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Abstract
For text classification, the traditional atten-001
tion mechanisms usually focus too much on002
frequent words, and need extensive labeled003
data in order to learn. This paper proposes004
a perturbation-based self-supervised attention005
approach to guide attention learning without006
any annotation overhead. Specifically, we add007
as much noise as possible to all the words in008
the sentence without changing their semantics009
and predictions. We hypothesize that words010
that tolerate more noise are less significant,011
and we can use this information to refine the012
attention distribution. Experimental results on013
three text classification tasks show that our ap-014
proach can significantly improve the perfor-015
mance of current attention-based models, and016
is more effective than existing self-supervised017
methods. We also provide a visualization anal-018
ysis to verify the effectiveness of our approach.019

1 Introduction020

Attention mechanisms (Bahdanau et al., 2014; Lu-021

ong et al., 2015; Vaswani et al., 2017) play an es-022

sential role in Natural Language Processing (NLP)023

and have been shown to be effective in various text024

classification tasks, such as sentiment analysis (Lin025

et al., 2017; Tang et al., 2019; Choi et al., 2020),026

document classification (Yang et al., 2016) and nat-027

ural language inference (Chen et al., 2017). They028

achieve significant performance gains, and can be029

used to provide insights into the inner workings of030

the model. Generally, the attention learning proce-031

dure is conditioned on access to large amounts of032

training data without additional supervision infor-033

mation.034

Although the current attention mechanisms have035

achieved remarkable performance, several prob-036

lems remain unsolved. First, learning a good at-037

tention distribution without spurious correlations038

for neural networks requires large volumes of in-039

formative labeled data (Barrett et al., 2018; Bao040

et al., 2018). As described in the work of Wallace041

et al. (Wallace et al., 2021), after inserting 50 poi- 042

son examples with the name “James Bond” into 043

its training set, a sentiment model will frequently 044

predict a positive whenever the input contains this 045

name, even though there is no correlation between 046

the name and the prediction. Second, attention 047

mechanisms are prone to focus on high-frequency 048

words with sentiment polarities and assign rela- 049

tively high weights to them (Xu et al., 2018; Li 050

et al., 2018; Tang et al., 2019), while the higher 051

frequency does not imply greater importance. 052

Especially when there’s an adversative relation 053

in a text, some high-frequency words with strong 054

sentiment valence need to be selectively ignored 055

based on the context of the whole text. In these 056

cases, these words will mislead the model because 057

the important words don’t get enough attention. 058

The sentences in Figure 1 illustrate this problem. 059

In most training sentences, as shown in the first 060

four rows, “better” and “free” appear with posi- 061

tive sentiment, which makes the attention mech- 062

anism accustomed to attaching great importance 063

to them and relating them to positive predictions. 064

However, the two words are used ironically in the 065

fifth sentence, and the model pays the most atten- 066

tion to them while the critical word – “leave” – is 067

not attended to, resulting in an incorrect predic- 068

tion. Based on these observations, there’s reason 069

to believe that the attention mechanisms could be 070

improved for text classification. 071

To tackle this problem the most direct solution 072

is to add human supervision collected by manual 073

annotation (Zhang et al., 2016; Bao et al., 2018; 074

Camburu et al., 2018) or special instruments (Bar- 075

rett et al., 2018; Sood et al., 2020b,a; Malmaud 076

et al., 2020) (e.g., eye-tracking), to provide an in- 077

ductive bias for attention. These approaches are 078

costly, the labeling is entirely subjective, and there 079

is often high variance between annotators. In par- 080

ticular, Sen et al. (Sen et al., 2020) point out that 081

there is a huge difference between machine and 082
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Figure 1: The attention visualization for five sentences. The "A/B" style tags before each row mean the model’s
prediction is A and the label is B. The first four sentences are selected from training sets as representatives con-
taining high-frequency words - "better" (yellow box) and "free" (green box). The last sentence including both of
the two words is selected from testing sets, typically showing that the distribution of attention weights when some
words in the sentence appear frequently in the corpus but are unimportant to the current prediction.

