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Abstract

In the past few years, cross-modal image-text re-
trieval (ITR) has experienced increased interest in
the research community due to its excellent re-
search value and broad real-world application. It
is designed for the scenarios where the queries
are from one modality and the retrieval galleries
from another modality. This paper presents a com-
prehensive and up-to-date survey on the ITR ap-
proaches from four perspectives. By dissecting an
ITR system into two processes: feature extraction
and feature alignment, we summarize the recent ad-
vance of the ITR approaches from these two per-
spectives. On top of this, the efficiency-focused
study on the ITR system is introduced as the third
perspective. To keep pace with the times, we also
provide a pioneering overview of the cross-modal
pre-training ITR approaches as the fourth perspec-
tive. Finally, we outline the common benchmark
datasets and evaluation metric for ITR, and conduct
the accuracy comparison among the representative
ITR approaches. Some critical yet less studied is-
sues are discussed at the end of the paper.

1 Introduction

Cross-modal image-text retrieval (ITR) is to retrieve the rel-
evant samples from one modality as per the given user ex-
pressed in another modality, usually including two sub-tasks:
image-to-text (i2t) and text-to-image (t2i) retrieval. ITR has
extensive application prospects in the search field and is a
valuable research topic. Thanks to the prosperity of deep
models for language and vision, we have witnessed the great
success of ITR in the past few years [Frome et al., 2013;
Li ef al., 2021]. For instance, along with the rising of BERT,
the transformer-based cross-modal pre-training paradigm has
gained momentum, and its pretrain-then-finetune form has
been extended to the downstream ITR task, accelerating its
development.

It is worth mentioning that several prior efforts have been
dedicated to conduct a survey on ITR. They, however, suf-
fer from the following two limitations: 1) Beyond the ITR
task, other multi-modal tasks, such as video-text retrieval and
visual question answering, are also explored, resulting in a
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Figure 1: Illustration of the classification skeleton of ITR ap-
proaches from four perspectives.

less in-depth ITR survey [Uppal er al., 2022; Baltrusaitis et
al., 2018]; 2) the pre-training paradigm is largely untapped in
existing surveys [Chen et al., 2020b] and is indeed the main-
stream nowadays. In light of these, we conduct a compre-
hensive and up-to-date survey on the ITR task in this paper,
especially with an investigation on the pre-training paradigm.
An ITR system generally consists of the feature extraction
process with the image/text processing branches and the fea-
ture alignment process with an integration module. Contex-
tualized in such an ITR system, we construct taxonomy from
four perspectives to overview I'TR approaches. Figure 1 illus-
trates the classification skeleton for the ITR approaches.

(1) Feature extraction. Existing approaches on extracting
discriminative image and text features fall into three cat-
egories. 1) The visual semantic embedding based ap-
proaches work towards learning features independently.
2) The cross-attention approaches, by contrast, learn fea-
tures interactively. And 3) the self-adaptive approaches
aim at learning features with self-adaptive patterns.

(2) Feature alignment. The heterogeneity of multimodal
data makes the integration module important for align-
ing image and text features. EXisting approaches are in
two variants. 1) The global alignment-driven approaches
align global features across modalities. 2) Beyond that,
some approaches attempt to find local alignment explic-
itly at a fine-grained level, so-called the local alignment-
involved approaches.



(3) System efficiency. Efficiency plays a pivotal role in
an excellent ITR system. Apart from the research on
improving ITR accuracy, a stream of works pursues a
high-efficient retrieval system in three different ways. 1)
The hash encoding approaches reduce the computational
cost via binarizing the features in float format. 2) The
model compression approaches emphasize low-energy
and lightweight running. And 3) the fast-then-slow ap-
proaches perform the retrieval via a coarse-grained fast
retrieval first and then a fine-grained slow one.

(4) Pre-training paradigm. To stand at the forefront of re-
search development, we also gain insights into the cross-
modal pre-training approaches for the ITR task, which
has gained much attention recently. Compared with the
conventional ITR!, the pre-training ITR approaches ben-
efit from the rich knowledge that is implicitly encoded by
the large-scale cross-modal pre-trained models, yielding
encouraging performance even without sophisticated re-
trieval engineering. In the context of the ITR task, the
cross-modal pre-training approaches are still applied to
the taxonomy of the above three perspectives. However,
to characterize the pre-training ITR approaches more
clearly, we re-classify them by three dimensions: model
architecture, pre-training task, and pre-training data.

