Bongard Architecture: Towards Scalable and Transparent Machine Reasoning

Dmitry Grinberg, Tetiana Grinberg, Grigory Shcherbanskiy, Lev Cherbanski

Abstract

Bongard problems, a collection of 100 image puzzles first in-
troduced by Mikhail Bongard (Bongard 1968), have posed a
long-standing challenge for traditional machine learning ar-
chitectures. Despite their simplicity, these puzzles demand
explainability, reasoning and pattern recognition skills. Our
work revives the approach to solving these problems pro-
posed by Bongard’s original research group, which has not
been re-implemented or validated since. We demonstrate
that this approach is able to successfully solve 100% of the
problems in the Maksimov-Bongard problems (MBP) dataset
(Maksimov 1975) which is explicitly constrained to contain
only geometric puzzles. We extend the vocabulary of oper-
ators to demonstrate scalability of the architecture, yielding
solutions to a considerable portion (44%) of the more widely
known Bongard problems (BP) dataset (Bongard 1968). Fi-
nally, we argue for the value of Bongard-style architectures in
Al applications that demand complex human-machine com-
munication, transparency and compatibility with human cog-
nitive processes.

Introduction

A Bongard problem is defined as two small collections of
images belonging to different classes (let’s call them class
A and class B). The image collections typically have 4-6
image examples per class. Solution to a Bongard problem
consists of a human-understandable classification rule that
allows one to distinguish between classes A and B. An ex-
ample of a Bongard problem can be seen in Figure 1.

Many are familiar with Bongard problems (BPs), the ob-
ject of which is to find a characteristic shared by all shapes in
one of two sets of geometric shapes, which is not shared by
any of the shapes in the other set. However, few know that
these problems were meant as a test dataset for an archi-
tecture that Bongard’s team had outlined and partially im-
plemented. Even less known is the fact that this architecture
was only one of several that were implemented by Bongard’s
lab. These implementations were successfully used in appli-
cations such as X-ray analysis, earthquake prediction and
oil discovery as far back as the 60s and 70s. Some of these
architectures are still actively used to this day (Gvishiani,
Soloviev, and Dzeboev 2020).

Copyright © 2023, AAAI 2023 Spring Symposium Series: Eval-
uation and Design of Generalist Systems (EDGES). All rights re-
served.

A O O.A O @ O.'
®e|®v OaV | ©c4o
e O v 00 v OV
oo | %o e ®| o4
() CAV O 0O | A 0a
A O O. .OO A O
o Y 90 [
o %6, oe |l oav

Figure 1: Bongard Problem no 28. Solution: Class A (left)
has more black than white circles in each image. Class B
(right) has more white than black circles in each image. Im-
age source: (Foundalis 2022)

These facts are highly surprising, given that they should
have placed Bongard’s name in the same league as Mar-
vin Minsky, Frank Rosenblatt, Norbert Wiener and the other
great cyberneticists. Instead, he is known as the author of
a peculiar and difficult-to-solve dataset, but not for his re-
search philosophy and theoretical frameworks. This is in
part due to Bongard’s untimely demise (Bongard was a
USSR climbing champion and died in a climbing acci-
dent in the Pamir mountains in the summer of 1971). Bon-
gard’s death happened shortly after the infamous Mansfield
Amendment, and at the time when there was active tension
between the Soviet Union and the Western world, making
it hard for scientific developments to travel between the two
domains. Bongard simply did not live long enough to be able
to disseminate his ideas to the scientific community abroad.

The present paper aims to correct some of this historical
injustice and reintroduce Bongard’s Al philosophy into the
modern scientific dialog. Since today he is mostly known
for his visual reasoning dataset (aka Bongard Problems),
we choose the architecture his team developed to solve this
dataset as the natural basis of our exposition, since it allows
us to compare Bongard’s philosophical framework with its
contemporaries that yielded the modern architectures. We
hope that this is the first in a series of papers that will ex-

tend and evolve the Bongard architecture to make full use of
modern hardware and scaling methods.