human attention and it is difficult to map human083

attention to machine attention.084

Another flexible solution is to measure attribu-085

tion scores, i.e., how much each token in a text con-086

tributes to the final prediction, to approximate an087

importance distribution as an attention supervision088

signal (Li et al., 2016; Choi et al., 2019; Tang et al.,089

2019; Choi et al., 2020). Generally, the attribution090

scores are obtained by masking each token one by091

one to generate counterfactual examples, reflect-092

ing the difference in the softmax probability of the093

model after masking each token. These approaches094

have little or no additional annotation overhead and095

augment supervision information from the training096

corpus to refine the attention distribution. Despite097

their success, masking schemes can give rise to098

an out-of-distribution (OOD) problem (Hendrycks099

and Gimpel, 2016; Chang et al., 2018; Yi et al.,100

2020). That is, the generated counterfactuals devi-101

ate from the training data distribution of the target102

model, resulting in an overestimation of the contri-103

bution of unimportant tokens. The OOD problem104

induced by existing masking schemes makes it dif-105

ficult to identify whether high-scoring tokens con-106

tribute significantly to the prediction. Furthermore,107

most of them are limited to generating uniform at-108

tention weights for the selected important words.109

Obviously, the contribution of different important110

words to the model should also be different accord-111

ing to the context, e.g., the word leave should have112

a higher attention weight than better and free for113

the fifth sentence in Figure 1.114

Some efforts reveal that the output of neural115

networks can be theoretically guaranteed to be in- 116

variant for a certain magnitude of input perturba- 117

tions through establishing the concept of maximum 118

safety radius (Wu et al., 2020; La Malfa et al., 2020) 119

or minimum disturbance rejection (Weng et al., 120

2018). In simple terms, these approaches evaluate 121

the minimum distance of the nearest perturbed text 122

in the embedding space that is classified differently 123

from the original text. Inspired by this work, we 124

propose a novel perturbation-based self-supervised 125

attention learning method without any additional 126

annotation overhead for text classification. Specif- 127

ically, we design an attention supervision mining 128

mechanism called Word-based Concurrent Pertur- 129

bation (WBCP), which effectively calculates an ex- 130

plainable word-level importance distribution for the 131

input text. Concretely, WBCP tries to concurrently 132

add as much noise as possible to perturb each word 133

embedding of the input, while ensuring that the 134

semantics of input and the classification outcome 135

is not changed. Under this condition, the words 136

that tolerate more noise are less important and the 137

ones sensitive to noise deserve more attention. We 138

can use the permissible perturbation amplitude as a 139

measure of the importance of a word, where small 140

amplitude indicates that minor perturbations of that 141

word can have a significant influence on the seman- 142

tic understanding of input text and easily lead to 143

prediction error. 144

According to the inverse distribution of pertur- 145

bation amplitude, we can get sample-specific at- 146

tention supervision information. Later, we use this 147

supervision information to refine the attention dis- 148
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tribution of the target model and iteratively update149