In what follows, we summarize the ITR approaches based
on the above taxonomy of the first three perspectives in Sec-
tion 2, and make a particular reference to the pre-training ITR
approaches, i.e., the fourth perspective, in Section 3. A de-
tailed overview of the common datasets, evaluation metric
and accuracy comparison among representative approaches is
presented in Section 4, followed by the conclusion and future
work in Section 5.

2 Image-text Retrieval

2.1 Feature Extraction

Extracting the image and text features is the first and also
the most crucial process in the ITR system. Under three dif-
ferent developing trends: visual semantic embedding, cross-
attention and self-adaptive, as shown in Figure 2, the feature
extraction technology in ITR is thriving.

Visual semantic embedding (VSE). Encoding image and
text features independently is an intuitive and straightforward
way for ITR, which was firstly proposed in [Frome et al.,
2013]. Afterwards, such VSE based approaches are widely
developed in roughly two aspects. 1) In terms of data, a
stream of works [Wu et al., 2019b; Chun et al., 2021] tries
to excavate the high-order data information for learning pow-
erful features. They learn features with equal treatment for
all data pairs. In contrast, some researchers [Faghri ef al.,
2017] propose to weight the informative pairs to improve the
discrimination of features, and others [Hu et al., 2021] pay
more attention to the mismatched noise correspondences in
data pairs for the feature extraction. Recently, riding the wave

"We denote the ITR approaches without the benefit from cross-
modal pre-training knowledge as the conventional ITR for distin-
guishing them from the ITR approaches under the cross-modal pre-
training paradigm.
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Figure 2: Illustration of different feature extraction architectures.

of the large-scale cross-modal pre-training technology, some
works [Jia et al., 2021; Huo et al., 2021] leverage large-scale
web data directly to pre-train the image and text feature ex-
tractors, exhibiting the impressive performance on the down-
stream ITR task. 2) Regarding the loss function, the ranking
loss is commonly used in the VSE based approaches [Frome
et al., 2013; Faghri et al., 2017] and constrains the inter-
modal data relationship for learning features. Besides that,
[Wang ef al., 2018] proposed a maximum-margin ranking
loss with the neighborhood constraints for better extracting
features. [Zheng et al., 2020] proposed an instance loss ex-
plicitly considering the intra-modal data distribution.

Owing to the independent feature encoding, the VSE based
approach enables a high-efficiency ITR system in which the
features of massive gallery samples can be pre-computed of-
fline. However, it may bring suboptimal features and limited
ITR performance due to less exploration of the interaction
between the image and text data.

Cross-attention (CA). [Lee et al., 2018] made the first at-
tempt to consider the dense pairwise cross-modal interaction
and yielded tremendous accuracy improvements at the time.
Since then, various CA approaches have been put forward to
extract features. Employing the transformer architecture, the
researchers can simply operate on a concatenation of image
and text to the transformer architecture, thereby learning the
cross-modal contextualized features. It opens up a rich line of
studies on the transformer-like CA approach [Lu et al., 2019;
Chen et al., 2020c]. Moreover, injecting some additional con-
tents or operations into the cross-attention for assisting the
feature extraction is also a new line of research. [Ji er al.,
2019] adopted a visual saliency detection module to guide the
cross-modal correlation. [Cui er al., 2021] integrated intra-
and cross-modal knowledge to learn the image and text fea-
tures jointly.

The CA approach narrows the data heterogeneity gap and
tends to obtain high-accuracy retrieval results, yet comes at a
prohibitive cost since each image-text pair must be fed into
the cross-attention module online.

Self-adaptive (SA). Instead of a fixed computation flow for
extracting features in the VSE based and CA approaches, [Qu
et al., 2021] started from scratch and educed a self-adaptive
modality interaction network in which different pairs can be
adaptively inputted into different feature extraction mecha-
nisms. It powerfully inherits the respective merits of the
above two groups and is classified as the SA approach.

2.2 Feature Alignment

After the feature extraction, it is desirable to align cross-
modal features to compute pairwise similarity and achieve



retrieval. The global and local alignments are two directions.

Global alignment. In the global alignment-driven ap-
proach, the image and text are matched from a global view-
point, as shown in Figure 3 (a). Early works [Faghri et
al., 2017; Wang er al., 2018] are usually equipped with a
clear and simple two-stream global feature learning network,
and the pairwise similarity is computed by the comparison
between global features. Later studies [Sarafianos er al.,
2019; Zheng et al., 2020] focus on improving such two-
stream network architecture for better aligning global fea-
tures. Nonetheless, the above approaches with only the global
alignment always present limited performance since the tex-
tual description usually contains finer-grained detail of im-
age, which is prone to be smoothed by the global alignment.
However, there is an exception. The recent global alignment-
driven approaches in a pretrain-then-finetune paradigm [Jia
et al., 2021] tend to produce satisfactory results, attributed to
the enlarging scale of pre-training data.

