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Abstract

For text classification, the traditional atten-
tion mechanisms usually focus too much on
frequent words, and need extensive labeled
data in order to learn. This paper proposes
a perturbation-based self-supervised attention
approach to guide attention learning without
any annotation overhead. Specifically, we add
as much noise as possible to all the words in
the sentence without changing their semantics
and predictions. We hypothesize that words
that tolerate more noise are less significant,
and we can use this information to refine the
attention distribution. Experimental results on
three text classification tasks show that our ap-
proach can significantly improve the perfor-
mance of current attention-based models, and
is more effective than existing self-supervised
methods. We also provide a visualization anal-
ysis to verify the effectiveness of our approach.

1 Introduction

Attention mechanisms (Bahdanau et al., 2014; Lu-
ong et al., 2015; Vaswani et al., 2017) play an es-
sential role in Natural Language Processing (NLP)
and have been shown to be effective in various text
classification tasks, such as sentiment analysis (Lin
et al., 2017; Tang et al., 2019; Choi et al., 2020),
document classification (Yang et al., 2016) and nat-
ural language inference (Chen et al., 2017). They
achieve significant performance gains, and can be
used to provide insights into the inner workings of
the model. Generally, the attention learning proce-
dure is conditioned on access to large amounts of
training data without additional supervision infor-
mation.

Although the current attention mechanisms have
achieved remarkable performance, several prob-
lems remain unsolved. First, learning a good at-
tention distribution without spurious correlations
for neural networks requires large volumes of in-
formative labeled data (Barrett et al., 2018; Bao
et al., 2018). As described in the work of Wallace

et al. (Wallace et al., 2021), after inserting 50 poi-
son examples with the name “James Bond” into
its training set, a sentiment model will frequently
predict a positive whenever the input contains this
name, even though there is no correlation between
the name and the prediction. Second, attention
mechanisms are prone to focus on high-frequency
words with sentiment polarities and assign rela-
tively high weights to them (Xu et al., 2018; Li
et al., 2018; Tang et al., 2019), while the higher
frequency does not imply greater importance.

Especially when there’s an adversative relation
in a text, some high-frequency words with strong
sentiment valence need to be selectively ignored
based on the context of the whole text. In these
cases, these words will mislead the model because
the important words don’t get enough attention.
The sentences in Figure 1 illustrate this problem.
In most training sentences, as shown in the first
four rows, “better” and “free” appear with posi-
tive sentiment, which makes the attention mech-
anism accustomed to attaching great importance
to them and relating them to positive predictions.
However, the two words are used ironically in the
fifth sentence, and the model pays the most atten-
tion to them while the critical word — “leave” — is
not attended to, resulting in an incorrect predic-
tion. Based on these observations, there’s reason
to believe that the attention mechanisms could be
improved for text classification.

To tackle this problem the most direct solution
is to add human supervision collected by manual
annotation (Zhang et al., 2016; Bao et al., 2018;
Camburu et al., 2018) or special instruments (Bar-
rett et al., 2018; Sood et al., 2020b,a; Malmaud
et al., 2020) (e.g., eye-tracking), to provide an in-
ductive bias for attention. These approaches are
costly, the labeling is entirely subjective, and there
is often high variance between annotators. In par-
ticular, Sen et al. (Sen et al., 2020) point out that
there is a huge difference between machine and
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Figure 1: The attention visualization for five sentences. The "A/B" style tags before each row mean the model’s
prediction is A and the label is B. The first four sentences are selected from training sets as representatives con-
taining high-frequency words - "better" (yellow box) and "free" (green box). The last sentence including both of
the two words is selected from testing sets, typically showing that the distribution of attention weights when some

words in the sentence appear frequently in the corpus but are unimportant to the current prediction.

human attention and it is difficult to map human
attention to machine attention.