it. Notably, our method is model-agnostic and can150

be applied to any attention-based neural network.151

It generates attention supervision signals in a self-152

supervised manner to improve text classification153

performance without any manual labeling and in-154

corporates Perturbation-based Self-supervised At-155

tention (PBSA) to avoid the OOD problem caused156

by the masking scheme. In addition, it can also157

generate special attention supervision weights adap-158

tively for each sample based on the perturbation159

amplitude, rather than allocate them uniformly.160

In summary, the contributions of this paper are161

as follows:162

(1) Through analysis of current methods, we163

point out the disadvantages and drawbacks of cur-164

rent attention mechanisms for text classification.165

(2) We propose a simple yet effective approach166

to automatically mine the attribution scores for the167

input text, and use it as supervision information168

to guide the learning of attention weights of target169

models.170

(3) We apply our approach to various text classifi-171

cation tasks, including sentence classification, doc-172

ument categorization, and aspect-level sentiment173

analysis. Extensive experiments and visualization174

analysis show the effectiveness of the proposed175

method in improving both model prediction accu-176

racy and robustness.177

2 Related work178

Work related to our method can be categorized179

into three types: Introducing human attention; us-180

ing external resources or tools; and using self-181

supervision.182

Introducing human attention Adding hu-183

man supervision to attention has been shown to ef-184

fectively alleviate attention bias and improve model185

prediction accuracy on a range of tasks (Zhang186

et al., 2016; Camburu et al., 2018; Sood et al.,187

2020b,a; Malmaud et al., 2020). In general, the188

annotators need to explicitly highlight the impor-189

tant words or rationales (Zhang et al., 2016; Bao190

et al., 2018; Camburu et al., 2018) for the given191

sample. Obviously, the annotation is very labor-192

intensive and expensive in real-world scenarios,193

so an alternative is to use implicit signals such as194

eye gaze (Barrett et al., 2018; Sood et al., 2020b,a;195

Malmaud et al., 2020). For these methods, it is196

expected that the model can generate similar at-197

tention to human supervision. However, human198

recognition and model reasoning processes may 199

be inconsistent (Jacovi and Goldberg, 2020), and 200

aligning the two is challenging (Sen et al., 2020). 201

Using external resources or tools With the 202

development of NLP, many corpora and tools, such 203

as Dependency Tree and Synonym Dictionary, are 204

created to obtain a deeper understanding of words 205

and sentences. Therefore, some methods (Kami- 206

gaito et al., 2017; Zou et al., 2018; Nguyen and 207

Nguyen, 2018; Zhao et al., 2020) that generate at- 208

tention supervision information according to ex- 209

isting corpora and tools emerge. For example, 210

Nguyen et al. (Nguyen and Nguyen, 2018) in- 211

troduce attention supervision information based 212

on important words selected by semantic word 213

lists and dependency trees. Similarly, Zhao et 214

al. (Zhao et al., 2020) first train the model on the 215

document-level sentiment classification and then 216

transfer the attention knowledge to a fine-grained 217

one for aspect-level sentiment classification. How- 218

ever, these methods still rely on annotations based 219

on parsers or external resources, and the perfor- 220

mance depends heavily on the quality of the parser. 221

Self-supervised attention learning Cur- 222

rently, self-supervised attention learning frame- 223

works (Li et al., 2016; Choi et al., 2019; Tang 224

et al., 2019; Choi et al., 2020; Su et al., 2021) 225

have become the mainstream method because they 226

do not require additional annotation overhead. 227

They usually mask or erase each token one by one 228

and quantify the difference in predictions of the 229

model after masking each token, to approximate 230

an importance distribution as attention supervision 231

information. For example, Tang et al. (Tang 232

et al., 2019) divide the words in sentences into the 233

active set and the misleading set by progressively 234

masking each word with respect to the maximum 235

attention weight, and augment them to make 236

the model focus on the active context words. 237

Similarly, Choi et al. (Choi et al., 2020) adopt the 238

masking method to find the unimportant words 239

and gradually reduce their weights. These methods 240

use a self-supervised paradigm to mine important 241

words, which can greatly reduce the annotation 242

cost and improve the robustness of the model. 243

Nevertheless, the masking scheme they follow has 244

an OOD problem. The counterfactuals generated 245

by the mask operation deviate from the original 246

training set distribution, which easily leads to 247

the over-evaluation of unimportant words. In 248

addition, the above methods usually assign the 249
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Figure 2: The diagram of WBCP. The left part of the figure corresponds to the last term of Eq. (3), which illus-
trates the process of adding noise that follows a Gaussian distribution to each word. The right part of the figure
corresponds to the first two terms of Eq. (3), indicating the constraint of trying to not change the semantics and
predictions after the noise is introduced.

