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ABSTRACT

The recent paper by Byrd & Lipton (2019), based on empirical observations, raises
a major concern on the impact of importance weighting for the over-parameterized
deep learning models. They observe that as long as the model can separate the
training data, the impact of importance weighting diminishes as the training pro-
ceeds. Nevertheless, there lacks a rigorous characterization of this phenomenon. In
this paper, we provide formal characterizations and theoretical justifications on the
role of importance weighting with respect to the implicit bias of gradient descent
and margin-based learning theory. We reveal both the optimization dynamics and
generalization performance under deep learning models. Our work not only ex-
plains the various novel phenomenons observed for importance weighting in deep
learning, but also extends to the studies where the weights are being optimized as
part of the model, which applies to a number of topics under active research.

1 INTRODUCTION

Importance weighting is a standard tool for estimating a quantity under a target distribution while only
the samples from some source distribution is accessible. It has been drawing extensive attention in the
communities of statistics and machine learning. Causal inference for deep learning investigates heavily
on the propensity score weighting method that applies the off-policy optimization with counterfactual
estimator (Gilotte et al., 2018; Jiang & Li, 2016), modelling with observational feedback (Schnabel
et al., 2016; Xu et al., 2020) and learning from controlled intervention (Swaminathan & Joachims,
2015). The importance weighting methods are also applied to characterize distribution shifts for
deep learning models (Fang et al., 2020), with modern applications in such as the domain adaptation
(Azizzadenesheli et al., 2019; Lipton et al., 2018) and learning from noisy labels (Song et al., 2020).
Other usages include curriculum learning (Bengio et al., 2009) and knowledge distillation (Hinton
et al., 2015), where the weights characterize the model confidence on each sample.

To reduce the discrepancy between the source and target distribution for model training, a standard
routine is to minimize a weighted risk (Rubinstein & Kroese, 2016). Many techniques have been
developed to this end, and the common strategy is re-weighting the classes proportionally to the
inverse of their frequencies (Huang et al., 2016; 2019; Wang et al., 2017). For example, Cui et al.
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(2019) proposes re-weighting by the inverse of effective number of samples. The focal loss (Lin
et al., 2017) down-weights the well-classified examples, and the work by Li et al. (2019) suggests an
improved technique which down-weights examples based on the magnitude of the gradients.

Despite the empirical successes of various re-weighting methods, it is ultimately not clear how
importance weighting lays influence from the theoretical standpoint. The recent study of Byrd &
Lipton (2019) observes from experiments that there is little impact of importance weights on the
converged deep neural network, if the data can be separated by the model using gradient descent.
They connect this phenomenon to the implicit bias of gradient descent (Soudry et al., 2018) - a novel
topic that studies why over-parameterized models trained on separable data is biased toward solutions
that generalize well. Implicit bias of gradient descent has been observed and studied for linear model
(Soudry et al., 2018; Ji & Telgarsky, 2018b), linear neural network (Ji & Telgarsky, 2018a; Gunasekar
et al., 2018), two-layer neural network with homogeneous activation (Chizat & Bach, 2020) and
smooth neural networks (Nacson et al., 2019; Lyu & Li, 2019). To summarize, those work reveals
that the direction of the parameters (for linear predictor) and the normalized margin (for nonlinear
predictor), regardless of the initialization, respectively converge to those of a max-margin solution.
The pivotal role of margin for deep learning models has been explored actively after the long journey
of understanding the generalization of over-parameterized neural networks (Bartlett et al., 2017;
Golowich et al., 2018; Neyshabur et al., 2018). For instance, Wei et al. (2019) studies the margin of
the neural networks for separable data under weak regularization. They show that the normalized
margin also converges to the max-margin solution, and provide a generalization bound for a neural
network that hinges on its margin.

Although there are rich understandings for the implicit bias of gradient descent and the margin-based
generalization, very few efforts are dedicated to studying how they adjust to the weighted empirical-
risk minimization (ERM) setting. The established results do not directly transfer since importance
weighting can change both the optimization geometry and how the generalization is measured. In
this paper, we fill in the gap by showing the impact of importance weighting on the implicit bias of
gradient descent as well as the generalization performance. By studying the optimization dynamics
of linear models, we first reveal the effect of importance weighting on the convergence speed under
linearly separable data. When the data is not linearly separable, we characterize the unique role of
importance weighting on defining the intercept term upon the implicit bias. We then investigate the
non-linear neural network under a weak regularization as Wei et al. (2019). We provide a novel
generalization bound that reflects how importance weighting leads to the interplay between the
empirical risk and a compounding term that consists of the model complexity as well as the deviation
between the source target distribution. Based on our theoretical results, we discuss several exploratory
developments on importance weighting that are worthy of further investigations.

• A good set of weights for learning can be inversely proportional to the hard-to-classify
extent. For example, a sample that is close to (far from) the oracle decision boundary should
have a large (small) weight.

• If the importance weights are jointly trained according to a weighting model, the impact
of the weighting model eventually diminishes after showing strong correlation with the
hard-to-classify extent such as margin.

• The usefulness of explicit regularization on weighted ERM can be studied, via their impact
on the margin, on balancing the empirical loss and the distribution divergence.

In summary, our contribution are three folds.

• We characterize the impact of importance weighting on the implicit bias of gradient descent.
• We find a generalization bound that hinges on the importance weights. For finite-step

training, the role of importance weighting on the generalization bound is reflected in how
the margin is affected, and how it balances the source and target distribution.

• We propose several exploratory topics for importance weighting that worth further investi-
gating from both the application and theoretical perspective.

The rest of the paper is organized as follows. In Section 2, we introduce the background, preliminary
results and the experimental setup. In Section 3 and 4, we demonstrate the influence of the importance
weighting for linear and non-linear models in terms of the implicit bias of gradient descent and the
generalization performance. We then discuss the extended investigations in Section 5.
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2 PRELIMINARIES

We use bold-font letters for vectors and matrices, uppercase letters for random variables and dis-
tributions, and ‖ · ‖ to denote `2 norm when no confusion arises. We denote the training data by
D = {wi,xi, yi}ni=1 where xi ∈ X denotes the features, yi is binary or categorical, and the impor-
tance weight is bounded such that: wi ∈ [1/M,M ] for someM > 1. We mention that the importance
weights are often defined with respect to the source distribution Ps from which the training data is
drawn, and the target distribution Pt. We do not make this assumption here because importance
weighting is often applied for more general purposes. Therefore, wi can be defined arbitrarily.

We use f(θ,x) to denote the predictor and define F = {f(θ, ·) | θ ∈ Θ ⊂ Rd}. For the sake of
notation, we focus on the binary setting: yi ∈ {−1,+1} with f(θ,x) ∈ R. However, it will become
clear later that our results can be easily extended to the multi-class setting. Consider the weighted
empirical risk minimization (ERM) task with the risk given byL(θ; w) = 1/n

∑n
i=1 wi`

(
yif(θ,xi)

)
for some non-negative loss function `(·). The weight-agnostic counterpart is denoted by: L(θ) =
1/n

∑n
i=1 `(yif(θ,xi)). We focus particularly on the exponential loss `(u) = exp(−u) and log loss

`(u) = log(1 + exp(−u)). For the multi-class problem where yi ∈ [k], we extend our setup using
the softmax function where the logits are now given by {fj(θ,x)}kj=1. For optimization, we consider
using gradient descent to minimize the total loss: θ(t+1)(w) = θ(t)(w) − ηt∇L(θ; w)

∣∣
θ=θ(t)(w)

,
where the learning rate ηt can be constant or step-dependent.

From parameter norm divergence to support vectors.