Related Work

Interest in Bongard problems was revived by Douglas Hof-
stadter (Hofstader 1979) and Harry Foundalis. The latter
designed Phaeaco, the first publicly available implementa-
tion of the Bongard problem solver (Foundalis 2006). To-
day, Bongard problems are becoming more relevant than
ever, as it is becoming more and more evident that reason-
ing tasks pose a considerable challenge even to the most ad-
vanced image models (Thrush et al. 2022), and a renewed
effort is made to design datasets and challenges intended
specifically for testing reasoning capabilities of Al systems
(Chollet 2019). Many of the newly introduced datasets either
explicitly extend the original dataset (Yun, Bohn, and Ling
2020), or use it as inspiration in designing similar tasks for
new domains (Weitnauer and Ritter 2012; Nie et al. 2020;
Jiang et al. 2022). In the context of these developments, there
have also been several recent attempts at solving the Bon-
gard dataset with modern Al systems. It is worth noting that
some of these attempts change the original problem defini-
tion, which demands explainability, and reformulate it as a
simple classification task. An example of such an approach
is the work of Kharagorgiev (Kharagorgiev 2020) which uti-
lizes deep neural networks coupled with data augmentation
to compensate for the small size of the training set, achieving
an 18% success rate on the classification task. Other notable
approaches have used program synthesis and inductive logic
programming (Sonwane et al. 2021), reinforcement learn-
ing (Youssef et al. 2022) and Bayesian inference (Depeweg,
Rothkopf, and Jikel 2018).

Bongard’s Approach to Pattern Recognition

In this section, we will describe Bongard’s philosophical
framework. Before we do this, however, we would like to
introduce two considerations to place further discussion into
a proper context.

The first consideration is that of purpose. The purpose of
this exposition is similar to the goal of a computer scien-
tist learning a new programming language, or a professional
philosopher studying ancient Chinese — that is, to acquire
the mental vocabulary and therefore an ability to pursue a
direction of exploration which is not available from within
one’s familiar conceptual environment.

Without this type of exposition, the core concepts of a
philosophical framework are often misunderstood or even
simply forgotten for lack of translatability. This has been
the case with the likes of Rene Descartes and Hermann
Grassmann, who became mostly remembered for the “ap-
pendices” to their works (that is, addendums or extensions
providing simplified applications of the theory proposed in
the main volume), but whose fundamental insights were lost
for a long time on the general scientific community, despite
their undeniable value.

The second consideration is that of correct contrast. In or-
der to understand Bongard’s philosophy it is important to
see it in contrast with the philosophy of neural networks

and probabilistic classification models of his time. While
the latter two enjoyed a long period of well-funded develop-
ment, Bongard’s architecture has lain mostly dormant with
development only continued by a few of his friends and col-
leagues (Maksimov 1975; Weinzweig 2008); it is unknown
where it could lead us after a similar amount of development.
Due to space constraints, we will not introduce a detailed de-
scription of the Western philosophy of Al in the 1960s, how-
ever we expect that most readers are familiar with its major
tenets.

Next we introduce some important definitions. Careful
reading will reveal that some of the terms below differ from
their standard textbook definitions. This is done to facilitate
subsequent discussion of the Bongard architecture, which
was developed using this conceptual vocabulary.

One of the key observations that Bongard makes is that
problem solving requires finding a degenerate transforma-
tion of the input object, which removes all of the unneces-
sary information from the input object, reducing it to a sin-
gle property value. For example, looking at an image of a
green banana, a degenerate transformation corresponding to
the color feature would convert the image to a single value
corresponding to the color “green”.

A feature is an algorithm that carries out a degenerate
transformation of an input object. The value returned by the
feature for a particular input object is this object’s character-
istic according to the feature.

Thus, the aim of a pattern recognition task is the follow-
ing: given some examples of objects belonging to the same
class, find the set of features (degenerate transformation al-
gorithms) that would allow one to construct a sufficiently
precise yet compact description (set of characteristics) of
the class that would allow one to distinguish it from other
classes.

