and left kidney (LK). Although all other
metrics were higher than the method using the self-pretrained model. left and
right adrenals were barely predictable when self-pretrained model was not used.

Table 4 illustrate the ablation study on provided 50 validation cases. Overall,
the proposed method performs well on large organs such as liver and spleen,
while it performs poorly on small organs such as esophageal islets and left and
right adrenal glands. In addition, it can be seen that the performance of the
segmentation model is significantly improved on the right and left adrenal glands
after self-pretraining with unlabeled data.
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Table 4. Ablation study on provided validation cases. The 1st row and the 3rd row
represent the methods without self-pretrained, and the 2nd and 4th rows represent the
methods with self-pretrained. (where the Liv., RK, Spl., Pan., Aor, IVC, RAG, LAG,
Gal., Eso., Sto., Duo, and LK are Liver, Right Kidney, Spleen, Pancreas, Aorta, inferior
vena cava, right adrenal gland, left adrenal gland, gallbladder, esophagus, stomach,
duodenum, and left kidney, respectively.)

Liv. RK Spl. Pan. Aor. IVC RAG LAG Gal. Eso. Sto. Duo. LK Mean
DSC(%) 84.28 61.01 70.49 50.87 77.94 67.23 0.00 0.00 27.41 46.85 48.95 39.47 71.79 49.71
DSC(%) 77.20 55.59 64.83 37.81 72.39 61.86 37.45 32.11 18.50 39.74 41.33 25.85 60.82 48.11
NSD(%) 70.53 48.56 59.41 56.08 77.41 61.38 0.00 0.00 21.23 56.16 46.94 58.73 66.18 47.89
NSD(%) 60.74 42.31 48.48 43.42 63.33 52.52 48.76 40.30 12.74 51.03 36.48 38.32 48.30 45.13

Due to memory limitations, our method uses a smaller raw input size of the
network as well as a smaller channel size, which exacerbates the risk of the model
losing contextual information when dealing with small targets. The process of
pretraining on unlabeled data improves the upstream feature extraction part of
the model for feature representation under specific data distribution, which can
effectively mitigate the risk of small organ loss.

4.2 Qualitative results on validation set

Fig 3 present some examples on our splitted validation set. It can be found that
the method using pretrained model from unlabeled data performs better for the
prediction of small organs such as left and right adrenal glands compared to
the method that does not utilize unlabeled data. Also, due to the use of sliding
windows in our method and the preprocessing strategy of uniform spacing, there
may be a certain degree of missing prediction when the input scan interval is
too large or when the scan spacing differs too much from the standard spacing,
which is a major reason for the decrease in evaluation metrics.

Table 5. Overview of DSC and NSD metrics on test set (where the Liv., RK, Spl.,
Pan., Aor, IVC, RAG, LAG, Gal., Eso., Sto., Duo, and LK are Liver, Right Kidney,
Spleen, Pancreas, Aorta, inferior vena cava, right adrenal gland, left adrenal gland,
gallbladder, esophagus, stomach, duodenum, and left kidney, respectively.)

Organ Liv. RK Spl. Pan. Aor. IVC RAG LAG Gal. Eso. Sto. Duo. LK Mean
DSC(%) 61.68 56.55 53.04 35.05 72.17 60.38 43.97 35.42 27.30 34.85 35.77 26.42 58.54 46.24
NSD(%) 41.18 36.67 33.50 35.37 60.77 48.89 56.96 45.05 16.90 44.19 26.31 34.08 41.27 40.09

4.3 Results on final testing set

Our final results on the test set are shown in Table 5. The final mean DSC
value is 46.26%, and the mean NSD is 40.09%. The results show that the model
also responds well to small targets that are difficult to segment, such as adrenal
glands. The results on the test set are consistent with those of the validation set.
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Fig. 3. Qualitative results on some examples. First two columns are some good cases
and the last two columns are some worse cases.

4.4 Segmentation efficiency results on validation set

To balance performance and resource consumption, We perform a scaling opera-
tion on the slicer in the transverse section, while taking a random sliding window
in the Inferior-Superior axis direction to obtain a uniform size input patch. Also,
the images are stretched to a fixed axis spacing of 2.5 before processing. This
means that the model prediction efficiency will be greatly reduced for long range
CT scans where the extent of the abdominal cavity cannot be determined (e.g.,
some cases in the validation set), while it is efficient for CT data where the extent
of the abdominal cavity is more certain (e.g., 50 cases in the training set).

4.5 Limitation and future work

As mentioned before, although the sliding window strategy can effectively reduce
the resource burden compared to the overall processing, it may also lead to
more time-consuming and unnecessary resource wastage on CT data with larger
scan ranges, and can also result in incorrect segmentation results in non-target
(abdominal) intervals. In addition, the predictive power of the model for small
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organs remains limited. In the future, we will focus on addressing these two
aspects and exploring more possibilities for unlabeled data.

5 Conclusion

In this work, we proposed a method based on PCLR and V-Net to segment ab-
domial organs fast and cost low-resource. The self-supervised pre-trained model
obtained from a large amount of unlabeled data effectively improves the predic-
tion ability of the segmentation model for small organs such as adrenal glands.
It performs well on healthy data with well-defined target intervals, however, it
performs poorly and is relatively time-consuming for CT data with large scan
areas.
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