Another flexible solution is to measure attribu-
tion scores, 1.e., how much each token in a text con-
tributes to the final prediction, to approximate an
importance distribution as an attention supervision
signal (Li et al., 2016; Choi et al., 2019; Tang et al.,
2019; Choi et al., 2020). Generally, the attribution
scores are obtained by masking each token one by
one to generate counterfactual examples, reflect-
ing the difference in the softmax probability of the
model after masking each token. These approaches
have little or no additional annotation overhead and
augment supervision information from the training
corpus to refine the attention distribution. Despite
their success, masking schemes can give rise to
an out-of-distribution (OOD) problem (Hendrycks
and Gimpel, 2016; Chang et al., 2018; Yi et al.,
2020). That is, the generated counterfactuals devi-
ate from the training data distribution of the target
model, resulting in an overestimation of the contri-
bution of unimportant tokens. The OOD problem
induced by existing masking schemes makes it dif-
ficult to identify whether high-scoring tokens con-
tribute significantly to the prediction. Furthermore,
most of them are limited to generating uniform at-
tention weights for the selected important words.
Obviously, the contribution of different important
words to the model should also be different accord-
ing to the context, e.g., the word leave should have
a higher attention weight than better and free for
the fifth sentence in Figure 1.

Some efforts reveal that the output of neural

networks can be theoretically guaranteed to be in-
variant for a certain magnitude of input perturba-
tions through establishing the concept of maximum
safety radius (Wu et al., 2020; La Malfa et al., 2020)
or minimum disturbance rejection (Weng et al.,
2018). In simple terms, these approaches evaluate
the minimum distance of the nearest perturbed text
in the embedding space that is classified differently
from the original text. Inspired by this work, we
propose a novel perturbation-based self-supervised
attention learning method without any additional
annotation overhead for text classification. Specif-
ically, we design an attention supervision mining
mechanism called Word-based Concurrent Pertur-
bation (WBCP), which effectively calculates an ex-
plainable word-level importance distribution for the
input text. Concretely, WBCP tries to concurrently
add as much noise as possible to perturb each word
embedding of the input, while ensuring that the
semantics of input and the classification outcome
is not changed. Under this condition, the words
that tolerate more noise are less important and the
ones sensitive to noise deserve more attention. We
can use the permissible perturbation amplitude as a
measure of the importance of a word, where small
amplitude indicates that minor perturbations of that
word can have a significant influence on the seman-
tic understanding of input text and easily lead to
prediction error.

According to the inverse distribution of pertur-
bation amplitude, we can get sample-specific at-
tention supervision information. Later, we use this
supervision information to refine the attention dis-



tribution of the target model and iteratively update
it. Notably, our method is model-agnostic and can
be applied to any attention-based neural network.
It generates attention supervision signals in a self-
supervised manner to improve text classification
performance without any manual labeling and in-
corporates Perturbation-based Self-supervised At-
tention (PBSA) to avoid the OOD problem caused
by the masking scheme. In addition, it can also
generate special attention supervision weights adap-
tively for each sample based on the perturbation
amplitude, rather than allocate them uniformly.

In summary, the contributions of this paper are
as follows:

(1) Through analysis of current methods, we
point out the disadvantages and drawbacks of cur-
rent attention mechanisms for text classification.

(2) We propose a simple yet effective approach
to automatically mine the attribution scores for the
input text, and use it as supervision information
to guide the learning of attention weights of target
models.

(3) We apply our approach to various text classifi-
cation tasks, including sentence classification, doc-
ument categorization, and aspect-level sentiment
analysis. Extensive experiments and visualization
analysis show the effectiveness of the proposed
method in improving both model prediction accu-
racy and robustness.

2 Related work

Work related to our method can be categorized
into three types: Introducing human attention; us-
ing external resources or tools; and using self-
supervision.

Introducing human attention Adding hu-
man supervision to attention has been shown to ef-
fectively alleviate attention bias and improve model
prediction accuracy on a range of tasks (Zhang
et al., 2016; Camburu et al., 2018; Sood et al.,
2020b,a; Malmaud et al., 2020). In general, the
annotators need to explicitly highlight the impor-
tant words or rationales (Zhang et al., 2016; Bao
et al., 2018; Camburu et al., 2018) for the given
sample. Obviously, the annotation is very labor-
intensive and expensive in real-world scenarios,
so an alternative is to use implicit signals such as
eye gaze (Barrett et al., 2018; Sood et al., 2020b,a;
Malmaud et al., 2020). For these methods, it is
expected that the model can generate similar at-
tention to human supervision. However, human

recognition and model reasoning processes may
be inconsistent (Jacovi and Goldberg, 2020), and
aligning the two is challenging (Sen et al., 2020).