More formally, given two sets of input objects A =
{a1,...,a,} and B = {b1,...,b,}, and a set of all avail-
able features F' = {f1,..., fm}, a classification rule distin-
guishing between A and B would consist of such a subset
F. C F that would satisfy the following conditions:

* filar) = filag) Yay, a1, € A, f; € F.
* filay) # fi(by) Vay € A,b € B, f; € F,

This is to say that all classifying features should assign the
same value to objects within the same class, and different
values to objects from different classes. In the simplest case,
the set F. could contain only a single feature f, albeit this
feature could perform a very complex transformation of the
input objects.

Now, obviously, constructing an exhaustive set of features
F upfront can become an intractable task even for relatively
simple input objects. Bongard proposes an elegant solution
to this problem by introducing an intermediate set of func-
tions (which he calls “operators”) V' = {v1,...,v,} that
forms a kind of “factorization system” of the feature set F/,
such that Vf; € F, f; = vj o... 0 vj4, for some subset
{’Uj, cen ,Uj+p} - V.

Thus, in Bongard’s framework, a classification problem
boils down to constructing a classifying feature as a com-
position of some subset of functions in V. The set V' thus

forms a “vocabulary” through which classification rules can
be expressed.

On the face of it, this might look very similar to a stan-
dard neural network, since the latter also learns a composi-
tion of functions that yields some useful output. However,
this is the point at which Bongard’s philosophy most obvi-
ously diverges from that produced by Rosenblatt’s school of
thought, which was content with using any selection of oper-
ators, however inscrutable, which could be reasonably com-
posed into a classifying rule. On the other hand, Bongard’s
aim was to emulate the human method of solving classifica-
tion problems, which necessitated a selection of a vocabu-
lary V that is reasonable to a human. This objective there-
fore necessitated a different approach to finding the classifi-
cation rule, leading to a generative and search-like process
rather than arbitrary activation functions and weights with
the familiar backpropagation and gradient descent.

Maksimov-Bongard dataset

The first implementation of Bongard’s visual reasoning al-
gorithm (dubbed “Geometry” in his book) was completed
after his death by his colleague Vadim Maksimov (Maksi-
mov 1975). Rather than using the full dataset presented in
“Pattern Recognition” (Bongard 1968), the implementation
used a simplified dataset, for which the basic operators could
be implemented within the constraints of computer hardware
the group had to work with. We will refer to this simplified
dataset as Maksimov-Bongard Problems (MBPs).

The Bongard Algorithm
Vocabulary of Basic Operators for MBPs

We implement the logical architecture and all of the op-
erators described in Maksimov’s paper (Maksimov 1975).
Since Maksimov and team did not provide source code for
their implementation, many doubted that the described al-
gorithm did in fact work and exhibit the set of properties
outlined in Bongard’s book. This motivated us to replicate
the algorithm exactly as described in the paper, down to the
lower-level pixel manipulations.

Inputs and Outputs

The program can handle three types of inputs — ordered col-
lections of images (denoted by the letter P), boolean values
(B), and numbers (V). Initial input into the algorithm con-
sists of a single collection P of images p and a collection
B of boolean values b (each boolean value records the class
assignment of the corresponding input image). Images are
represented as binary arrays. The program attempts to find a
sequence of basic operators from its vocabulary that would
yield either Binput or ﬁBinput as its final output.

Sequence of Execution

In Maksimov’s implementation the sequence of execution of
the basic operators was rigid due to the hardware limitations
of that time. However, since each operator acted as a trans-
formation of the input data, the exact shape of the resulting
search tree could vary widely between different input col-
lections.