same weight to the extracted important words,250

but in our opinion, different words should have251

different contributions to the classification.252

3 Proposed method253

In this section, we propose a Perturbation-based254

Self-supervised Attention (PBSA) mechanism to255

enhance the attention learning process and provide256

a good inductive bias. We first design a Word-based257

Concurrent Perturbation (WBCP) to automatically258

mine the attribution score for each word and use259

this as a measure of its degree of importance. Then260

we use the measure mentioned above to compute261

a word-level importance distribution as supervi-262

sion information. Finally, we describe how to use263

the supervision information to refine the attention264

mechanism of the target model, improving the ac-265

curacy and robustness of text classification tasks.266

3.1 Word-based Concurrent Perturbation267

The basic assumption of our design is based on268

the following fact: under the premise of trying not269

to change the semantics of the input text, unim-270

portant words can withstand more changes than271

more significant ones. Specifically, a little noise272

on keywords can lead to dramatic changes in the273

final results, while greater noise on the unimportant274

ones won’t easily lead to changes in results. There-275

fore, we can estimate the importance distribution276

of the words according to the maximum amount of277

noise they can tolerate. To be specific, we try to278

concurrently add as much noise as possible to per-279

turb each word embedding without changing the280

latent representations (e.g., the hidden states for 281

classification) of the text and the prediction result. 282

The above process can be optimized according to 283

the maximum entropy principle. 284

Given a sentence consisting of n words s = 285

{w1, w2, ..., wn}, we map each word into its em- 286

bedding vector X = {x1,x2, ...,xn}. Here we 287

assume that the noise on word embeddings obeys a 288

Gaussian distribution εi ∼ N
(
0,Σi = σ2i I

)
and 289

let x̃i = xi + εi denote an input with noise εi. We 290

use h, y and h̃, ỹ to indicate the hidden state for 291

classification and the prediction result of a pre- 292

trained model with no noise and with noise re- 293

spectively. Then we can write the loss function 294

of WBCP as follows: 295

LWBCP = ||h̃− h||22 + ||ỹ − y||22
−λ
∑n

i=1
H(εi)|εi∼N(0,Σi=σ2

i I),
(1) 296

where λ is a hyperparameter that balances the 297

strength of noise. The first and the second term 298

of Eq. (1) mean that we need to minimize the L2- 299

normalized euclidean distance between the two hid- 300

den states and between the two predictions respec- 301

tively, to quantify the change of information (Jain 302

and Wallace, 2019). The first term maintains latent 303

representations to prevent modification of the text 304

semantics, and the second term prevents excessive 305

perturbations from causing the model to mispre- 306

dict. The last term indicates that we need to maxi- 307

mize the entropy H(εi)|εi∼N(0,Σi=σ2
i I) to encour- 308

age adding as much noise as possible to each word 309

embedding. We can simplify the maximum entropy 310
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of the Gaussian distribution as follows (the detailed311

formula derivation is listed in Appendix A):312

Maximize(H(εi))⇒Maximize(log σi) (2)313

Finally we can use Eq. (2) to rewrite our final ob-314

jective function:315

LWBCP = ||h̃− h||22 + ||ỹ − y||22
+λ
∑n

i=1
log(−σi)

(3)316

The illustration of WBCP is given in Figure 2. Af-317

ter fixing the parameters of the pre-trained model,318

the only learnable parameters σ = {σ1, σ2, σ3, σ4}319

can be considered as the perturbation radii, which320

is positively associated with the perturbation am-321

plitude. Specifically, the larger σi WBCP gets, the322

more likely εi is a big number, the more noise323

is added to xi, and the less important it is. As324

what is shown in the picture, it is obvious that325

σ2 > σ1 > σ4 > σ3. According to the analysis326

listed above, we know that w2 (a) is the least im-327

portant word and w3 (nice) is the most significant328

one, for x2 can tolerate the most noise while x3329

can hardly stand any perturbation.330

3.2 Attention supervision331

We obtain the σs, the perturbation magnitudes, by332

optimizing Eq. (3) on the pre-trained model. If a333

word embedding xi can tolerate more noise with-334

out impacting the semantics of input text, σi will be335

larger, which means the word xi is less important.336

Conversely, small σi indicates that slight perturba-337

tions of word embedding xi will lead to semantic338

drift and may affect the classification result. We339

can therefore use the perturbation magnitude to340

compute a word-level importance distribution as341

attention supervision information, as shown below:342

343

α′i = 1− σi
maxj{σj}

α̃ = Softmax(α′)
(4)344

It is worth noting that our method generates sample-345

specific attention supervision, where the weight of346

each word is quantified according to the perturba-347

tion magnitude, instead of using the same impor-348

tance weight for all words (Tang et al., 2019; Choi349

et al., 2020). Also, the quantification occurs in the350

embedding space rather than replacing the token351

with a predefined value, thus avoiding the OOD352

problem caused by masking schemes.353

Algorithm 1: Perturbation-based self-
supervised attention
Input: training dataset D, attention-based

model f(·, θ), the number of
iterations T .

Pre-train model f(·, θ) on D and update θ
using Adam.

for t = 1, ...T do
Fix θ, and minimize WBCP objective

function by Eq. (3) using Adam.
Obtain the perturbation amplitude σ for
each sample in D.

Calculate the attention supervision α̃ by
Eq. (4) for each sample in D.

Re-train model on D with the attention
supervision α̃ by Eq. (5) and update θ
using Adam.

end

3.3 Perturbation-based Self-supervised 354

Attention 355

We do not use α̃ to generate a new attention dis- 356

tribution to replace the original one α. Rather, 357

we use it as a supervision target for the attention 358

weights. We want the attention supervision to make 359

the model notice more words that have an influence 360

on the output. In this way, some low-frequency 361

context words with great importance that would 362

normally be ignored can be discovered by attention 363

learning. In this section, we describe how to exploit 364

the supervision information α̃ to guide the learning 365

of model attention strengths. 366

Our method is shown in Algorithm 1. We first 367

pre-train an attention-based model f(·, θ) based on 368

the classification dataset D. We then fix the model 369

parameters θ and minimize the WBCP objective 370

using Eq. (3) to obtain the perturbation amplitude σ 371

for each sample, and used to compute the attention 372

supervision α̃ using Eq. (4). We then retrain the 373

model using α̃ to guide the attention distribution 374

α produced by the model. The above process can 375

iterate T times to capture the important distribution 376

more accurately. The training objective function 377

with attention supervision α̃ is defined as follows: 378

Lcls =
1

M

∑M

m=1
ŷm log ym

+γKL(α̃m||αm),
(5) 379

where M is the number of samples, γ is a hyper- 380

parameter that controls the strength of attention 381
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Table 1: Experimental accuracy on the document-level and sentence-level classification for Att-BiLSTM.