All in all, only applying the global alignment to ITR could
lead to a deficiency of the fine-grained correspondence mod-
eling and is relatively weak for computing reliable pairwise
similarity. Considering the alignment in other dimensions as
a supplement to the global alignment is a solution.

Local alignment. As shown in Figure 3 (b), the regions or
patches within an image and words in a sentence correspond
with each other, so-called the local alignment. Global and lo-
cal alignments form a complementary solution for ITR, which
is a popular option and is classified as the local alignment-
involved approach. Adopting the vanilla attention mecha-
nism [Lee et al., 2018; Wang et al., 2019; Chen et al., 2020c;
Kim er al., 2021] is a trivial way to explore the semantic
region/patch-word correspondences. However, due to the se-
mantic complexity, these approaches may not well catch the
optimal fine-grained correspondences. For one thing, attend-
ing to local components selectively is a solution for searching
for an optimal local alignment. [Liu et al., 2019] made the
first attempt to align the local semantics across modalities se-
lectively. [Chen et al., 2020a] and [Zhang et al., 2020] were
not far behind. The former learned to associate local com-
ponents with an iterative local alignment scheme. And the
latter noticed that an object or a word might have different
semantics under the different global contexts and proposed to
adaptively select informative local components based on the
global context for the local alignment. After that, some ap-
proaches with the same goal as the above have been succes-
sively proposed with either designing an alignment guided
masking strategy [Zhuge et al., 2021] or developing an at-
tention filtration technique [Diao er al., 2021]. For another
thing, achieving the local correspondence in a comprehensive
manner is also a pathway to approximate an optimal local
alignment. [Wu er al., 2019a] enabled different levels of tex-
tual components to align with regions of images. [Ji erf al.,
2021] proposed a step-wise hierarchical alignment network
that achieves the local-to-local, global-to-local and global-to-
global alignments.

Other than these, as shown in Figure 3 (c), there is an-
other type of local alignment, i.e., the relation-aware local
alignment that can promote fine-grained alignment. These
approaches [Xue et al., 2021; Wei et al., 2020] explore the
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Figure 3: Illustration of different feature alignment architectures.

intra-modal relation for facilitating inter-modal alignment. In
addition, some approaches [Li ef al., 2019a; Yu et al., 2021a;
Diao et al., 2021] model the image/text data as a graph struc-
ture with the edge conveying the relation information, and in-
fer relation-aware similarities with both the local and global
alignments by the graph convolutional network. Beyond
these, [Ren et al., 2021] considered the relation consistency,
i.e., the consistency between the visual relation among the
objects and the textual relation among the words.

2.3 Retrieval Efficiency

Combining the feature extraction in Section 2.1 with the fea-
ture alignment in Section 2.2 makes up a complete ITR sys-
tem with attention to the retrieval accuracy. Beyond that is the
retrieval efficiency that is crucial for obtaining an excellent
ITR system, thereby triggering a series of efficiency-focused
ITR approaches.

Hash encoding. The hash binary code introduces the ad-
vantage on the model’s computation and storage, lightening a
growing concern over the hash encoding approaches for ITR.
These studies learn to map the sample’s feature to a compact
hash code space to achieve a high-efficiency ITR. [Yang ez al.,
2017] learned real-valued features and binary hash features
of image and text simultaneously for benefiting from each
other. [Zhang et al., 2018] introduced an attention module
to find the attended regions and words to prompt the binary
feature learning. Besides these approaches in a supervised
setting, unsupervised cross-modal hashing is also a concern.
[Li er al., 2018] incorporated the adversarial network into the
unsupervised cross-modal hashing to maximize the seman-
tic correlation and consistency between two modalities. [Yu
et al., 2021b] designed a graph-neighbor network to explore
the sample’s neighbor information for unsupervised hashing
learning. The hash encoding approach benefits efficiency, yet
also causes accuracy degradation due to the simplified feature
representation with the binary code.