Vocabulary of basic operators for MBPs
Operator name |Inputs |Outputs
Group A - drawing (D) and measuring (M)

Area P m N, m

Line length Pm Nm
Center of mass coordinates P m 2Nm
Angle P m Nm
Major axis length Pm Nm
Minor axis length Pm Nm
Contour (C) Pm Pm» ZBm
Fill (F) P, P,, 2B,
Convex hull (T) P, P, 2B,
Group B - boolean inputs

Solving operator B 1

Logical operator (L) Bm 4B A4B,,...AB,_,
Clustering operator (H) Nm’ Bm kBm
Number of parts (Q) B, NN, ...,N,_,
Comparison operator (R) N,N,,B, kB,
Union operator (U) P, B, P,Py,...,P,_,
Group C - separation

Separation by connectivity (S) P, P,.,B,.1
Separation by borders (J) P, Pm+1, Bm+1
Separation by branching points (K) P, P,.1,B,.1

Figure 2: Vocabulary of basic operators for MBPs. P,,, —
image collection on level m. N,,, — number collection on
level m. B,,, — boolean collection on level m.

The operators are divided into three groups based on the
order of their execution by the algorithm (see Figure 2).
Group A is applied first (until it exhausts all possible in-
puts), followed by Group B and Group C. When separation
operators (group C) are applied, they produce a collection of
images of a potentially different cardinality, thereby creat-
ing a new “level” in the search tree. The “level” of a given
collection of objects is denoted by the subscript index. An
example of the level creation process can be seen in Figure
3.

For detailed descriptions of each basic operator, see Sec-
tion 3 in (Maksimov 1975). We first implemented all op-
erators exactly as described in Maksimov’s paper. Having
ascertained that the original descriptions were indeed valid,
we re-implemented the operators using modern libraries
such as OpenCYV, Scikit-image, and some others for speed
and readability (Bradski 2000; Van der Walt et al. 2014;
Miniak-Goérecka, Podlaski, and Gwizdatta 2022; Virtanen
et al. 2020; Viry 2021).

Figure 4 shows the architectural diagram of the algorithm.

The algorithm runs until one of the collections of booleans
on the top level matches either Binput or ﬁBinput- This

check is performed by the solving operator as a simple if
statement. Once a matching boolean collection has been
found, the program returns the sequence of operators that
has led to its discovery. This sequence constitutes the clas-

]

N

Sy

a 1|l
7 v\

o /] 9 :
\
Q.| ©

Figure 3: An example of transformations undergone by input
image upon application of operator S (separation by connec-
tivity) followed by J (separation by borders). Note how each
transformation creates a new “’level” (numbered from 1 to 3).
Image source: (Maksimov 1975)

sification rule. It is worth noting that all of the basic opera-
tors used in the vocabulary are indeed “basic”, in the sense
that they use off-the-shelf functions from popular image pro-
cessing and machine learning libraries — just as one might
use an off-the-shelf activation function in a neural network.
Most of the engineering effort required to implement the al-
gorithm went into aligning the output formats of the various
operators, and creating a data structure that would be able
to track which inputs have or have not been processed by a
given operator.

Experimental Results on MBPs

When applied to MBPs, the algorithm is able to successfully
solve all of them. We ran three types of experiments:

1. An exhaustive search with human-defined sequence and
vocabulary of operators (used to ascertain solvability and
best-case run-time for each problem);

2. An exhaustive brute-force search with partially con-
strained operator vocabulary (the vocabulary was con-
strained to only include those operators which would be
considered “reasonable” by a human);

3. A greedy search with the full vocabulary of operators
(run to the first discovered solution).

Figure 5 contains results of the first two types of exper-
iments. Experiment type 3 was only performed on a subset
of problems, since it generated extremely large search trees.

As we can see, both experiment type 1 and experiment
type 2 led to a successful discovery of classification rules.

F P —M '-H,R+ B ---------- level n+1
D

J

Figure 4: Architectural flow of the algorithm. For simplicity,
D denotes drawing operators, M — measuring operators.

Figure 6 contains an example solution graph (rendered using
the Graphviz library). A classification rule can be expressed
as the sequence of operators whose outputs were required to
arrive at the solution boolean (Bjp,,; Of = Bjpp).