Model IMDB SST2 TREC MR CR SUBJ MPQA Average

Att-BiLSTM 87.21 83.42 90.60 77.04 76.82 89.82 70.59 82.20
Att-BiLSTM+Gradient 86.79 85.06 91.20 77.60 76.54 89.82 70.76 82.53
Att-BiLSTM+PBSA 89.14 85.72 92.20 79.05 77.64 90.53 71.31 83.65

Att-BERT 92.53 91.43 96.60 79.26 89.06 94.30 89.69 90.41
Att-BERT+PBSA 92.61 91.93 97.20 79.97 89.38 94.76 90.21 90.86

BERT 92.92 91.71 96.60 85.47 89.42 96.30 89.59 91.71
BERT+PBSA 93.48 92.20 97.80 86.08 90.21 97.50 90.57 92.54

supervision, ŷm and ym are the ground-truth label382

and predicted output for the m-th sample respec-383

tively. The first term is the Cross-Entropy Loss384

for classification, and the second term is the Kull-385

back–Leibler Divergence between the distributions386

of attention αm produced by model and attention387

supervision information α̃m for the mth sample.388

4 Experiments389

We tried PBSA on several text classification tasks,390

including sentence classification, document catego-391

rization, and aspect-level sentiment analysis. Ex-392

perimental results demonstrate that PBSA consis-393

tently enhances the performance and robustness of394

various attention-based baselines, and outperforms395

some strong models following self-supervised at-396

tention learning. Furthermore, a visualization anal-397

ysis confirms that our model is capable of gener-398

ating high-quality attention for target tasks. We399

aim to answer the following questions: 1. Does400

PBSA improve model accuracy? 2. Is PBSA more401

effective than other approaches? 3. How do hyper-402

parameters affect the results? 4. How does PBSA403

work?404

4.1 Datasets and Setup405

The statistics of the datasets we use for differ-406

ent tasks are listed in Appendix B. We use a407

grid search to find the optimal hyperparameters408

γ and T for each dataset, from the sets γ ∈409

{0.05, 0.1, 1.0, 2.0, 10, 100} and T ∈ {1, 2, 3, 4}.410

The hyperparameter λ is set to 0.1, the batch size is411

set to 64. We use the Adam optimizer with learning412

rate 0.001. The other details of our experiments413

are listed in Appendix B. We describe all of our414

baselines in Appendix D.415

4.2 Sentence-level and Document-level416

Classification417

To verify that PBSA can improve the performance418

of the attention-based model, in this section we use419

the classic Att-BiLSTM (Zhou et al., 2016) and the 420

pre-trained BERT model (Devlin et al., 2018) as 421

the baselines. It is worth noting that BERT uses 422

multiple-head attention, so how to select the suit- 423

able head as the supervised target is difficult (Su 424

et al., 2021). Hence, how to effectively combine its 425

multi-head attention with our method is an interest- 426

ing and valuable question. 427

We explore two simple strategies to combine 428

our approach with BERT. 1) We first add a scaled 429

dot-product attention layer to the output of BERT 430

to derive a fixed sized sentence representation for 431

classification, and we call this model Att-BERT 432

for short. 2) We also try a simple but effective 433

way to combine the internal multi-head attention 434

in Transformer with our method. Specifically, we 435

average the multi-head attention of all the layers 436

and compress the attention matrix to a vector to 437

be guided by our mechanism. The illustrations of 438

different baselines are shown in Appendix D.1 and 439

Appendix D.2. 440

Table 1 reports the experimental results on the 441

seven datasets of sentence classification and docu- 442

ment categorization. We observe that our method 443

consistently helps improve the accuracy of the base- 444

line on all the datasets. The average accuracy of 445

our approach on the three baselines across seven 446

datasets are 83.65, 90.86 and 92.54, an improve- 447

ment of 1.44%, 0.45% and 0.83% over the base- 448

lines (82.21, 90.41 and 91.71). The results demon- 449

strate that our approach delivers significant perfor- 450

mance improvements over the baselines. It also 451

indicates that the current model limits the potential 452

of attention mechanisms when without any super- 453

vision information. However, PBSA can mine the 454

potential important words and then guide the at- 455

tention mechanism of the model to learn a good 456

inductive bias. 457
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Table 2: Experimental results on aspect-level tasks compared with others.