Suppose D is separated by f(θ(t),x) after some point during training. The key factor that contributes
to the implicit bias for both linear and non-linear predictor under a weak regularization 1 is that the
norm of the parameters diverges after separation, i.e. limt→∞ ‖θ(t)‖2 = ∞, as a consequence of
using gradient descent. Now we examine ‖θ(t)(w)‖2. The heuristic is that if `(·) is exponential-like,
multiplying by wi only changes its tail property up to a constant while the asymptotic behavior is not
affected. In particular, the necessary conditions for norm divergence under gradient descent can be
summarized by:

• C1. The loss function `(·) has a exponential tail behavior (that we formalize in Appendix
A.1) such that limu→∞ `(−u) = limu→∞∇`(−u) = 0;

• C2. The predictor f(θ,x) is α-homogeneous such that f(c · θ,x) = cαf(θ,x), ∀c > 0.

In addition, we need certain regularities from f(θ,x) to ensure the existence of critical points and
the convergence of gradient descent:

• C3. for any x ∈ X , f(·,x) is β-smooth and l-Lipschitz on Rd.

C1 can be satisfied by the exponential loss, log loss and cross entropy loss under the multi-class
setting. For standard deep learning models such as multilayer perceptron (MLP), C2 implies that the
activation functions are homogeneous such as ReLU and LeakyReLU, and bias terms are disallowed.
C3 is a common technical assumptions whose practical implications are discussed in Appendix A.1.
Among the three necessary conditions, importance weighting only affects C1 up to a constant, so
its impact on the norm divergence diminishes in the asymptotic regime. The formal statement is
provided as below.
Claim 1. There exists a constant learning rate for gradient descent, such that for any w ∈
[1/M,M ]n, with a weak regularization, limt→∞

∥∥θ(t)(w)
∥∥ =∞ under C1-C3.

Compared with the previous work, we extend the norm divergence result not only to weighted
ERM but a more general setting where a weak regularization is considered. We defer the proof
to Appendix A.1. A direct consequence of parameter norm divergence is that both the risk and
the gradient are dominated by the terms with the smallest margin, i.e. arg mini yif(θ,xi), which
are also referred to as the "support vectors". To make sense of this point, notice that both the
risk and the gradient have the form of:

∑
i Ci exp

(
− yif(θ,xi)

)
, where Ci are low-order terms.

Since f(θ,xi) = ‖θ‖α2 f
(
θ/‖θ‖2,xi

)
due to the homogeneous assumption in C2, it holds that:

1The regularized loss is given by Lλ(θ;w) = L(θ;w) + λ‖θ‖r for a fixed r > 0. The weak regularization
refers to the case where λ→ 0.
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Figure 1: (a). Linearly separable data; (b). Non-separable data; (c): Balanced moon-shaped non-
linear separable data; (d). Unbalance moon-shaped data after down-sampling both classes (20% for
the blue class, and 80% for the orange class). We use solid line to denote the separating hyperplane
of the trained linear model and shades to represent the decision boundary of trained nonlinear model.

limt→∞ exp
(
− yif(θ(t)(w),xi)

)
→ 0. Therefore, the decision boundaries may share certain

characteristics with the support vector machine (SVM) since they rely on the same support vectors.
As a matter of fact, the current understandings on the implicit bias of gradient descent are mostly
established on the connection with hard-margin SVM:

min
θ∈Rd

‖θ‖2 s.t. yif(θ,xi) ≥ 1 ∀i = 1, 2, . . . , n, (1)

whose optimization path coincides with the max-margin problem: max‖θ‖2≤1 mini=1,...,n yif(θ,xi),
as shown by Nacson et al. (2019). Define γ(θ) := mini yif(θ,xi). We use θ∗ to denote the optimal
solution and γ∗ = γ(θ∗) := mini yif(θ∗,xi) to denote the corresponding margin.

Implicit bias of gradient descent.

We start by considering the weight-agnostic setting. When D is linear separable, it is reasonable
to conjecture that the separating hyperplane under a linear f(θ, ·) overlaps with the solution of
hard-margin SVM. Soudry et al. (2018) and Ji & Telgarsky (2018b) first show that ‖θ(t)‖ converges
in direction to θ∗, i.e. limt→∞ θ

(t)/‖θ(t)‖2 = θ∗. For nonlinear predictors, however, the parameter
direction is less meaningful. Instead, it has been pointed out that neural networks often achieve perfect
separation of the training data (Zhang et al., 2016). Therefore, we are more interested in the margin
whose pivoting role for the generalization of neural networks is studied extensively (Neyshabur et al.,
2017; Bartlett et al., 2017; Golowich et al., 2018). Specifically, it has been show in Nacson et al.
(2019) and Lyu & Li (2019) that the normalized margin, defined by γ̃(θ(t)) := γ

(
θ(t)/‖θ(t)‖2

)
,

converges to the maximum margin γ∗ without regularization.

It becomes clear at this point that to understand the role of importance weighting for deep learning,
we must characterize the impact of weights on the implicit bias since they reveal the optimization
geometry and generalization performance. Formally, we address the following critical questions.

• Q1. Does importance weighting modify the convergence results (convergence in direction
for linear predictor and in normalized margin for nonlinear predictor)?

• If the convergence results remain unchanged, then:

– Q2. in what way is importance weighting affecting the optimization process;

– Q3. how does importance weighting influence the generalization from the source
distribution to the target distribution?

Experiment setup.

Throughout this paper, we use the regular regression model as linear predictor. The nonlinear predictor
is a two-layer MLP with five hidden units and ReLU as the activation function. All the models are
trained with gradient descent using 0.1 as learning rate. We use the exponential loss and the standard
normal initialization. The generated datasets for our illustrative experiments are shown in Figure 1,
which correspond to the different settings of our major topics.
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3 IMPORTANCE WEIGHTING FOR LINEAR PREDICTOR

We begin with the linear predictors which allows more refined analysis on the gradient dynamics.
Without loss of generality, we assume using the exponential loss. Also, we do not consider the weak
regularization here since its practical impact on linear model is trivial when λ → 0 (Rosset et al.,
2004a;b), but it is not the case for nonlinear predictors. One sophistication with linear predictor is
that the data may not be perfectly separated, as opposed to the nonlinear case where neural networks
can in theory separate any non-degenerate data. With this kept in mind, we first assume D is linear
separable and characterize the new convergence result in the following proposition.
Proposition 1. With a constant learning rate ηt . β−1, we consider normalizing the weights
w ∈ [ 1

M ,M ]n such that
∑
i wi = 1 without loss of generality, it holds that:∣∣∣ θ(t)(w)

‖θ(t)(w)‖2
− θ∗

∣∣∣ . log n+DKL(p∗‖w) +M

log t · γ∗
, (2)

where p∗ = [p∗1, . . . , p
∗
n] characterizes the dual optimal for the hard-margin SVM such that θ∗ =∑n

i=1 yixi ·p∗i and satisfies: p∗i ≥ 0 and
∑n
i=1 p

∗
i = 1. Here,DKL is the Kullback-Leibler divergence.

We leave the proof to Appendix A.2. We find that importance weighting does not change the
convergence result as well as the 1/ log t convergence rate. However, it does affect the convergence
speed under the finite-step optimization. In particular, we show that the extra constant term induced
by importance weighting is given by the KL-divergence between the (normalized) weights and the
dual optimal of the hard-margin SVM, where samples with smaller margins usually have larger
values. Therefore, importance weighting may accelerate gradient descent in finite-step optimization
by matching weights with the inverse margin. As we show in Figure 2a and 2b, this type of "inverse-
margin weighted" design is able to accelerate the convergence and bring better performance under
finite-step optimization.