Using external resources or tools With the
development of NLP, many corpora and tools, such
as Dependency Tree and Synonym Dictionary, are
created to obtain a deeper understanding of words
and sentences. Therefore, some methods (Kami-
gaito et al., 2017; Zou et al., 2018; Nguyen and
Nguyen, 2018; Zhao et al., 2020) that generate at-
tention supervision information according to ex-
isting corpora and tools emerge. For example,
Nguyen et al. (Nguyen and Nguyen, 2018) in-
troduce attention supervision information based
on important words selected by semantic word
lists and dependency trees. Similarly, Zhao et
al. (Zhao et al., 2020) first train the model on the
document-level sentiment classification and then
transfer the attention knowledge to a fine-grained
one for aspect-level sentiment classification. How-
ever, these methods still rely on annotations based
on parsers or external resources, and the perfor-
mance depends heavily on the quality of the parser.

Self-supervised attention learning Cur-
rently, self-supervised attention learning frame-
works (Li et al., 2016; Choi et al., 2019; Tang
et al., 2019; Choi et al., 2020; Su et al., 2021)
have become the mainstream method because they
do not require additional annotation overhead.
They usually mask or erase each token one by one
and quantify the difference in predictions of the
model after masking each token, to approximate
an importance distribution as attention supervision
information. For example, Tang et al. (Tang
et al., 2019) divide the words in sentences into the
active set and the misleading set by progressively
masking each word with respect to the maximum
attention weight, and augment them to make
the model focus on the active context words.
Similarly, Choi et al. (Choi et al., 2020) adopt the
masking method to find the unimportant words
and gradually reduce their weights. These methods
use a self-supervised paradigm to mine important
words, which can greatly reduce the annotation
cost and improve the robustness of the model.
Nevertheless, the masking scheme they follow has
an OOD problem. The counterfactuals generated
by the mask operation deviate from the original
training set distribution, which easily leads to
the over-evaluation of unimportant words. In
addition, the above methods usually assign the
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Figure 2: The diagram of WBCP. The left part of the figure corresponds to the last term of Eq. (3), which illus-
trates the process of adding noise that follows a Gaussian distribution to each word. The right part of the figure
corresponds to the first two terms of Eq. (3), indicating the constraint of trying to not change the semantics and

predictions after the noise is introduced.

same weight to the extracted important words,
but in our opinion, different words should have
different contributions to the classification.

3 Proposed method

In this section, we propose a Perturbation-based
Self-supervised Attention (PBSA) mechanism to
enhance the attention learning process and provide
a good inductive bias. We first design a Word-based
Concurrent Perturbation (WBCP) to automatically
mine the attribution score for each word and use
this as a measure of its degree of importance. Then
we use the measure mentioned above to compute
a word-level importance distribution as supervi-
sion information. Finally, we describe how to use
the supervision information to refine the attention
mechanism of the target model, improving the ac-
curacy and robustness of text classification tasks.

3.1 Word-based Concurrent Perturbation

The basic assumption of our design is based on
the following fact: under the premise of trying not
to change the semantics of the input text, unim-
portant words can withstand more changes than
more significant ones. Specifically, a little noise
on keywords can lead to dramatic changes in the
final results, while greater noise on the unimportant
ones won’t easily lead to changes in results. There-
fore, we can estimate the importance distribution
of the words according to the maximum amount of
noise they can tolerate. To be specific, we try to
concurrently add as much noise as possible to per-
turb each word embedding without changing the

latent representations (e.g., the hidden states for
classification) of the text and the prediction result.
The above process can be optimized according to
the maximum entropy principle.