Models REST LAPTOP TWITTER
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

MN (Wang et al., 2018) 77.32 65.88 68.90 63.28 67.78 66.18
MN (Ours) 79.89 65.89 72.68 61.97 68.34 66.23
+Gradient (Serrano and Smith, 2019) 76.85 60.06 71.11 63.53 67.77 64.91
+AWAS (Tang et al., 2019) 78.75 69.15 70.53 65.24 69.64 67.88
+Boosting (Su et al., 2021) 77.66 66.23 69.28 64.17 68.14 67.12
+Adaboost (Su et al., 2021) 76.77 62.29 67.88 60.52 66.96 65.09
+PGAS (Su et al., 2021) 78.98 69.42 70.84 65.58 69.78 67.80
+PBSA 83.98 70.84 75.75 67.21 72.10 69.64
BERTABSA 79.80 71.37 79.38 75.69 76.01 74.52
+PBSA 79.89 71.59 79.51 75.87 76.11 74.69
Att-BERTABSA 83.29 75.87 77.98 75.02 73.99 71.23
+PBSA 83.41 76.70 78.65 75.53 74.45 72.88

4.3 Aspect-level Sentiment Analyis458

To further verify the effectiveness of our approach,459

we apply PBSA into MN (Tang et al., 2016;460

Wang et al., 2018), BERTABSA (Dai et al., 2021),461

and Att-BERTABSA (Su et al., 2021). Both462

BERTABSA and Att-BERTABSA are typical and463

simple ways to apply BERT to aspect-level classi-464

fication tasks. The difference is that BERTABSA465

directly uses the hidden states of the aspect words466

to classify, while Att-BERTABSA adds an atten-467

tion layer to the output of BERT. To show that468

our method truly improves the results, we only use469

the most critical parts of the model without any470

other tricks or mechanisms (e.g. the gating mecha-471

nism). All the illustrations of baselines are shown472

in Appendix D.3, Appendix D.4 and Appendix D.5.473

The results are shown in Table 2. We conduct474

experiments on three benchmark datasets of aspect-475

based sentiment analysis and PBSA outperforms476

all the baselines on all datasets both in accuracy477

and Macro-F1. Compared with other tasks, PBSA478

has a more significant improvement on these small-479

scale datasets, indicating that the original attention480

lacks a good inductive bias due to limited labeled481

data. With the help of PBSA, the robustness of the482

model can be improved effectively.483

Table 3: Experimental accuracy on document-level and
sentence-level tasks compared with others

Model SANA (Choi et al., 2020) PBSA
IMDB 88.03 89.14
SST2 84.35 85.72

4.4 Comparison with other methods484

On the tasks listed above, we compare our method485

with other advanced self-supervised attention learn-486

ing approaches. SANA (Choi et al., 2020) gen-487

erates counterfactuals by a masking scheme and 488

measures the difference in the softmax probabil- 489

ity of the model between the counterfactual and 490

original sample as an indicator of important words. 491

AWAS (Tang et al., 2019) and PGAS (Su et al., 492

2021) progressively mask the word with the largest 493

attention weight or partial gradient. Most of these 494

works don’t publish their critical code and do their 495

experiment only on certain specific tasks, so we di- 496

rectly compare our algorithm with their best results 497

published on different tasks respectively. On the 498

document-level and sentence-level tasks (Table 3), 499

PBSA is superior to SANA by 1.11% and 1.37%, 500

which verifies that the word-based concurrent per- 501

turbation can mine the importance distribution of 502

words more accurately than the masking scheme. 503

On the aspect-level task (Table 2), compared with 504

AWAS and PGAS, our method improves the model 505

more. As we mentioned in the Introduction (Sec- 506

tion 1), our method can generate word-specific at- 507

tention supervision while others treat the important 508

words equally without discrimination. We specu- 509

late that this may be one of the main reasons for 510

our improvement. 511

From the aspect of human intuition, the gradient- 512

based methods and leave-one-out methods are usu- 513

ally used to improve the interpretability of model. 514

The current self-supervised attention learning meth- 515

ods are mostly based on word masking, which can 516

be seen as a variation of leave-one-out methods. 517

We also try to use the gradient-based method (Ser- 518

rano and Smith, 2019) to generate supervision in- 519

formation. As shown in Table 1 and Table 2, the 520

gradient-based method does badly on most of the 521

datasets, especially on aspect-level datasets. These 522

results demonstrate that although the gradient- 523

based method can improve the interpretability of 524

the model, it does not necessarily improve the per- 525

7



Figure 3: The visualization result of several samples on SST2 test set.