Figure 2: (a): Epoch-wise training performances measured by the angle between the decision
boundary (at that epoch) and the max-margin solution, using linear predictor on the linear separable
data of Figure 1a; (b): Epoch-wise training performances measured by the average margin in the same
setting as (a); (c). The generalization error on testing data (the remaining 80% of the orange class
and 20% of the blue class that are not part of the down-sampling in Figure 1d) when the nonlinear
model is trained under different class weights, as the training progresses; (d). The average margin for
the nonlinear model on the non-linearly separable training data shown in Figure 1c, under different
class weights, as the training progresses.

WhenD is not linearly separable, the key insight is that we can always partitionD intoDsep∪Dnon-sep,
where Dsep is the maximal linear separable subset defined in Ji & Telgarsky (2018b). Let Πnon-sep be
the (orthogonal) projection onto the subspace S spanned by the xi’s in Dnon-sep, and let Πsep be the
projection onto the orthogonal complement S⊥. The partition allows us to study the two projected
parts independently since by the construction, we have θ(t)(w) = Πnon-sepθ

(t)(w) + Πsepθ
(t)(w). It

is intuitive that the optimization path of Πsepθ
(t)(w) behaves similarly to the linear separable case as

in Proposition 1, so we can focus on the properties of Πnon-sepθ
(t)(w), which we summarize in the

follow proposition.
Proposition 2 (Informal). Let Lnon-sep(θ,w) be the weighted risk defined on the non-separable
subset, then with the constant learning rate:

• θ̃(w) = arg minθ Lnon-sep(θ,w) is uniquely defined and
∥∥θ̃(w)

∥∥
2

= O(1);
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•
∣∣Πnon-sepθ

(t)(w)−θ̃(w)
∣∣ . C

(∥∥θ̃(w)
∥∥
2

)
+ log2 t/γsep

t
, where γsep is the maximum margin

on Dsep and C
(∥∥θ̃(w)

)∥∥
2

)
= O(1).

The formal statement, which involves how Dsep is defined, is deferred to Appendix A.2 together
with the proof. Proposition 2 informs that importance weighting uniquely defines the solution θ̃(w)
on the non-separable subset of the data, to which Πnon-sepθ

(t)(w) converges. Hence, we expect
limt→∞ θ

(t)(w) = θ̃(w) + θ∗sep, where θ∗sep is the solution on the separable subset Dsep and thus its
direction does not depend on w as implied by Proposition 1. We can therefore think of θ̃(w) as the
intercept term where the weight controls how the intercept shifts on the subspace of the non-separable
data. We also illustrate this finding in Figure 3. By far, we provide an in-depth understanding and our
theoretical results fully explain the observations made in Byrd & Lipton (2019) on how importance
weighting affects the implicit bias of gradient descent using linear predictors.

Figure 3: The role of importance weighting on defining the intercept term in addition to the implicit
bias for the linearly separable case, where the hyperplane shifts in the non-separable subspace
depending on the class weights.

4 IMPORTANCE WEIGHTING FOR NONLINEAR PREDICTOR

Now we investigate the influence of importance weighting on non-linear predictors, e.g, the neural
network. Here we are more interested in the regularized setting:

min
θ
Lλ(θ; w) := L(θ,w) + λ‖θ‖r, (3)

where r > 0 is fixed, λ is the regularization coefficient. We use the notation: θλ(w) ∈
arg minLλ(θ,w). Recall that γ∗ := max‖θ‖≤1 mini yif(θ,xi). Unlike the linear case, charac-
terizing the gradient dynamics for nonlinear predictor is often insurmountable. Therefore, we mainly
consider the asymptotic regime or the regime with sufficiently large t. We omit the superscript in θ(t)
when there is no confusion. The only assumption we need to make is that:

A1. the data is separated by f at some point during gradient descent, i.e. ∃t > 0 s.t.
yif(θ(t),xi) > 0,∀i = 1, . . . , n. In addition, yif(θ∗,xi) ≥ γ∗ > 0 for each i.

In Section 4.1, we show that by solving the equation 3 with an infinitesimal (weak) regularizer,
gradient descent leads to the optimal margin γ∗, regardless of the choice of the importance weights.
In Section 4.2, we show that the the importance weighting affects the generalization bound via a
multiplication factor as well as the margin in the finite-sample scenario.

4.1 MARGIN IS INVARIANT TO IMPORTANCE WEIGHTING UNDER WEAK REGULARIZATION

We show that for any bounded w, γ̃(θλ(w)) := γ(θλ(w)/‖θλ(w)‖) converges to γ∗ as λ decreases
to zero. In practice, however, we might not obtain θλ(w) in limited time. It is shown that as long as
equation 3 is close enough to its optimum, the normalized margin of the associated θ′(w) (under
finite-step optimization) is lower bounded by γ∗ multiplied by a non-trivial factor. Formally,
Proposition 3. Suppose C1-C3, A1 hold. For any w ∈ [1/M,M ]n, it follows that

• (Asymptotic) limλ→0 γ̃(θλ(w))→ γ∗.
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• (Finite steps) There exists a λ := λ(r, α, γ∗,w, c) such that for θ′(w) with
Lλ(θ′(w); w) ≤ τLλ(θλ(w); w) and τ ≤ 2, the associated normalized margin γ̃(θ′(w))

satisfies γ̃(θ′(w)) ≥ c · γ∗

τα/r
, where 1

10 ≤ c < 1.

This result is adapted from Wei et al. (2019), which relies on Claim 1. The proof is relegated to
Appendix A.4.1. We see that importance weighting does not affect the asymptotic margin when λ is
sufficiently small. To get the intuition, note that when ‖θλ(w)‖ is large enough and λ is small enough
to be ignored, Lλ(θλ(w),w) ≈ exp

(
− ‖θλ(w)‖αγλ

)
, which favors a large margin. In addition,

even if Lλ(θ′(w),w) has not yet converged but close enough to its optimum, the corresponding
normalized margin has a reasonable lower bound. We point out that this result does not rely on
the choice of λ. The assumption Lλ(θ′(w); w) ≤ τLλ

(
θλ(w); w

)
has already accounted for the

major influence of importance weighting in terms of the optimization. That is, with a "good" set of
importance weights, we can achieve this criteria (by approaching global optimum) faster. We leave
detailed discussions to Section 5. Figure 2d also demonstrates that the choice of the importance
weights has a significant influence on the convergence speed for the non-linear predictor.

4.2 IMPORTANCE WEIGHTING AFFECTS THE GENERALIZATION BOUND

Proposition 3 conjectures on the behavior of the margin corresponding to the optimum of Lλ(θ; w),
which does not rely on the sample size. To bridge the connection between importance weighting and
the behavior of f(θ, ·) in the finite-sample setting, we investigate the generalization bound of f when
the training sample distribution deviates from the testing sample distribution.

Let Ps be the source distribution and Pt be the target distribution with the corresponding densities
ps(·) and pt(·). Assume that Ps and Pt have the same support. We consider the Pearson χ2-divergence
to measure the difference between Ps and Pt, i.e., Dχ2(Pt‖Pt) =

∫ [
(dPs/dPt)

2 − 1
]
dPs. The

training covariates x1, . . . ,xn are generated from Ps, and the testing covariates are generated from
Pt. Denote by ptrain and ptest the joint distribution of (x, y) for the training data and the testing data,
respectively.

We minimize equation 3 over the H-layer feedforward neural network given by fNN(θ,x) :=
WHσ(WH−1σ(· · ·σ(W1x) · · · )), where θ = [W1, · · · ,WH ] are the parameter matrices and σ(·)
is the element-wise activation function such as ReLU. Denote by η(x) = pt(x)/ps(x). We show
that the generalization performance is affected by importance weighting via the interplay between
the empirical risk that hinges on η, as well as a term that depends on the model complexity and the
deviation of the target distribution from the source distribution.