Given a sentence consisting of n words s
{w1,wa, ..., w,}, we map each word into its em-
bedding vector X = {x1,x2,...,x,}. Here we
assume that the noise on word embeddings obeys a
Gaussian distribution €; ~ N (0, = oiQI) and
let ©; = x; + ¢€; denote an input with noise €;. We
use h, y and h, y to indicate the hidden state for
classification and the prediction result of a pre-
trained model with no noise and with noise re-
spectively. Then we can write the loss function
of WBCP as follows:

Lwpcep = ||h— 3+ |7 - yll3
n
—)\Zile(Ei) ‘eiNN(O,ZiZUZzI)’

where A is a hyperparameter that balances the
strength of noise. The first and the second term
of Eq. (1) mean that we need to minimize the L2-
normalized euclidean distance between the two hid-
den states and between the two predictions respec-
tively, to quantify the change of information (Jain
and Wallace, 2019). The first term maintains latent
representations to prevent modification of the text
semantics, and the second term prevents excessive
perturbations from causing the model to mispre-
dict. The last term indicates that we need to maxi-
mize the entropy H (€;) ’ein(O,ZizafI to encour-
age adding as much noise as possible to each word
embedding. We can simplify the maximum entropy

ey



of the Gaussian distribution as follows (the detailed
formula derivation is listed in Appendix A):

Mazimize(H (€;)) = Mazimize(logo;) (2)

Finally we can use Eq. (2) to rewrite our final ob-
jective function:

Lwsep = ||k — b3+ 17 -y}
+>\Zj:1 log(—o;)

The illustration of WBCP is given in Figure 2. Af-
ter fixing the parameters of the pre-trained model,
the only learnable parameters o = {01, 09, 03,04}
can be considered as the perturbation radii, which
is positively associated with the perturbation am-
plitude. Specifically, the larger o; WBCP gets, the
more likely €; is a big number, the more noise
is added to x;, and the less important it is. As
what is shown in the picture, it is obvious that
o9 > 01 > 04 > 03. According to the analysis
listed above, we know that ws (a) is the least im-
portant word and w3 (nice) is the most significant
one, for x5 can tolerate the most noise while a3
can hardly stand any perturbation.

3.2 Attention supervision

We obtain the os, the perturbation magnitudes, by
optimizing Eq. (3) on the pre-trained model. If a
word embedding x; can tolerate more noise with-
out impacting the semantics of input text, o; will be
larger, which means the word x; is less important.
Conversely, small o; indicates that slight perturba-
tions of word embedding x; will lead to semantic
drift and may affect the classification result. We
can therefore use the perturbation magnitude to
compute a word-level importance distribution as
attention supervision information, as shown below:

__ %
max;{o;} (4)
a = Softmax(a’)

/_
o; =1

It is worth noting that our method generates sample-
specific attention supervision, where the weight of
each word is quantified according to the perturba-
tion magnitude, instead of using the same impor-
tance weight for all words (Tang et al., 2019; Choi
et al., 2020). Also, the quantification occurs in the
embedding space rather than replacing the token
with a predefined value, thus avoiding the OOD
problem caused by masking schemes.

Algorithm 1: Perturbation-based self-
supervised attention

Input: training dataset D, attention-based
model f(-, ), the number of
iterations 7.

Pre-train model f(-,6) on D and update 6

using Adam.

fort=1,...T do
Fix 6, and minimize WBCP objective

function by Eq. (3) using Adam.

Obtain the perturbation amplitude o for
each sample in D.

Calculate the attention supervision & by
Eq. (4) for each sample in D.

Re-train model on D with the attention
supervision a by Eq. (5) and update 6
using Adam.

end

3.3 Perturbation-based Self-supervised
Attention

We do not use a to generate a new attention dis-
tribution to replace the original one «. Rather,
we use it as a supervision target for the attention
weights. We want the attention supervision to make
the model notice more words that have an influence
on the output. In this way, some low-frequency
context words with great importance that would
normally be ignored can be discovered by attention
learning. In this section, we describe how to exploit
the supervision information & to guide the learning
of model attention strengths.

Our method is shown in Algorithm 1. We first
pre-train an attention-based model f (-, 8) based on
the classification dataset D). We then fix the model
parameters ¢ and minimize the WBCP objective
using Eq. (3) to obtain the perturbation amplitude o
for each sample, and used to compute the attention
supervision « using Eq. (4). We then retrain the
model using & to guide the attention distribution
a produced by the model. The above process can
iterate 7" times to capture the important distribution
more accurately. The training objective function
with attention supervision « is defined as follows:

1 M
Ecls = Mzmzlym IOg Ym
+YKL(am || am),

)

where M is the number of samples, y is a hyper-
parameter that controls the strength of attention



Table 1: Experimental accuracy on the document-level and sentence-level classification for Att-BiLSTM.