formance. However, our method enhances inter-526

pretability while also improving its performance.527

4.5 Hyperparameter sensitivity528

As shown in Figure 4, our method achieves the best529

results on REST and TWITTER when T = 2 and530

T = 1 respectively. With the increase of T , the per-531

formance increases initially, and then decreases due532

to over-fitting. In practice, we find that one itera-533

tion achieves promising results. The hyperparmeter534

λ controls the perturbation degree of WBCP. When535

λ is too large, performance is deteriorated due to536

injecting too much noise. In all of our experiments,537

we set λ to 0.1. The hyperparmeter γ controls the538

strength of attention supervision. When γ is too539

large, it easily leads to overly penalizing the align-540

ment between the model attention and perturbation541

attention, which may hurt the model’s internal rea-542

soning process.543

Figure 4: The chart of the fluctuations of Macro-F1
when we change the values of hyperparameters.

4.6 Visualization analysis 544

As shown in Figure 3, we see that PBSA makes 545

the model pay more attention to important but 546

low-frequency words, reduces the focus on high- 547

frequency words that do not affect the results, in- 548

creases the difference in weight between words 549

with conflicting meanings, and increases sensitivity 550

to adversative relations in sentences. The detailed 551

explanation is listed in Appendix C. 552

5 Conclusions and future work 553

In this paper, we propose a novel self-supervised at- 554

tention learning method based on word-based con- 555

current perturbation. The algorithm adds as much 556

as noise to each word in the sentence under the 557

premise of unchanged semantics to mine the super- 558

vision information to guide attention learning. Our 559

experiments demonstrate that our method achieves 560

significant performance improvements over the 561

baselines on several text classification tasks. More- 562

over, we use several visualization samples to inter- 563

pret how our method guides the internal reasoning 564

process of models. We will try to incorporate our 565

method into more NLP tasks in the future. 566
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A Appendix. Formula derivation.829

The maximum entropy of the Gaussian distribution830

is equal to the result of the equation listed below.831

Maximize(H(εi))

=Maximize(−
∫
p(εi) ln p(εi)dεi)

=Maximize(
1

2
(ln(2πσi

2) + 1))

=Maximize(ln 2(
1

2
log(2πe) + log σi))

=Maximize(log σi)