Theorem 1 (1). Assume σ is 1-Lipschitz and 1-positive homogeneous. Then with probability at least
1− δ, we have

P(x,y)∼ptest

(
yfNN(θ(w),x) ≤ 0

)
≤

1

n

n∑
i=1

η(xi)I
(
yif

NN(θ(w)/‖θ(w)‖,xi) < γ
)

︸ ︷︷ ︸
(I)

+
C ·
√
Dχ2(Pt||Ps) + 1

γ ·H(H−1)/2√n︸ ︷︷ ︸
(II)

+ε(γ, n, δ),

where (I) is the empirical risk, (II) reflects the compounding effect of the model complexity of
the class of H-layer neural networks and the deviation between target distribution and source

distribution , ε(γ, n, δ) =

√
log log2

4C
γ

n +
√

log(1/δ)
n is a small quantity compared to (I) and (II).

Here, C := supx ‖x‖ and γ can take any positive value.

The proof is deferred to Appendix A.4.2. Compared to Wei et al. (2019), the empirical risk (I) hinges
on η and there is an additional multiplier factor

√
Dχ2(Pt||Ps) + 1 on (II). In the two discussions

below, we argue that the role of importance weighting on the generalization bound in Theorem 1 is not
only reflected in how the margin is affected, but also how it balances source and target distribution:

1. Suppose θ(w) enables fNN to separate the data. Let γθ(w) := mini yif
NN
(
θ(w)/‖θ(w)‖,xi

)
. In

the generalization bound of Theorem 1, if we let γ = γθ(w), then (I) vanishes and only (II) remains.
In this case, the importance weights affects the generalization bound via γθ(w) in finite steps as
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discussed in Section 4.1. That is, within finite training steps, a good set of weights w can approach
closer to γθ(w) than a bad set, and thus giving a better generalization performance. Also note that
Theorem 1 holds for the non-separable cases as well.

2. We point out that (II) is a strictly decreasing function, while (I) is a non-decreasing step function
with respect to γ. Therefore, there must exists a trade-off γ that minimizes the sum of (I) and
(II), which is usually attained at some γ > γθ(w). When γ grows, certain samples will activate
I(yif

NN(θ(w)/‖θ(w)‖,xi) < γ) and inflate (I). The hope is that an initially activated sample
(indicator term) in (I) corresponds to a small η(xi), while one with a large η(xi′) has a large value of
yi′f

NN(θ(w)/‖θ(w)‖,xi′) and thus will be activated later. This can be achieved by aligning w with
η because a large weight on sample i forces the decision boundary to drift away from this data point
and gives a larger value of yifNN(θ(w)/‖θ(w)‖,xi). Therefore, the generalization bound with w
aligning with η can be smaller than that with w deviating from η.

The empirical results in Figure 2c provides the numerical evidence that reflects the strong effects of
importance weighting on the generalization behavior.

5 EXTENSION

What makes a good set of weights for learning?

We show in both Section 3 and 4 that importance weighting can affect how fast the classifier separates
the data and converges to the max-margin solution. We also justify how the small-margin support
vectors, who can think of as the hard-to-classify data points, are of significant importance. Imagine
that we have access to an oracle that outputs the distance of each sample to the max-margin decision
boundary. It is intuitive that by putting more weights on the small-margin samples, we "inform"
gradient descent of their importance from the beginning and therefore accelerates the optimization.
We also provide a rigorous result for linear predictor in Proposition 1. Our high-level intuition justifies
a number of methodologies where people use various methods to measure the hardness of classifying
a sample and use that as the weight, explicitly or implicitly. Examples include the curriculum learning
(Bengio et al., 2009), mentor net (Jiang et al., 2018), co-teaching (Han et al., 2018) and knowledge
distillation (Li et al., 2017; Hinton et al., 2015), where auxiliary models are employed (replacing the
oracle) to represent the hardness of each data point.

The effect of jointly optimizing a weighting model

It is not unusual that the importance weights, when depending on another model, is jointly trained
with the classifier to achieve an better overall performance, such as the counterfactual modelling
(Schnabel et al., 2016; Xu et al., 2020) and learning from noisy labels (Song et al., 2020). For the
illustration purpose, we consider the following setup:

minimize
ψ,θ

1

n

n∑
i=1

g(ψ,xi) · `
(
yif(θ,xi)

)
, s.t.

1

M
< g(ψ,xi) < M, (4)

where g(ψ,xi) is the weighting model. By our main results, it is not difficult to conjecture that if
the data is separable by f , the convergence of f to the max-margin solution will still hold and the
weighting model g(ψ,xi) will concentrate to a constant for all i = 1, . . . , n. This is because the
general convergence results are agnostic to the weights, so the weighting model will eventually be
nullified. Also, during the beginning phase of training, the learned weights may correlate negatively
to the margin (as it helps to speed up the convergence), and the correlation will diminish eventually
as the weights converge to the same constant. The above conjectures are supported by the empirical
evidence that we discuss in Figure 4. Therefore, jointly optimizing the weighting model may not
change the convergence result but the speed of convergence is affected.

Interaction with explicit regularizations

Deep learning models are often trained with explicit regularization. To see how they interact with
importance weighting, we first check weather they alter the norm divergence in Claim 1. It is obvious
that both the early stopping and strong regularization on ‖θ‖ prohibits the norm divergence, so f(θ, ·)
will not achieve the max-margin solution or even separate the training data. In such cases, as it
has been observed by Byrd & Lipton (2019), the impact of importance weighting on θλ(w) and
γ̃(θλ(w)) will be significant. However, this may not help generalization according to our arguments

8



Published as a conference paper at ICLR 2021

Figure 4: The left-five figures show that the distribution of the learned weights concentrates to a
constant as the training progresses. The rightmost figure indicates the correlation pattern between
margin and the learned weights: the correlation increases rapidly in the beginning, and then slowly
decreases to zero (the process is much slower for nonlinear predictor so we only show the first part).
Here, g(xi) = σ(ψᵀxi + b) + 1, where σ(·) is the sigmoid function, the constant one is added to
avoid numerical issues.

in Section 4.2, since the margins will be altered as well. Indeed, Zhang et al. (2016) shows that explicit
regularizations may not lead to better generalization for neural networks. For the weighted ERM,
Theorem 1 provides a powerful tool to characterize the trade-off induced by explicit regularizations
via the margin size. Dropout, as an counter example, does not prohibit norm divergence and may not
interfere with our main conclusions.

6 DISCUSSION

In this paper, we study the impact of importance weighting on the implicit bias of gradient descent as
well as the generalization performance. Based on our theoretical findings, we propose the following
future directions that are worth investigating from both the application and theoretical perspective: 1)
Is there an optimal way to construct importance weights using such as the oracle margin? 2) How
to correctly understand and utilize the role of a jointly-trained weighting model? 3) What is the
combined effect of importance weighting and explicit regularizations for deep learning models?
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A APPENDIX

We provide the omitted discussions, proofs, and extra numerical results in the appendix.

A.1 SUPPLEMENTARY MATERIAL FOR SECTION 2

We discuss the exponential-tail behavior for loss functions, the piratical implication of condition C3
and the proof of Claim 1.