Experimental Results on BPs

Next, we performed the same experiments on Bongard’s full
dataset. In order to do this, Maksimov’s original “vocabu-
lary” was enhanced with three additional basic operators.
This provided it with sufficient expressivity to find classi-
fication rules for 44% of BPs. The additional operators in-
clude:

1. Contour hierarchy. This operator was added as an addi-
tional output to separation by connectivity. It returned the
hierarchy level of the external contour of each connected
element in the image.

2. Polygon detection. This operator evaluated the number
of vertices present in a shape.

3. Endpoint detection. This operator detected and counted
endpoints in a contoured image.

These additional operators were once again implemented
using functions from standard image processing libraries.

The three additional operators do not attempt to cover the
entire vocabulary proposed by Bongard for the solving of his
dataset; his vocabulary included operators such as detectors
of identical objects and axes of symmetry. Rather, the three
operators were used to demonstrate generalizability of the
architecture.

Discussion

We have demonstrated that Bongard’s architecture is in-
deed viable for classification problems that require reason-
ing. However, in the current Al industry environment of flu-
ent language models that can outperform most humans on
many academic and professional exams, an inherently non-
verbal architecture of this type may appear uninteresting.
The raw reasoning capacity of the Bongard architecture
is not its most valuable property. Rather, we believe that the

Total # of Total # of
unique Limited operator unique

solution Runime in vocabulary used for solution | Runtime in
MBP# Human solution operator sequence booleans seconds brute-force search booleans | seconds