832

B Appendix. Details of experiment.833

The statistics of widely-studied datasets used by834

different tasks are listed in Table 4. These datasets835

come from different topics, such as movie reviews,836

customer reviews, social reviews, and question837

type. In particular, since there is no standard par-838

tition of MR, CR, SUBJ, and MPQA, we follow839

the data splitting protocol, 7:1:2 for them to get the840

training, validation, and test sets. For the aspect-841

level tasks, we remove the instances with conflict842

sentiment labels in Laptop and Restaurant as im-843

plemented in (Peng et al., 2017).844

The setup of hyperparameters for Att-BiLSTM845

and Memory Net are listed in Table 5. To make846

a fair compare with other algorithms, we set our847

hyperparameters the same as theirs.848

C Appendix. Visualization and849

explanation.850

In this section, we select several attention visual-851

izations on SST2 test set to explain how PBSA852

works.853

Pay more attention to important but low-854

frequency words Some words do have impor-855

tant effects on the results, but if they do not appear856

frequently enough then the traditional attention857

mechanism may not pay enough attention to them.858

As shown in Figure 5-(1), the word drowsy has an859

important influence on the emotional polarity of860

the film. However, it is a low-frequency word in861

the corpus, which makes the attention mechanisms862

do not allocate enough weights to it, resulting in a863

classification error. After being trained by PBSA,864

the model can assign enough weights to drowsy,865

which changes the result from false to correct.866

Reduce the focus on high-frequency words that 867

do not affect the results In baseline, some high- 868

frequency words which do not contain any emo- 869

tional polarity usually get high weights, while some 870

important words that should have been focused on 871

are ignored. As Figure 5-(2) shows, romantic and 872

doesn’t are words with strong emotional polarity. 873

However, the baseline assigns greater weights to 874

other high-frequency words (e.g., between) with 875

no emotional polarity, and thus ignores the words 876

romantic and doesn’t which results in misclassifi- 877

cation. After being trained by PBSA, the model 878

reduces the focus on between and the weights allo- 879

cated to the significant words increase correspond- 880

ingly, which turns the result. 881

Increase the difference in weight between 882

words with conflicting meanings As shown in 883

Figure 5-(3), the baseline focuses on too many 884

words: horror, revenge, perfect, relentless, torture, 885

and so on. Maybe all of the words are important 886

but the meanings of them are conflicting, which 887

interferes with the classification task. The model 888

feels confused because it does not know how to 889

make a prediction according to so many emotional 890

words. After being trained by PBSA, the difference 891

in the weight of emotional words becomes larger, 892

which makes it get the right result. It should be 893

noted that the entropy of attention distribution may 894

not decrease because PBSA keeps attention to im- 895

portant words while diluting the distribution of the 896

other words. 897

Be more sensitive to adversative relations in 898

sentences If there are adversative conjunctions 899

(e.g., but, however, and so on) in the sentence, it 900

is likely to express two opposite emotions before 901

and after the adversative conjunction. This is when 902

the model needs to keenly feel the changes of emo- 903

tional polarity in the sentence. From this aspect, the 904

model is also supposed to assign higher weights to 905

those adversative conjunctions. Judging from our 906

results, it is unfortunate that the original attention 907

mechanism tends to ignore these conjunctions for 908

they seem to have no effect on results outwardly. 909

As Figure 5-(4) and Figure 5-(5) show, the baseline 910

ignores the word but and results in errors. After 911

being trained by PBSA, the baseline pays more 912

attention to but which makes both of the emotions 913

before and after the adversative conjunction can be 914

taken into consideration. 915
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Table 4: Detailed dataset statistics.

Task Dataset Class AvgLen Train Test

Sentence Classification

SST2 (Socher et al., 2013) 2 19 6,920 1821
TREC (Li and Roth, 2002) 6 10 5,452 500
MR (Pang and Lee, 2005) 2 19 10,662 –

CR (Hu and Liu, 2004) 2 19 3,775 –
SUBJ (Pang and Lee, 2004) 2 23 10,000 –
MPQA (Wiebe et al., 2005) 2 3 10,606 –

Document Categorization IMDB (Maas et al., 2011) 2 280 25,000 25,000

Aspect-based Sentiment Analyis
REST (Pontiki et al., 2014) 3 16 3,591 1,121

LAPTOP (Pontiki et al., 2014) 3 17 2,292 639
TWITTER (Dong et al., 2014) 3 19 6,248 692

Table 5: Setup for Att-BiLSTM and Memory Net

Task Dataset Dimension of hidden states Dimension of attention context

Sentence Classification

SST2 (Socher et al., 2013) 150 100
TREC (Li and Roth, 2002) 150 50
MR (Pang and Lee, 2005) 150 100

CR (Hu and Liu, 2004) 150 50
SUBJ (Pang and Lee, 2004) 150 100
MPQA (Wiebe et al., 2005) 150 100

Document Categorization IMDB (Maas et al., 2011) 150 300

Aspect-based Sentiment Analyis
REST (Pontiki et al., 2014) 300 300

LAPTOP (Pontiki et al., 2014) 300 300
TWITTER (Dong et al., 2014) 300 300

D Appendix. The illustration of the916

baselines.917

918

D.1 Att-BiLSTM919

Figure 6 shows the structure of Att-BiLSTM. Att-920

BiLSTM first map each word into pre-trained skip-921

gram (Mikolov et al., 2013) word embedding and922

then utilize 1-layered BiLSTM with a scale-dot923

attention mechanism to get sentence-level hidden924

states which are finally used for classification.925

D.2 Att-BERT926

Figure 7 shows the structure of Att-BERT. We927

add a scale-dot attention layer to the output of the928

BERT and use the output of the attention layer to929

classify.930

D.3 Memory Network931

Figure 8 shows the structure of MN. Memory932

Network uses an iteratively updated vector A (ini-933

tialized as the aspect embedding) and the context934

embedding to generate the attention distribution,935

which is then used to select the important infor-936

mation from the context embedding and iteratively937

update the vector A.938

D.4 BERTABSA 939

Figure 9 shows the structure of BERTABSA. We 940

input the whole sentence to get the context rep- 941

resentation of the aspect words, which is directly 942

used for classification. To verify that our method 943

truly improves the results, we delete the gating 944

mechanism and use bert-base-uncased instead of 945

bert-large-uncased. 946

D.5 Att-BERTABSA 947

Figure 10 shows the structure of Att-BERTABSA. 948

Its structure is similar to Att-BERT, for adding a 949

scale-dot attention layer after the output of BERT. 950

However, different from Att-BERT, the hidden 951

states of context words and aspect words are re- 952

garded as Q and K respectively and fed into the at- 953

tention layer separately. To verify the effectiveness 954

of our method, we make the same modifications on 955

the Att-BERTABSA. 956

13



Figure 5: The visualization result of several samples on SST2 test set.
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Figure 6: The illustration of Att-BiLSTM.

Figure 7: The illustration of Att-BERT.

Figure 8: The illustration of Memory Net.

Figure 9: The illustration of BERTABSA.

Figure 10: The illustration of Att-BERTABSA.
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