A.1.1 LOSS FUNCTION WITH EXPONENTIAL-TAIL BEHAVIOR

Having a exponential decay on the tail of the loss function is essential for realizing the implicit bias
of gradient descent, since we need `(u) behave like exp(−u) as u→∞. Soudry et al. (2018) first
propose the notion of tight exponential tail, where the negative loss derivative −`′(u) behave like:

−`′(u) .
(
1 + exp(−c1u)

)
e−u and − `′(u) &

(
1− exp(−c2u)

)
e−u,

for sufficiently large u, where c1 and c2 are positive constants. There is also a smoothness assumption
on `(·). It is obvious that under this definition, the tail behavior of the loss function is constraint from
both sides by exponential-type functions.

There is a more general (and perhaps more direct) definition of exponential-tail loss function Lyu &
Li (2019), where `(u) = exp(−f(u)), such that:

• f is smooth and f ′(u) ≥ 0,∀u;

• there exists c > 0 such that f ′(u)u is non-decreasing for u > c and f ′(u)u → ∞ as
u→∞.

It is easy to verify that the exponential loss, log loss and cross-entropy loss satisfy both definitions.
Since our focus is not to study the implicit bias of gradient descent, it suffice to work with the above
loss functions.

A.1.2 PRACTICAL IMPLICATIONS OF CONDITION C3

C3 asserts the Lipschitz and smoothness properties. The Lipschitz condition is rather mild assumption
for neural networks, and several recent paper are dedicated to obtaining the Lipschitz constant of
certain deep learning models (Fazlyab et al., 2019; Virmaux & Scaman, 2018).

The β-smooth condition, on the other hand, is more technical-driven such that we can analyze the
gradient descent. In practice, neural networks with ReLU activation do not satisfy the smoothness
condition. However, there are smooth homogeneous activation functions, such as the quadratic
activation σ(x) = x2 and higher-order ReLU activation σ(x) = ReLU(x)c for c > 2. Still, in our
experiments, we use ReLU as the activation function for its convenience.

A.1.3 PROOF FOR CLAIM 1

Soudry et al. (2018) and Ji & Telgarsky (2018b) show norm divergence for linear predictors, and
the follow-up work by Ji & Telgarsky (2018a); Gunasekar et al. (2018) extend the result to linear
neural networks. For nonlinear predictors such as multi-layer neural network with homogeneous
activation, Nacson et al. (2019) and Lyu & Li (2019) prove the norm divergence for gradient descent
in the absence of explicit regularization. Rosset et al. (2004a) and Wei et al. (2019) considers the
weak regularization for linear and nonlinear predictors, however, they only study the property of the
critical points instead of the gradient descent sequence.

Proof. We first state a technical lemma that characterizes the dynamics of gradient descent.

Lemma A.1 (Theorem E.10 of Lyu & Li (2019)). Under the conditions that:

• `(·) is given by the exponential loss, and ` ◦ f(·,x) is a smooth function on Rd for all
x ∈ X ;
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• f(θ,x) is α-homogeneous as in C2;

• the data is separated by f during gradient descent at some point t0;

• the learning rate satisfy ηt := η0 .
(
L(θ(t); w) log

(
1/L(θ(t); w)

)3−2/α)−1
for all t,

then under exponential loss we have:

1

L(θ(t); w)2
(

log 1
L(θ(t);w)

)2−2/α ≥ 1

2
α2γ̃

(
θ(t0)(w)

)2/α (t)∑
i=t0

ηi.

To use the results of Lemma A.1, we simply need to show two things for weak regularization:

• the total risk is still smooth and we still can achieve zero risk;

• there exists a critical (stationary) point such that limλ→0 Lλ(θ∗; w) = 0.

Notice that the risk without regularization is a smooth function in terms of θ for all x, since the
composition of smooth functions is still smooth. It is easy to see that adding a weak regularization,
e.g. λ‖θ‖r2 for r > 1, does not alter the smoothness condition as λ → 0. However, the weak `1
regularization will make the total risk non-smooth, and therefore we have excluded it from our
discussion.

For the second point, it is obvious that ‖θ‖2 → ∞ is a critical point under exponential loss when
λ→ 0. Recall that:

Lλ(θ; w) =
1

n

∑
i

wi exp
(
− yif

(
θ/‖θ‖2,xi

)
· ‖θ‖2)

)
+ λ‖θ‖r2,

and

∇Lλ(θ; w) =
1

n

∑
i

−wi exp
(
− yif

(
θ/‖θ‖2,xi

)
· ‖θ‖2

)
· yi∇f

(
θ,xi) + λ∇‖θ‖r2.

Therefore, for both the loss function and gradient, the main term decreases exponentially fast as ‖θ‖2
increases, while the remainder terms are only polynomial in ‖θ‖2, so we can always find a small
enough λ that satisfy: limλ→0 lim‖θ‖→∞ Lλ(θ; w) = 0 and limλ→0 lim‖θ‖→∞∇Lλ(θ; w) = 0, in
the same fashion as we show in the (A.1) below.

From a standard result of gradient descent on smooth function, which we summarize in Lemma A.2,
gradient descent will always converge to a critical (stationary) point for the weighted ERM problem.

Lemma A.2 (Lemma 10 of Soudry et al. (2018)). Let Lλ(θ; w) be a B(w)-smooth non-negative
objective. With a constant learning rate η0 . B(w)−1, the gradient descent sequence satisfies:

• limt→∞
∑t
i=1

∥∥∇Lλ(θ(t); w)
∥∥ <∞;

• limt→∞∇Lλ(θ(t); w) = 0.

Now we need to show that under appropriate learning rate, which is specified in Lemma A.1, gradient
descent converges to the stationary point that corresponds to the zero risk under weak regularization.
Using the result from Lemma A.1, notice that if Lλ(θ(t); w) does not decrease to 0, then the
denominator Lλ(θ(t); w)2

(
log 1

Lλ(θ(t);w)

)2−2/α
is bounded from below.

However, there exists a constant learning rate such that
∑t
i=t0

ηi →∞ as t→∞, which leads to
contradiction. Therefore, for weighted ERM with weak regularization, gradient descent converges to
the stationary point where Lλ(θ(t); w) = 0.

Finally, we show to make Lλ(θ(t); w) → 0, we must have ‖θ(t)(w)‖ → ∞. We show by contra-
diction. Suppose ‖θ(t); w)‖ is bounded from above by some constant C > 0, for all λ < λ̃ that we
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choose later. So the loss function for each sample i is bounded below by a positive value that depends
on C: wi exp(−yif(θ(t),x)) ≥ l(C) > 0. Hence, let K := λ̃−1/(r+1), then

l(C) ≤ Lλ(θλ(w); w) ≤ Lλ(Kθ∗; w)

≤M exp
(
− λ̃−α/(r+1) · γ∗

)
+ λ̃1/(1+r);

(A.1)

and it easy obvious that RHS→ 0 for a sufficiently small λ̃, which contradicts l(C) > 0. Hence, we
have ‖θ(t)(w)‖ → ∞ for all all λ < λ̃, which completes the proof.

A.2 SUPPLEMENTARY MATERIAL FOR SECTION 3

We provide the proofs for Proposition 1 and 2 in this part of the appendix.