11[C] 2 0.01 [C] 2 0.01
2 [FC] 2 0.03 (C, F)(() 4 0.04
3 [S,MH,L] 1 0.16 (M,)(L, H)(S,) 1 0.2
4 [F,S,C L] 2 0.04 (C, F)(L,)(S.) 4 0.24
5 [M, H] 2 0.02 (M,)(H,)() 2 0.02
6[S, M, H, L] 2 0.06 (M,)(L, H)(S,) 2 0.05
7/[S, M, H, L] 2 0.04 (M,)(L, H)(S,) 2 0.04
8 [S,F, U, M, H] 2 0.22 (M, F)(L, H, U)(S,) 2 0.35
9[S,F, U, M, H] 1 0.48 (M, F)(L, H, U)S)) 2 13.22
10 [T, M, H] 46 0.07 (M, T)(H.)() 46 0.13
1[S, M, H, L] 6 0.04 (M,)(L, H)(S,) 26 0.2
12[S,Q, H] 1 0.01 ((H, Q)(S.) 1 0.02
13[S,J,Q, H] 2 0.02 ((H, Q)(S, J) 2 0.06
14[S,J,F,Q H] 2 0.18 (F,)(H, Q)(S, J) 2 1
15 [S,J,F, Q, H, L] 1 0.2 (F)(L, H, Q)S,J) 1 1.1
16[S,C, S, QH, L] 2 0.02 (C,)(L, H, Q)S,) 2 0.04
17 [S,M,H, U,F, T] 2 1.07 (M, F, T)(H, U)S,) 4 9.75
18 [S, M, H, U, M, H] 7 0.27 (M,)(H, U)(S,) 7 0.39
19 [F, S, M, H, L] 1 0.12/ (M, F)(L, H)(S,) 1 0.64
20 [F,S,M,H, L] 2 0.2 (M, F)(L, H)S,) 2 0.63
21/[F, S, M, H, L] 2 0.38 (M, F)(L, H)(S,) 2 1.1
22 [C, M, H] 2 0.04 (M, C)(H.)() 2 0.01
23 [C,M, H] 2 0.04 (M, C)(H.)() 2 0.05
24/[S,M,H,U,T,C, M, H] 1 1.44 (M, C, T)(H, U)S,) 14 4875
25[C, M, H, H, H] 1 0.07 (M, C)(H.)() 1 0.03
26 [F, M, H] 2 0.02| (M, F)(H,)() 2 0.04
27 [S,M,H, L] 2 0.01 (M,)(L, H)(S,) 2 0.05
28[S, C, U, M, H] 2 0.17 (M, C)(H, U)(S,) 6 14.84
29 [F,S,C, U, M, H, L] 4 0.34 (M, C, F)(L, H, U)S,) 24 36.11
30 [C, S, F,M,H, L] 2 0.16 (M, C, F)(L, H)(S)) 2 0.58
31[S,C,S,M,H,HUTMH,L] 5 3.22 (M, C, T)(L, H, U)(S,) 54 1175.39
32/[S, M, H,U, M, H, L] 7 351 (M,)(L, H, U)S,) 7 3422
33 [S, M, H, U, M, H] 2 0.12 (M,)(H, U)(S,) 2 0.43
34 [F,M, T, M,R] 6 0.06 (M, F, T)(R.)() 6 0.1
35 [M, T, M, R] 3 0.02 (M, T)(R,)() 3 0.03
36 [S,C,M,H, U, T, M, R] 8 0.7 (M, C, T)(H, R, U)(S,) 262 233.1
37 [S,M,H, U, T,M,R] 12 0.8 (M, T)(H, R, U)S,) 17 39.74
38 [S,M,R, L] 2 0.03 (M,)(L, R)(S,) 2 0.04
39 [S,F,C,M,R, L] 6 0.26 (M, C, F)(L, R)(S,) 4 0.37
40 [C] 2 0.01 (C,)0() 2 0.01
41[S,F, T,M,R, L] 2 0.07 (M, F, T)(L, R)(S.) 4 0.4
42 [S,C,U,T,C,M,R] 2 049 [S,C,U,T,C,M,R] 2 0.44
43/[S,K,C, M, H, H, L] 2 0.79 (M, C)(L, H)(S, K) 2 2.1
44 [S,K,C,M,H,U,C,M,H, L] 4 6.41 (M, C)(L, H, U)(S, K) 18 53.92
45 [K, T,M,R, U, F] 2 0.44 (M, F, T)(R, U)(K,) 5 203
46 [S,T,M,R, U, T, M, H] 2 0.2 (M, T)(H, R, U)(S,) 10 13.09
47 [C,S,F,M,H, U, M, H] 4 0.28 (M, C, F)(H, U)(S,) 14 146.11
48/[C, S, F, M, H, U, M, H] 4 0.35 (M, C, F)(H, U)(S,) 8 317.99

Figure 5: Experimental results for MBPs. The operators are
described in Figure 2.

true value of Bongard’s algorithm lies in its intrinsic inter-
pretability. As can be seen in Figure 6, a simple visualiza-
tion is quite sufficient to surmise how the algorithm has ar-
rived at the classifying rule. Such a visualization can also
be used to convey a classification rule that the human user
did not devise themselves — that is, an Al agent based on
the Bongard architecture can successfully teach a human.
This is possible because, despite using a similar set of ba-
sic operators, the program is able to execute a much wider
search, which is beyond reach of a human’s limited working
memory. Of course, with the increase in vocabulary size, or
when one cannot choose a constrained vocabulary to per-
form the search, one could end up with a much more com-
plex graph (e.g. see Figure 7), which evokes renderings of
a neural network-generated decision tree. Still, this is where
being built with human-compatible basic operators makes
the Bongard architecture stand apart — since the individ-
ual operators have intuitive meaning to the human user, they
can also be validated and then chunked to form more com-
plex conceptual structures (or “complex operators”, as Mak-
simov and Bongard called them).