Model compression. With the advent of the cross-modal
pre-training age, ITR takes a giant leap forward in accuracy
at the expense of efficiency. The pre-training ITR approaches
are usually characterized by the bulky network architecture,
which gives birth to the model compression approach. Some
researchers [Gan et al., 2022] introduce the lottery ticket hy-
pothesis to strive for smaller and lighter network architec-
ture. Moreover, based on the consensus, i.e., the image pre-
processing process takes the most significant computing re-
source consumption in the pre-training architecture, some re-
searchers [Huang er al., 2020; Huang et al., 2021] specifically
optimize the image preprocessing process to improve the re-
trieval efficiency. However, even with a lightweight archi-



tecture, most of these approaches that usually use the cross-
attention for better feature learning still need to take a long
reference time due to the quadratic executions of feature ex-
traction.

Fast-then-slow. The above two groups cannot bring the
best compromise between efficiency and accuracy, raising the
third group: the fast-then-slow approach. Given that the VSE
and CA approaches in Section 2.1 have the efficiency and ac-
curacy advantages, respectively, several researchers [Miech
et al., 2021; Li et al., 2021] propose first to screen out large
amounts of easy-negative galleries by the fast VSE technol-
ogy and then retrieve the positive galleries by the slow CA
technology, thereby striving for a good balance between effi-
ciency and accuracy.

3 Pre-training Image-text Retrieval

For the ITR task, the early paradigm is to fine-tune the net-
works that have been pre-trained on the computer vision and
natural language processing domains, respectively. The turn-
ing point came in 2019, and there was an explosion of interest
in developing a universal cross-modal pre-training modal and
extending it to the downstream ITR task [Lu ez al., 2019; Li
et al., 2019b]. Under the powerful cross-modal pre-training
technology, the ITR task experiences explosive growth in per-
formance without any bells and whistles. Most of the pre-
training ITR approaches currently adopt the transformer ar-
chitecture as the building block. On this foundation, the
research mainly focuses on model architecture, pre-training
task and pre-training data.

Model architecture. A batch of works [Lu et al., 2019;
Li et al., 2021] is interested in the two-stream model architec-
ture, i.e., two independent encodings followed by an optional
later-interaction on the image and text processing branches.
Meanwhile, the one-stream architecture encapsulating the
image and text processing branches into one gains popular-
ity [Li e al., 2019b; Li er al., 2020a; Kim et al., 2021]. Most
approaches heavily rely on the image preprocessing process
that usually involves an object detection module or convolu-
tion architecture for extracting the preliminary visual features
and as the input of the follow-up transformer. The resulting
problems are twofold. Firstly, this process consumes more
computational resources than the subsequent processes, lead-
ing to the model’s inefficiency. Then, the predefined visual
vocabulary from the object detection limits the model’s ex-
pression ability, resulting in inferior accuracy.

Encouragingly, the research on improving the image pre-
processing process has recently come into fashion. Regard-
ing improving efficiency, [Huang er al., 2021] adopted a
fast visual dictionary to learn the whole image’s feature.
[Huang et al., 2020] directly aligned the image pixels with
the text in the transformer. Alternatively, [Kim et al., 2021;
Gao et al., 2020] fed the patch-level features of the image
into the transformer and [Liu e al., 2021] segmented the im-
age into grids for aligning with the text. In advancing accu-
racy, [Zhang et al., 2021] developed an improved object de-
tection model to promote visual features. [Xu et al., 2021] put
the tasks of object detection and image captioning together to
enhance visual learning. [Xue et al., 2021] explored the vi-

sual relation by adopting the self-attention mechanism when
learning the image feature Taking all these into account, [Dou
et al., 2021] investigated these model designs thoroughly and
presented an end-to-end new transformer framework, reach-
ing a win-win between efficiency and accuracy. The advance
of the cross-modal pre-training model architecture pushes
forward the progress of ITR in performance.

Pre-training task. The pre-training pretext task guides
the model to learn effective multimodal features in an end-to-
end fashion. The pre-training model is designed for multiple
cross-modal downstream tasks, hence various pretext tasks
are usually invoked. These pretext tasks fall into two main
categories: image-text matching and masked modeling.

The ITR is an important downstream task in the cross-
modal pre-training domain and its associated pretext task, i.e.,
the image-text matching, is well received in the pre-training
model. In general, an ITR task-specific head is appended
on the top of the transformer-like architecture to distinguish
whether the input image-text pair is semantically matched
by comparing the global features across modalities. It can
be viewed as an image-text coarse-grained matching pretext
task [Lu et al., 2019; Li et al., 2020a; Chen et al., 2020c;
Li et al., 2021; Kim et al., 2021]. Furthermore, it is also ex-
panded to the image-text fine-grained matching pretext tasks:
patch-word alignment [Kim er al., 20211, region-word align-
ment [Chen et al., 2020c] and region-phrase alignment [Liu ez
al., 2021]. There is no doubt that the pre-training image-text
matching pretext task establishes a direct link to the down-
stream ITR task, which narrows the gap between the task-
agnostic pre-training model and ITR.