A.2.1 PROOF FOR PROPOSITION 1

Proof. We first characterize the 1/ log t rate using asymptotic arguments similar to that of Soudry
et al. (2018). The key purpose here is to rigorously show that importance weighting plays a negligible
role in the asymptotic regime. Let δ(t) be the residual term at step t:

δ(t,w) := θ(t)(w)− θ∗ log t. (A.2)

To show the 1/ log t rate, we simply need to prove that ‖δ(t,w)‖ is bounded for any w ∈ [1/M,M ]n.
Notice that

‖δ(t+ 1,w)‖2 =
∥∥δ(t+ 1,w)− δ(t,w)‖2 + 2

(
δ(t+ 1,w)− δ(t,w)

)ᵀ
δ(t,w) + ‖δ(t,w)

∥∥2.
For the first term, we have:∥∥δ(t+ 1,w)− δ(t,w)

∥∥2
=
∥∥− η∇L(θ(t)(w); w

)
− θ∗

(
log(t+ 1)− log(t)

)∥∥2
= η2

∥∥− η∇L(θ(t)(w); w
)∥∥+ ‖θ∗‖2 log2(1 + 1/t) + 2η(θ∗)ᵀ∇L

(
θ(t)(w); w

)
log(1 + 1/t)

≤ η2
∥∥∇L(θ(t)(w); w

)∥∥+ ‖θ∗‖2t−2;

where in the last line we use:

• ∀u > 0, log(1 + u) ≤ u;

• (θ∗)ᵀ∇L
(
θ(t)(w); w

)
=
∑
i−wi exp(−yiθ∗xi)yiθ∗xi ≤ 0 because θ∗ separates the

data.

Also, from the first conclusion of Lemma A.2, we see that
∥∥∇L(θ(t)(w); w

)∥∥ = o(1/t), so∥∥δ(t+ 1,w)− δ(t,w)
∥∥2 = o(1/t) and the running sum converges to some finite number:

∞∑
t=1

∥∥δ(t+ 1,w)− δ(t,w)
∥∥2 = C0 <∞.

We see that the role of the weights is totally negligible because θ∗ separates the data (the second
bullet point above). The same argument applies to the second term 2

(
δ(t+1,w)−δ(t,w)

)ᵀ
δ(t,w),

where w plays no part as long as θ∗ separates the data. The detailed proof is technical, and we refer
to Lemma 6 of Soudry et al. (2018), which states that:(

δ(t+ 1,w)− δ(t,w)
)ᵀ
δ(t,w) = o(1/t).

Therefore, by applying tensorization, it holds that:

∥∥δ(t,w)
∥∥2 − ∥∥δ(t = 0,w)

∥∥2 ≤ C0 +

t∑
i=1

(
δ(t+ 1,w)− δ(t,w)

)ᵀ
δ(t,w) <∞,
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hence
∥∥δ(t,w)

∥∥ is bounded and

‖δ(t,w)‖/ log t = O(1/ log t),
∣∣∣ θ(t)(w)

‖θ(t)(w)‖2
− θ∗

∣∣∣ = O(
1

log t
). (A.3)

It is now obvious that under the asymptotic characterization of (A.2), the weights only play a
negligible role since θ∗ separate the data. However, the definition of δ under (A.2) also prohibits us
from studying the finite-step behavior since it absorbs all the constant factors.

Now we use the Fenchel-Young inequality to give a more precise characterization of the convergence
speed. First of all, recall the max-margin problem for linear predictor has a dual representation for
separable data according to the KKT condition for separable problem:

θ∗ = yiXi · p∗i /γ∗, (A.4)

where p∗i is the dual optimal such that

γ∗ = −min
{

max
i
−yixᵀ

i θ s.t. ‖θ‖ = 1
}
≡ min

{
‖yiXi · pi‖ s.t. pi ≥ 0,

∑
i

pi = 1
}
.

Now, we directly work with
∣∣∣ θ(t)(w)
‖θ(t)(w)‖2

− θ∗
∣∣∣:

∣∣∣ θ(t)(w)

‖θ(t)(w)‖2
− θ∗

∣∣∣2 = 2−
2
〈
θ∗,θ(t)(w)

〉
‖θ(t)(w)‖2

,

and from (A.4) and Fenchel-Young inequality we have:

−
〈
θ∗,θ(t)(w)

〉
‖θ(t)(w)‖2

=

〈
p∗,−yix(ᵀ)

i θ(t)(w)
〉

γ∗‖θ(t)(w)‖2
≤
g∗
(
p∗
)

+ g
(
− yix(ᵀ)

i θ(t)(w)
)

γ∗‖θ(t)(w)‖2
, (A.5)

where g is a convex function with it conjugate function given by g∗. To build the connections with
the loss function and risk, we choose g such that g(u) = log 1

n

∑
i wi exp(ui). As a consequence,

by letting ui = −yix(ᵀ)
i θ(t) and u = [u1, . . . , un], we have g(u) = L(θ(t); w).

With simple algebraic computations, the conjugate function g∗(p) is given by:

g∗(p) = log n+
∑
i

pi log
pi
wi

= DKL(p‖w) + log n.

Plugging the above results to (A.5):

1

2

∣∣∣ θ(t)(w)∥∥θ(t)(w)
∥∥
2

− θ∗
∣∣∣2 ≤ 1 +

logL(θ(t)(w); w)∥∥θ(t)(w)
∥∥
2
γ∗

+
log n+DKL(p‖w)∥∥θ(t)(w)

∥∥
2
γ∗

(A.6)

According the convergence analysis of Adaboost, we have the following technical lemma.

Lemma A.3 (Schapire & Freund (2013)). Suppose ` is convex, `′ ≤ `, and `′′ ≤ `, with a linear
predictor and a sufficiently small learning rate such that ηtL(θ(t)) ≤ 1, then:

L(θ(t+1)) ≤ L(θ(t))
(

1− ηtL(θ(t))
(
1− ηtL(θ(t))/2

)(‖∇L(θ(t))‖2
L(θ(t))

)2)
, (A.7)

and thus

L(θ(t+1)) ≤ L(θ(0)) exp
(
−
∑
j<t

ηtL(θ(j))
(
1− ηjL(θ(j))/2

)(‖∇L(θ(j))‖2
L(θ(j))

)2)
. (A.8)

Also, ‖θ(t+1)‖ ≤
∑
j<t ηtL(θ(j))

‖∇L(θ(j))‖2
L(θ(j))

.
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To use the results in Lemma A.3, we define the following shorthand notations. Let at(w) :=

ηtL(θ(t); w) and bt(w) :=
‖∇L(θ(t)(w); w)‖2
L(θ(t)(w); w)

. Now, (A.6) can be further given by:

1

2

∣∣∣ θ(t)(w)∥∥θ(t)(w)
∥∥
2

− θ∗
∣∣∣2 ≤ 1 +

logL(θ(0); w)

‖θ(t)‖γ∗
−∑t−1

i=0 ai(w)(1− ai(w)/2)bi(w)2

‖θ(i)‖γ∗
+

log n+DKL(p‖w)∥∥θ(t)(w)
∥∥
2
γ∗

≤ 1−
∑t−1
i=1 ai(w)b2i (w)

‖θ(i)‖γ∗
+

2
∑t−1
i=1 a

2
i (w)b2i (w)

‖θ(i)‖γ∗
+

log n+DKL(p‖w)∥∥θ(t)(w)
∥∥
2
γ∗

.

(A.9)

Notice that Lemma A.3 also imply:

t−1∑
i=1

a2i (w)b2i (w) =

t−1∑
i=1

ηi‖∇L(θ(i)(w); w)‖ ≤ 2

t−1∑
i=1

(
L(θ(i)(w); w)− L(θ(i+1)(w); w)

)
,

which is bounded from above by 2M . Finally, it is easy to verify that bt(w) ≥ γ∗, and Lemma A.3
also implies that ‖θ(t)(w)‖ ≤

∑
i<t ai(w)bi(w). Finally, we simplify (A.9) to:∣∣∣ θ(t)(w)∥∥θ(t)(w)
∥∥
2

− θ∗
∣∣∣2 ≤ 2 · log n+DKL(p‖w) +M∥∥θ(t)(w)

∥∥
2
γ∗

,

and obtain the desired result.