Such explicit modeling of reasoning and concept forma-
tion can become a highly fruitful tool for verifying theories
about both human-to-human and human-to-machine com-

origin

3 020 | O[3 @
WS I E R
® e [@do | ol ol 9 o

i

center (P2) F(P2) insert_ones (P2)

=3 [B |
L 00 avs Xite heasns ey vasas vaen, TV T

H(NS B2)

B25

[]
Ll e fofofofol

solved

Figure 6: Example solution graph for an MBP. The algo-
rithm applies the Fill drawing operator, then measures cen-
ters of mass of resulting figures and discovers that those can
be grouped into two clusters, which yields the solution.

munication. After all, humans are black-box systems with
respect to each other — a gap that is bridged to some extent
by shared language and culture. This gap becomes increas-
ingly more daunting when the knowledge that needs to be
transferred is highly sophisticated, and with the advent of
tools such as Chat-GPT, that allow humans to easily fake
understanding (Cotton, Cotton, and Shipway 2023; OpenAl
2023). Similarly, if we are to ever build reliable communica-
tion protocols between humans and Al systems, such proto-
cols would have to be able to handle the transfer of content
that is highly nuanced and complex — be it scientific knowl-
edge or ethical and cultural values. Human civilization now
stands in dire need of establishing avenues for such com-
munication that do not rely solely on normative or policy-
based interventions — after all, if a language model can pass
the Bar Exam better than 90% of human students (Chalkidis
2023), how hard would it be to make it find an exploit loop-
holes in policies that rely heavily on the external presenta-
tion of model outputs (as opposed to a lucid representation
of its internal decision-making process)? We need tools that
would allow us to provably ascertain successful transmission
of complex knowledge in both human-to-human and human-
to-machine communication. Similar to how zero-trust proofs
are necessary in cryptography, a kind of zero-trust “proof-
of-understanding” protocol is needed to counteract the on-
slaught of mindless but very convincing “stochastic parrots”.

We believe that the key to provability lies in limiting the
extent to which black-box model architectures are used to
replicate conscious human thought. AT models must provide
transparency in all the parts of their operation that corre-
spond to cognitive functions to which humans have intro-
spective access. Moreover, the model should be able to trans-
fer its expertise to a human — either through direct expla-

Figure 7: Solution graph for BP 28.

nation or through explanation coupled with validated tool
use (by “validated” we mean that the human must demon-
strate proper understanding of the tool). Human-to-machine
and machine-to-human interactions are already emerging in
many domains that have been disrupted by Al technolo-
gies — consider, for instance, Go players who successfully
win against Al-based bots by using an instance of the same
Al system they’re playing against to augment their decision
making. What is currently missing is true “mind sharing” be-
tween Al and its human users, which is impossible without
a common conceptual and cognitive framework.

Limitations and Future Work

While the current implementation of the algorithm has suc-
cessfully proven the basic feasibility and scalability of Bon-
gard’s approach, it does suffer from some serious limita-
tions:

* The algorithm cannot dynamically select a “good” set of
operators that should be applied to a given problem at a
given stage of the search. This becomes especially prob-
lematic when additional basic operators are introduced
into the vocabulary.

* The current vocabulary of basic operators is only appli-
cable to simple binary images.

To extend the algorithm to a wider set of use cases, one
would need to augment it with a suitable heuristic function,
as well as replace the current basic operators with something
that can be applied to more complex images. Pre-trained
neural network-based models would be a natural candidate
for this role.

Finally, neither Bongard’s nor Maksimov’s datasets pro-
vided validation images for all of the problems (Maksimov’s
dataset did provide some test images, which were correctly
classified by the trained model). Further work would benefit
from expansions of the Bongard dataset to include validation
data.

References

Bongard, M. M. 1968. The recognition problem. Tech-
nical report, FOREIGN TECHNOLOGY DIV WRIGHT-
PATTERSON AFB OHIO.

Bradski, G. 2000. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools.

Chalkidis, I. 2023. ChatGPT May Pass the Bar Exam Soon,
but Has a Long Way to Go for the LexGLUE Benchmark.
Available at SSRN 4385460.

Chollet, F. 2019. On the measure of intelligence. arXiv
preprint arXiv:1911.01547.