Model ‘ IMDB SST2 TREC MR CR SUBJ MPQA ‘ Average
Att-BiLSTM 87.21 8342 90.60 77.04 76.82 89.82 70.59 82.20
Att-BiLSTM+Gradient | 86.79 85.06 9120 77.60 76.54 89.82 70.76 82.53
Att-BiLSTM+PBSA | 89.14 85.72 9220 79.05 77.64 90.53 71.31 83.65
Att-BERT 92.53 9143 96.60 79.26 89.06 9430 89.69 90.41
Att-BERT+PBSA 92.61 9193 9720 79.97 89.38 94.76 90.21 90.86
BERT 9292 91.71 96.60 8547 8942 9630 89.59 91.71
BERT+PBSA 9348 9220 97.80 86.08 90.21 97.50 90.57 92.54

supervision, ¢,, and ¥,,, are the ground-truth label
and predicted output for the m-th sample respec-
tively. The first term is the Cross-Entropy Loss
for classification, and the second term is the Kull-
back-Leibler Divergence between the distributions
of attention «,, produced by model and attention
supervision information &, for the m!” sample.

4 [Experiments

We tried PBSA on several text classification tasks,
including sentence classification, document catego-
rization, and aspect-level sentiment analysis. Ex-
perimental results demonstrate that PBSA consis-
tently enhances the performance and robustness of
various attention-based baselines, and outperforms
some strong models following self-supervised at-
tention learning. Furthermore, a visualization anal-
ysis confirms that our model is capable of gener-
ating high-quality attention for target tasks. We
aim to answer the following questions: 1. Does
PBSA improve model accuracy? 2. Is PBSA more
effective than other approaches? 3. How do hyper-
parameters affect the results? 4. How does PBSA
work?

4.1 Datasets and Setup

The statistics of the datasets we use for differ-
ent tasks are listed in Appendix B. We use a
grid search to find the optimal hyperparameters
v and T for each dataset, from the sets v €
{0.05,0.1,1.0,2.0,10,100} and T' € {1,2,3,4}.
The hyperparameter A is set to 0.1, the batch size is
set to 64. We use the Adam optimizer with learning
rate 0.001. The other details of our experiments
are listed in Appendix B. We describe all of our
baselines in Appendix D.

4.2 Sentence-level and Document-level
Classification

To verify that PBSA can improve the performance
of the attention-based model, in this section we use

the classic Att-BiLSTM (Zhou et al., 2016) and the
pre-trained BERT model (Devlin et al., 2018) as
the baselines. It is worth noting that BERT uses
multiple-head attention, so how to select the suit-
able head as the supervised target is difficult (Su
et al., 2021). Hence, how to effectively combine its
multi-head attention with our method is an interest-
ing and valuable question.

We explore two simple strategies to combine
our approach with BERT. 1) We first add a scaled
dot-product attention layer to the output of BERT
to derive a fixed sized sentence representation for
classification, and we call this model Att-BERT
for short. 2) We also try a simple but effective
way to combine the internal multi-head attention
in Transformer with our method. Specifically, we
average the multi-head attention of all the layers
and compress the attention matrix to a vector to
be guided by our mechanism. The illustrations of
different baselines are shown in Appendix D.1 and
Appendix D.2.

Table 1 reports the experimental results on the
seven datasets of sentence classification and docu-
ment categorization. We observe that our method
consistently helps improve the accuracy of the base-
line on all the datasets. The average accuracy of
our approach on the three baselines across seven
datasets are 83.65, 90.86 and 92.54, an improve-
ment of 1.44%, 0.45% and 0.83% over the base-
lines (82.21, 90.41 and 91.71). The results demon-
strate that our approach delivers significant perfor-
mance improvements over the baselines. It also
indicates that the current model limits the potential
of attention mechanisms when without any super-
vision information. However, PBSA can mine the
potential important words and then guide the at-
tention mechanism of the model to learn a good
inductive bias.



Table 2: Experimental results on aspect-level tasks compared with others.