A.3 PROOF FOR PROPOSITION 2

We first present a greedy approach for the construction of the maximal separable subset Dsep, which
is proposed by Ji & Telgarsky (2018b).

For each sample (xi, yi), if there exists a θi such that yiθ
ᵀ
i xi > 0 and minj=1,...,n yjθ

ᵀ
i xj ≥ 0, we

add it to Dsep. Otherwise, we add it to Dnon-sep. To see why this approach work, first notice that by
choosing θ∗sep =

∑
i∈D θi, θ

∗
sep separates the data in Dsep. Then we check it is indeed maximal: for

any θ that is correct on any (xi, yi) in Dnon-sep, there must also exist another (xj , yj) in Dnon-sep so
yiθ

ᵀ
i xi < 0, or otherwise (xi, yi) would have been in Dsep.

It has been shown in Ji & Telgarsky (2018b) that the risk is strongly convex on Dnon-sep under
conditions that are satisfied by our setting.
Lemma A.4 (Theorem 2.1 of Ji & Telgarsky (2018b)). If ` is twice differentiable, `′′ > 0, l ≥ 0 and
limu→∞ `(u) = 0, then L(θ) =

∑
i
1
n`(yiθ

ᵀxi) is strongly convex on Dnon-sep.

Now we provide the proof for Proposition 2.

Proof. The first part is a direct consequence of Lemma A.4, that L(θ; w) = 1
n

∑
i wi exp(−yiθᵀxi)

is strongly convex onDnon-sep. Therefore, the optimum θ̃(w) is uniquely defined and ‖θ̃(w)‖ = O(1).
To show the second part, we leverage a standard argument for gradient descent with smoothness
condition.

Lemma A.5 (Bubeck (2014)). Suppose L(θ) is convex and β-smooth. Then with learning rate
ηt ≤ β/2, the sequence of gradient descent satisfies:

L(θ(t+1)) ≤ L(θ(t))− ηt
(
1− ηtβ/2

)
‖θ(t))‖2.

Then for any z ∈ Rd:

2

t−1∑
i=0

ηi
(
L(θ(i))− L(z)

)
≤ ‖θ(0) − z‖2 − ‖θ(t) − z‖2 +

t−1∑
i=0

ηi
1− βηi/2

(
L(θ(i))− L(z)

)
.

16



Published as a conference paper at ICLR 2021

It is immediately clear that we may choose the z in Lemma A.5 such that it combines the optimal
from Dsep and Dnon-sep. In particular, we have shown that the optimal on Dnon-sep is uniquely given
by θ̃(w). For Dsep we assume the max-margin linear predictor is given by θ∗sep (so ‖θ∗sep‖ = 1).
Therefore, according to Proposition 1, the optimum is given by log t · θ∗sep.

Now define
z := θ̃(w) + θ∗sep · log t/γsep,

where we add the extra constant γsep, which is the maximum margin on the separable subset of the
data, to simplify the following bound. Without loss of generality, we assume the features are bounded
in ‖ · ‖2 norm such that ‖xi‖2 ≤ 1. As a consequence:

L(θ; w) = Lnon-sep(θ̃(w); w) + Lsep(z) ≤ inf
θ
L(θ; w) + n exp(‖θ̃(w)‖)/t, (A.10)

where we use Lnon-sep and Lsep to denote the risk associated with Dnon-sep and Dsep. To invoke Lemma
A.5, first note that the required smoothness condition is guaranteed by Lemma A.3, i.e. in each
step, the risk is ηtL(θ(t))-smooth. Without loss of generality, we assume ηtL(θ(t)) ≤ ηt. Therefore,
according to Lemma A.5, we have:

2
(∑
i<t

ηj
)(
L(θ(i); w)− L(z; w)

)
≤ 2

∑
i<t

ηj
(
L(θ(i); w)− L(z; w)

)
+ 2
(
L(θ(i+1); w)− L(θ(i); w)

)
≤ 2

∑
i<t

ηj
(
L(θ(i); w)− L(z; w)

)
−
∑
i<t

ηi
1− ηi/2

(
L(θ(i); w)− L(θ(i+1); w)

)
≤ ‖θ(0) − z‖2 − ‖θ(t) − z‖2 ≤ ‖z‖2.

(A.11)

Therefore, by our choice of z as well as the result in (A.10), we obtain the bound in terms of the risk:

L(θ(t); w) ≤ inf
θ
L(θ; w) +

exp(θ̃(w))

t
+
‖θ̃(w)‖2 + log2 t/γ2sep

2
∑
i<t ηi

.

Since we assume a constant learning rate, when
∑
i<t ηi = O(t) we can simplify the above result to:

L(θ(t); w) ≤ inf
θ
L(θ; w) +

C
(
‖θ̃(w)‖

)
+ log2 t/γ2sep

t
.

Finally, from Lemma A.4 we known L(θ; w) is strongly convex (which we assume to be ω-strongly-
convex). So the convergence in terms of the risk can be transformed to parameters:∣∣Πnon-sepθ

(t)(w)− θ̃(w)
∣∣ ≤ 2

ω

(
Lnon-sep(θ(t)(w); w)− Lnon-sep(θ̃(w); w)

)
≤ 2

ω

(
L(θ(t)(w); w)− inf

θ
L(θ; w)

)
,

which leads to our desired results.

A.4 SUPPLEMENTARY MATERIAL FOR SECTION 4

In this section, we establish the detailed proofs of Proposition 3 and Theorem 1. Recall that the loss
function we are interested in is:

min
θ
Lλ(θ; w) := L(θ,w) + λ‖θ‖r, (A.12)

Denote θλ(w) ∈ arg minLλ(θ,w), θ∗ = arg maxθ:‖θ‖≤1 maxi yif(θ,xi)). Let γλ(w) =
maxi yif(θλ(w)/‖θλ(w)‖,xi), γ∗ = maxi yif(θ∗,xi).

A.4.1 PROOF OF PROPOSITION 3.

We first restate the proposition.
Proposition A.1. Suppose C1, C2, A1 hold. For any w ∈ [1/M,M ]n, it follows that
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• (Asymptotic) limλ→0 γλ(w)→ γ∗.

• (Finite steps) There exists a λ := λ(r, α, γ∗,w, c) such that for θ′(w) with
Lλ(θ′(w); w) ≤ τLλ(θλ(w); w) and τ ≤ 2, the associated margin γ̃(θ′(w)) satisfies
γ̃(θ′(w)) ≥ c · γ∗

τα/r
, where 1

10 ≤ c < 1

Proof of the Asymptotic part:

Proof. We first take consider the exponential loss `(u) = exp(−u). The log loss `(u) = log(1 +
exp(−u)) can be shown in a similar fashion. Suppose the weights w = (w1, . . . wn) are normalized
so that

∑n
i=1 wi = 1 and wi ≥ 0. Consider

Lλ(Aθ; w) =

n∑
i=1

wi exp(−Aα · yif(θ; xi)) + λAr‖θ‖r

≤ exp(−Aα ·max
i

(yif(θ; xi))) + λAr‖θ‖r, (A.13)

where A > 0, and we disregard the 1/n term in Lλ for the sake of notation. In addition, we have the
lower bound

Lλ(Aθ; w) ≥ wi′ · exp(−Aα ·max
i

(yif(θ; xi))) + λAr‖θ‖r

≥ w[n] · exp(−Aα ·max
i

(yif(θ; xi))) + λAr‖θ‖r, (A.14)

where i′ = arg mini yif(θ; xi)), w[n] = mini wi. By taking A = ‖θλ(w)‖, θ = θ∗ in the upper
bound and A = 1, θ = θλ(w) in the lower bound , it follows that

w[n] · exp(−‖θλ(w)‖αγλ(w)) + λ‖θλ(w)‖r

≤ Lλ(w)(θλ(w))

≤ Lλ(w)(‖θλ(w)‖θ∗)
≤ exp(−‖θλ(w)‖α · γ∗) + λ‖θλ(w)‖r.