Cotton, D. R.; Cotton, P. A.; and Shipway, J. R. 2023. Chat-
ting and Cheating: Ensuring academic integrity in the era of
ChatGPT. Innovations in Education and Teaching Interna-
tional, 1-12.

Depeweg, S.; Rothkopf, C. A.; and Jékel, F. 2018. Solv-
ing bongard problems with a visual language and pragmatic
reasoning. arXiv preprint arXiv:1804.04452.

Foundalis, H. 2022. Bongard Problem 28.

Foundalis, H. E. 2006. Phaeaco: A cognitive architecture
inspired by Bongard’s problems.

Gvishiani; Soloviev; and Dzeboev. 2020. Problem of recog-
nition of strong-earthquake-prone areas: a state-of-the-art
review. Izvestiya, Physics of the Solid Earth, 56: 1-23.

Hofstader, D. 1979. Godel, Escher, Bach: an eternal golden
braid.

Jiang, H.; Ma, X.; Nie, W.; Yu, Z.; Zhu, Y.; and Anandku-
mar, A. 2022. Bongard-hoi: Benchmarking few-shot visual
reasoning for human-object interactions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 19056—19065.

Kharagorgiev, S. 2020. Solving bongard problems with deep
learning. k10v. github. io.

Maksimov, V. 1975. A system capable of learning to clas-
sify geometric images. Modeling of Learning and Behavior,
Nauka, Moskva.

Miniak-Gorecka, A.; Podlaski, K.; and Gwizdatta, T. 2022.
Using k-means clustering in python with periodic boundary
conditions. Symmetry, 14(6): 1237.

Nie, W.; Yu, Z.; Mao, L.; Patel, A. B.; Zhu, Y.; and Anandku-
mar, A. 2020. Bongard-logo: A new benchmark for human-

level concept learning and reasoning. Advances in Neural
Information Processing Systems, 33: 16468—16480.
OpenAl. 2023. GPT-4 Technical Report. arXiv:2303.08774.
Sonwane, A.; Chitlangia, S.; Dash, T.; Vig, L.; Shroff, G.;
and Srinivasan, A. 2021. Using Program Synthesis and
Inductive Logic Programming to solve Bongard Problems.
arXiv preprint arXiv:2110.09947.

Thrush, T.; Jiang, R.; Bartolo, M.; Singh, A.; Williams, A.;
Kiela, D.; and Ross, C. 2022. Winoground: Probing vision
and language models for visio-linguistic compositionality.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 5238-5248.

Van der Walt, S.; Schonberger, J. L.; Nunez-Iglesias, J.;
Boulogne, F.; Warner, J. D.; Yager, N.; Gouillart, E.; and Yu,
T. 2014. scikit-image: image processing in Python. PeerJ,
2:e453.

Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland,
M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.;
Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M_;
Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.;
Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, I Feng,
Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.;
Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.;
Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mul-
bregt, P.; and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python.
Nature Methods, 17: 261-272.

Viry, M. 2021. jenkspy: Jenks Natural Breaks optimization
in Python. Accessed: 2023-03-14.

Weinzweig. 2008. On the works of M.M. Bongard and their
continuation. Accessed: 2023-03-15.

Weitnauer, E.; and Ritter, H. 2012. Physical bongard prob-
lems. In Artificial Intelligence Applications and Innova-
tions: Sth IFIP WG 12.5 International Conference, AIAI

2012, Halkidiki, Greece, September 27-30, 2012, Proceed-
ings, Part I 8, 157-163. Springer.

Youssef, S.; ZeCevi¢, M.; Dhami, D. S.; and Kersting, K.
2022. Towards a Solution to Bongard Problems: A Causal
Approach. arXiv preprint arXiv:2206.07196.

Yun, X.; Bohn, T.; and Ling, C. 2020. A deeper look at bon-
gard problems. In Advances in Artificial Intelligence: 33rd
Canadian Conference on Artificial Intelligence, Canadian
Al 2020, Ottawa, ON, Canada, May 13-15, 2020, Proceed-
ings 33, 528-539. Springer.