Models REST LAPTOP TWITTER
Accuracy | Macro-F1 | Accuracy | Macro-F1 | Accuracy | Macro-F1

MN (Wang et al., 2018) 77.32 65.88 68.90 63.28 67.78 66.18
MN (Ours) 79.89 65.89 72.68 61.97 68.34 66.23
+Gradient (Serrano and Smith, 2019) 76.85 60.06 71.11 63.53 67.77 64.91
+AWAS (Tang et al., 2019) 78.75 69.15 70.53 65.24 69.64 67.88
+Boosting (Su et al., 2021) 77.66 66.23 69.28 64.17 68.14 67.12
+Adaboost (Su et al., 2021) 76.77 62.29 67.88 60.52 66.96 65.09
+PGAS (Su et al., 2021) 78.98 69.42 70.84 65.58 69.78 67.80
+PBSA 83.98 70.84 75.75 67.21 72.10 69.64
BERTABSA 79.80 71.37 79.38 75.69 76.01 74.52
+PBSA 79.89 71.59 79.51 75.87 76.11 74.69
Att-BERTABSA 83.29 75.87 77.98 75.02 73.99 71.23
+PBSA 83.41 76.70 78.65 75.53 74.45 72.88

4.3 Aspect-level Sentiment Analyis

To further verify the effectiveness of our approach,
we apply PBSA into MN (Tang et al., 2016;
Wang et al., 2018), BERTABSA (Dai et al., 2021),
and Att-BERTABSA (Su et al., 2021). Both
BERTABSA and Att-BERTABSA are typical and
simple ways to apply BERT to aspect-level classi-
fication tasks. The difference is that BERTABSA
directly uses the hidden states of the aspect words
to classify, while Att-BERTABSA adds an atten-
tion layer to the output of BERT. To show that
our method truly improves the results, we only use
the most critical parts of the model without any
other tricks or mechanisms (e.g. the gating mecha-
nism). All the illustrations of baselines are shown
in Appendix D.3, Appendix D.4 and Appendix D.5.
The results are shown in Table 2. We conduct
experiments on three benchmark datasets of aspect-
based sentiment analysis and PBSA outperforms
all the baselines on all datasets both in accuracy
and Macro-F1. Compared with other tasks, PBSA
has a more significant improvement on these small-
scale datasets, indicating that the original attention
lacks a good inductive bias due to limited labeled
data. With the help of PBSA, the robustness of the
model can be improved effectively.

Table 3: Experimental accuracy on document-level and
sentence-level tasks compared with others

Model | SANA (Choi et al., 2020) PBSA
IMDB 88.03 89.14
SST2 84.35 85.72

4.4 Comparison with other methods

On the tasks listed above, we compare our method
with other advanced self-supervised attention learn-
ing approaches. SANA (Choi et al., 2020) gen-

erates counterfactuals by a masking scheme and
measures the difference in the softmax probabil-
ity of the model between the counterfactual and
original sample as an indicator of important words.
AWAS (Tang et al., 2019) and PGAS (Su et al.,,
2021) progressively mask the word with the largest
attention weight or partial gradient. Most of these
works don’t publish their critical code and do their
experiment only on certain specific tasks, so we di-
rectly compare our algorithm with their best results
published on different tasks respectively. On the
document-level and sentence-level tasks (Table 3),
PBSA is superior to SANA by 1.11% and 1.37%,
which verifies that the word-based concurrent per-
turbation can mine the importance distribution of
words more accurately than the masking scheme.
On the aspect-level task (Table 2), compared with
AWAS and PGAS, our method improves the model
more. As we mentioned in the Introduction (Sec-
tion 1), our method can generate word-specific at-
tention supervision while others treat the important
words equally without discrimination. We specu-
late that this may be one of the main reasons for
our improvement.

From the aspect of human intuition, the gradient-
based methods and leave-one-out methods are usu-
ally used to improve the interpretability of model.
The current self-supervised attention learning meth-
ods are mostly based on word masking, which can
be seen as a variation of leave-one-out methods.
We also try to use the gradient-based method (Ser-
rano and Smith, 2019) to generate supervision in-
formation. As shown in Table 1 and Table 2, the
gradient-based method does badly on most of the
datasets, especially on aspect-level datasets. These
results demonstrate that although the gradient-
based method can improve the interpretability of
the model, it does not necessarily improve the per-
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Figure 3: The visualization result of several samples on SST?2 test set.

formance. However, our method enhances inter-
pretability while also improving its performance.