It implies that
w[n] · exp(−‖θλ(w)‖αγλ(w)) ≤ exp(−‖θλ(w)‖α · γ∗),

or
w[n] · exp(−‖θλ(w)‖α(γ∗ − γλ(w))) ≤ 1.

By Claim 1 that ‖θλ(w)‖ → ∞ as λ→ 0 (or Lemma C.4 in Wei et al. (2019)), the above inequality
implies that γλ(w)→ γ∗ as λ→ 0.

Proof of the Finite steps part

Proof. Consider A = [ 1
γ∗ log((γ∗)r/α/λ)]1/α, it follows that

Lλ(θ′(w),w) ≤ τLλ(Aθ∗)

≤ τ exp(−Aα · γ∗) + τλAr [Upper Bound A.4.1]

=
λτ

(γ∗)r/α

(
1 + (log((γ∗)r/α/λ))r/α

)
(A.15)

Then by the lower bound A.4.1, it follows that

w[n] · exp(−‖θ′(w)‖αγ′(w)) ≤ Lλ(θ′(w),w) ≤ A.15,

where γ′(w) = maxi yif(w′/‖w′‖,xi). Note λ‖θ′(w)‖r ≤ A.15. It implies that

γ′(w) ≥
− log(A.15/w[n])

‖θ′(w)‖α

≥
− log( λτ

w[n](γ∗)r/α
(1 + (log((γ∗)r/α/λ))r/α))

τα/r

γ∗ (1 + (log((γ∗)r/α/λ))r/α)α/r
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Note that the numerator is at the scale log( 1
λ/ log 1

λ ) and the denominator is at the scale log 1
λ . So

for sufficiently small λ = λ(r, α, γ∗,w, c), we have γ′(w) ≥ c · γ∗

τα/r
, where 1

10 ≤ c < 1. We leave
the details of finding out the dependency of λ(r, α, γ∗,w, c) on c to the readers, which is simply the
basic analysis.

A.4.2 PROOF OF THEOREM 1

When the training distribution ptrain deviates from the testing distribution ptest, we develop the
generalization bound that characterizes this deviation. Denote by ps and pt the respective densities
of x from the training data and the testing data. Let D(Pt‖Ps) =

∫ (
( pt(x)ps(x)

)2 − 1
)
ps(x)dx and

η(xi) = pt(xi)
ps(xi)

. We first restate Theorem 1:

Theorem A.1. Assume σ is 1-Lipschitz and 1-positive homogeneous. Then with probability at least
1− δ, we have

P(x,y)∼ptest

(
yfNN(θ(w),x) ≤ 0

)
≤

1

n

n∑
i=1

η(xi)I
(
yif

NN(θ(w)/‖θ(w)‖,xi) < γ
)

︸ ︷︷ ︸
(I)

+
C ·
√
D(Pt||Ps) + 1

γ ·H(H−1)/2√n︸ ︷︷ ︸
(II)

+ε(γ, n, δ),

where (I) is the empirical risk, (II) reflects the compounding effect of the model complexity of
the class of H-layer neural networks and the deviation of the target distribution from the source

distribution , ε(γ, n, δ) =

√
log log2

4C
γ

n +
√

log(1/δ)
n is a small quantity compared to (I) and (II).

Here C := supx ‖x‖; γ is any positive value.

To prove Theorem A.1, we first establish a few lemmas.

Lemma A.6. Consider an arbitrary function class F such that ∀f ∈ F we have
∑

x∈X |f(x)| ≤ C.
Then, with probability at least 1− δ over the sample, for all margins γ > 0 and all f ∈ F we have,

Pp(x,y)∼ptest

(
yf(x) ≤ 0

)
≤ 1

n

n∑
i=1

η(xi)I
(
yif(xi) < γ

)
+ 4
Rn,η(F)

γ
+

√
log(log2

4C
γ )

n
+

√
log(1/δ)

2n
,

(A.16)

whereRn,η(F) = E
[

supf∈F
1
n

∑n
i=1 η(xi)f(xi)εi

]
is the weighted Rademacher complexity (εi’s

are i.i.d Rademacher variables).

Proof. This lemma is adapted from Theorem 1 of Koltchinskii et al. (2002) by considering the
deviation of the testing distribution from the training distribution. Then it is obtained following
Theorem 5 of Kakade et al. (2009).

Lemma A.7. Let FH be the class of real-valued networks of depthH over the domain X , where each
parameter matrix Wh has Frobenius norm at most MF (h), and with an activation that is 1-Lipschitz,
positive-homogeneous. Then,

Rn,η(FH) ≤
C ·
√
D(Pt||Ps) + 1 + o( 1√

n
) · (
√

2 log 2H + 1)
√
n

H∏
h=1

MF (h),

where C := supx∈X ‖x‖.

Proof. From Theorem 1 of Golowich et al. (2018), we arrive at

nR(n,η)(FH) ≤ 1

λ
log
(

2H · Eε
(
Mλ‖

n∑
i=1

εiη(xi)xi‖
))
,
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where M =
∏H
h=1MF (h). Consider Z := M · ‖

∑n
i=1 εiη(xi)xi‖ that is a random function of the

n Rademacher variables. Then

1

λ
log
{

2HE exp(λZ)
}

=
H log(2)

λ
+

1

λ
log{E expλ(Z − EZ)}+ EZ.

By Jensen’s inequality, we have

E[Z] ≤M

√√√√Eε‖
n∑
i=1

εiη(xi)xi‖2 = M

√√√√ n∑
i=1

η(xi)2‖xi‖2.

In addition, we note that

Z(ε1, . . . , εi, . . . , εn)− Z(ε1, . . . ,−εi, . . . , εn) ≤ 2Mη(xi)‖xi‖.

By the bounded-difference condition (Boucheron et al., 2013), Z is a sub-Gaussian with variance
factor v = 1

4

∑n
i=1(2Mη(xi)‖xi‖)2 = M2

∑n
i=1 η(xi)

2‖xi‖2. So

1

λ
{E expλ(Z − EZ)} ≤

λM2
∑n
i=1 η(xi)

2‖xi‖2

2
.

Taking λ =

√
2 log(2)H

M
√∑n

i=1 η(xi)
2‖xi‖2

, it follows that

1

λ
{2HE expλZ}

≤M(
√

2 log(2)H + 1)

√√√√ n∑
i=1

η(xi)2‖xi‖2 ≤
√
nCM(

√
2 log(2)H + 1)

√√√√ 1

n

n∑
i=1

η(xi)2.

(A.17)

By law of large number, 1
n

∑n
i=1 η(xi)

2 = D(Pt‖Ps) + 1 + o( 1√
n

). The desired result follows.

Lemma A.8. Suppose fNN(θ, ·) is a H-layer neural network and C = supx∈X ‖x‖2. Then, There
exists another parameter θ̃ s.t. fNN(θ/‖θ‖,x) = fNN(θ̃,x), for any x ∈ X and that

• the parameter matrix of each layer of fNN(θ̃, ·) has a Frobenius norm no larger than 1/
√
H .

• supx∈X f
NN(θ̃, ·) ≤ C.

Proof. This lemma are obtained by reorganizing the proof of Lemma D3 and the proof of Proposition
D.1 of Wei et al. (2019).

Proof of Theorem A.1

Proof. Theorem A.1 follows by Lemma A.6, A.7 and A.8.
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