4.5 Hyperparameter sensitivity

As shown in Figure 4, our method achieves the best
results on REST and TWITTER when 7' = 2 and
T = 1 respectively. With the increase of 7', the per-
formance increases initially, and then decreases due
to over-fitting. In practice, we find that one itera-
tion achieves promising results. The hyperparmeter
A controls the perturbation degree of WBCP. When
A is too large, performance is deteriorated due to
injecting too much noise. In all of our experiments,
we set A to 0.1. The hyperparmeter y controls the
strength of attention supervision. When -y is too
large, it easily leads to overly penalizing the align-
ment between the model attention and perturbation
attention, which may hurt the model’s internal rea-
soning process.
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0.74 0.71 0.71 MacroF1-y
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Figure 4: The chart of the fluctuations of Macro-F1
when we change the values of hyperparameters.

4.6 Visualization analysis

As shown in Figure 3, we see that PBSA makes
the model pay more attention to important but
low-frequency words, reduces the focus on high-
frequency words that do not affect the results, in-
creases the difference in weight between words
with conflicting meanings, and increases sensitivity
to adversative relations in sentences. The detailed
explanation is listed in Appendix C.

5 Conclusions and future work

In this paper, we propose a novel self-supervised at-
tention learning method based on word-based con-
current perturbation. The algorithm adds as much
as noise to each word in the sentence under the
premise of unchanged semantics to mine the super-
vision information to guide attention learning. Our
experiments demonstrate that our method achieves
significant performance improvements over the
baselines on several text classification tasks. More-
over, we use several visualization samples to inter-
pret how our method guides the internal reasoning
process of models. We will try to incorporate our
method into more NLP tasks in the future.
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A Appendix. Formula derivation.

The maximum entropy of the Gaussian distribution
is equal to the result of the equation listed below.

Maximize(H (€;))
= Maximize(—/p(ei)lnp(ei)dei)
= Maa:imize(%(ln(%miz) +1))

1
= Maximize(In 2(5 log(2me) + log o))

= Mazximize(log o;)

B Appendix. Details of experiment.

The statistics of widely-studied datasets used by
different tasks are listed in Table 4. These datasets
come from different topics, such as movie reviews,
customer reviews, social reviews, and question
type. In particular, since there is no standard par-
tition of MR, CR, SUBJ, and MPQA, we follow
the data splitting protocol, 7:1:2 for them to get the
training, validation, and test sets. For the aspect-
level tasks, we remove the instances with conflict
sentiment labels in Laptop and Restaurant as im-
plemented in (Peng et al., 2017).

The setup of hyperparameters for Att-BiLSTM
and Memory Net are listed in Table 5. To make
a fair compare with other algorithms, we set our
hyperparameters the same as theirs.

C Appendix. Visualization and
explanation.

In this section, we select several attention visual-
izations on SST2 test set to explain how PBSA
works.

Pay more attention to important but low-
frequency words Some words do have impor-
tant effects on the results, but if they do not appear
frequently enough then the traditional attention
mechanism may not pay enough attention to them.
As shown in Figure 5-(1), the word drowsy has an
important influence on the emotional polarity of
the film. However, it is a low-frequency word in
the corpus, which makes the attention mechanisms
do not allocate enough weights to it, resulting in a
classification error. After being trained by PBSA,
the model can assign enough weights to drowsy,
which changes the result from false to correct.
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Reduce the focus on high-frequency words that
do not affect the results In baseline, some high-
frequency words which do not contain any emo-
tional polarity usually get high weights, while some
important words that should have been focused on
are ignored. As Figure 5-(2) shows, romantic and
doesn’t are words with strong emotional polarity.
However, the baseline assigns greater weights to
other high-frequency words (e.g., between) with
no emotional polarity, and thus ignores the words
romantic and doesn’t which results in misclassifi-
cation. After being trained by PBSA, the model
reduces the focus on between and the weights allo-
cated to the significant words increase correspond-
ingly, which turns the result.

Increase the difference in weight between
words with conflicting meanings As shown in
Figure 5-(3), the baseline focuses on too many
words: horror, revenge, perfect, relentless, torture,
and so on. Maybe all of the words are important
but the meanings of them are conflicting, which
interferes with the classification task. The model
feels confused because it does not know how to
make a prediction according to so many emotional
words. After being trained by PBSA, the difference
in the weight of emotional words becomes larger,
which makes it get the right result. It should be
noted that the entropy of attention distribution may
not decrease because PBSA keeps attention to im-
portant words while diluting the distribution of the
other words.

Be more sensitive to adversative relations in
sentences If there are adversative conjunctions
(e.g., but, however, and so on) in the sentence, it
is likely to express two opposite emotions before
and after the adversative conjunction. This is when
the model needs to keenly feel the changes of emo-
tional polarity in the sentence. From this aspect, the
model is also supposed to assign higher weights to
those adversative conjunctions. Judging from our
results, it is unfortunate that the original attention
mechanism tends to ignore these conjunctions for
they seem to have no effect on results outwardly.
As Figure 5-(4) and Figure 5-(5) show, the baseline
ignores the word but and results in errors. After
being trained by PBSA, the baseline pays more
attention to but which makes both of the emotions
before and after the adversative conjunction can be
taken into consideration.



Table 4: Detailed dataset statistics.

Task Dataset Class Avglen Train Test
SST2 (Socher et al., 2013) 2 19 6,920 1821
TREC (Li and Roth, 2002) 6 10 5,452 500
Sentence Classification MR (Pang and Lee, 2005) 2 19 10,662 -
CR (Hu and Liu, 2004) 2 19 3,775 -
SUBJ (Pang and Lee, 2004) 2 23 10,000 -
MPQA (Wiebe et al., 2005) 2 3 10,606 -
Document Categorization IMDB (Maas et al., 2011) 2 280 25,000 25,000
REST (Pontiki et al., 2014) 3 16 3,591 1,121
Aspect-based Sentiment Analyis | LAPTOP (Pontiki et al., 2014) 3 17 2,292 639
TWITTER (Dong et al., 2014) 3 19 6,248 692

Table 5: Setup for Att-BiLSTM and Memory Net

Task Dataset Dimension of hidden states Dimension of attention context
SST2 (Socher et al., 2013) 150 100
TREC (Li and Roth, 2002) 150 50
. . MR (Pang and Lee, 2005) 150 100
Sentence Classification CR (Hugan d Liu, 2004) 150 50
SUBJ (Pang and Lee, 2004) 150 100
MPQA (Wiebe et al., 2005) 150 100
Document Categorization IMDB (Maas et al., 2011) 150 300
REST (Pontiki et al., 2014) 300 300
Aspect-based Sentiment Analyis | LAPTOP (Pontiki et al., 2014) 300 300
TWITTER (Dong et al., 2014) 300 300

D Appendix. The illustration of the
baselines.

D.1 Att-BiLSTM

Figure 6 shows the structure of Att-BiLSTM. Att-
BiLSTM first map each word into pre-trained skip-
gram (Mikolov et al., 2013) word embedding and
then utilize 1-layered BiLSTM with a scale-dot
attention mechanism to get sentence-level hidden
states which are finally used for classification.

D.2 Att-BERT

Figure 7 shows the structure of Att-BERT. We
add a scale-dot attention layer to the output of the
BERT and use the output of the attention layer to
classify.

D.3 Memory Network

Figure 8 shows the structure of MN. Memory
Network uses an iteratively updated vector A (ini-
tialized as the aspect embedding) and the context
embedding to generate the attention distribution,
which is then used to select the important infor-
mation from the context embedding and iteratively
update the vector A.
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D.4 BERTABSA

Figure 9 shows the structure of BERTABSA. We
input the whole sentence to get the context rep-
resentation of the aspect words, which is directly
used for classification. To verify that our method
truly improves the results, we delete the gating
mechanism and use bert-base-uncased instead of
bert-large-uncased.

D.5 Att-BERTABSA

Figure 10 shows the structure of Att-BERTABSA.
Its structure is similar to Att-BERT, for adding a
scale-dot attention layer after the output of BERT.
However, different from Att-BERT, the hidden
states of context words and aspect words are re-
garded as () and K respectively and fed into the at-
tention layer separately. To verify the effectiveness
of our method, we make the same modifications on
the Att-BERTABSA.
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Figure 5: The visualization result of several samples on SST?2 test set.
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