Inspired by the pre-training in the natural language pro-
cessing, the masked language modeling pretext task is com-
monly used in the cross-modal pre-training model. Symmet-
rically, the masked vision modeling pretext task also emerges
in this context. Both are collectively called the masked mod-
eling task. In the masked language modeling task [Lu et al.,
2019; Li et al., 2020a; Zhang et al., 2021], the input text fol-
lows a specific masking rule that masks out several words in
a sentence at random, and then this pretext task drives the
network to predict the masked words based on the unmasked
words and the input image. In the masked vision modeling
task, the network regresses the masked region’s embedding
feature [Chen er al., 2020c] or predicts its semantic label [Li
et al., 2020a] or does both [Liu et al., 2021]. The masked
modeling tasks implicitly capture the dependencies between
the image and text, providing powerful support to the down-
stream ITR task.

Pre-training data. The research on the data level is an
active trend in the cross-modal pre-training domain. For
one thing, the intra- and cross-modal knowledge in the im-
age and text data are fully exploited in the pre-training ITR
approaches [Li er al., 2020c; Cui et al., 2021]. For an-
other, many studies concentrate on increasing the scale of pre-
training data. Beyond the most widely used large-scale out-
of-domain datasets, especially for the pre-training model [Li
et al., 2020a; Li et al., 2021], the in-domain datasets origi-
nally for fine-tuning and evaluating the downstream tasks are
added into the pre-training data for better multimodal feature
learning [Li ef al., 2020c; Li et al., 2021]. Besides this, the
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VSE++ [Faghri et al., 2017 520 646 ] 303 413396 529 VSE++ [Faghri et al., 20171 520 646|303 413396 529

LTBNN [Wang et al., 2018] 433 549 | - - 317 432 LTBNN [Wang et al., 2018] 433 549 | - - | 317 432

VSE | TIMAM [Sarafianos ef al., 2019] | - - - - | 426 531 Global. | SEAM [Wu et al., 2019b] 578 712 | - - 524 691

CVSE [Wang et al., 2020] 599 748 529 735 " | TIMAM [Sarafianos et al., 20191 426 53.1

PCME [Chun e al., 2021] 546 688 | 319 442

ALIGN* [Jia et al., 2021] - - | 599 770|849 953
SCAN [Lee et al., 2018] 588 72.7 | 38.6 504 | 48,6 674
SAN [Ji et al., 2019] 69.1 854|462 654 | 60.1 755
Vilbert* [Lu er al., 2019] - - - - | 582 -
CA | Oscar* [Li et al., 2020c] 782 89.8 | 57.5 735 - -
Uniter* [Chen et al., 2020c] - - | 529 657|756 813
Rosita* [Cui ef al., 2021] - - | 544 713|741 889
ALEBF* [Li et al., 2021] - - | 607 776|856 959
SA | DIME [Qu et al., 2021] 648 788 | 431 593|636 810

Table 1: Accuracy comparison at R@1 among the ITR approaches
from the perspective of the feature extraction. The approach marked
with “x’ represents the pre-training approach. We show the best re-
sults of each approach reported in the original paper.

rich non-paired single-modal data can be added into the pre-
training data for learning more generalizable features [Li et
al., 2020b]. Other than all of these, some researchers [Qi
et al., 2020; Jia et al., 2021; Yao et al., 2022] collect new
larger-scale data for the pre-training model, and such a simple
and crude operation usually brings outstanding performance
on various downstream cross-modal tasks, including ITR. In
general, the focus at the data level positively affects the cross-
modal pre-training model, naturally boosting the downstream
ITR task.

4 Datasets and Evaluation

4.1 Datasets

The researchers have proposed various datasets for ITR. We
summarize the most frequently used datasets as follows. 1)
COCO Captions contains 123, 287 images collected from
the Microsoft Common Objects in COntext (COCO) dataset,
together with human generated five captions for each im-
age. The average length of captions is 8.7 after a rare word
removal. The dataset is split into 82,783 training images,
5,000 validation images and 5,000 test images. The re-
searchers evaluate their models on the 5 folds of 1K test im-
ages and the full 5K test images. 2) Flickr30K consists of
31,000 images collected from the Flickr website. Each im-
age contains five textual descriptions. The dataset is divided
into three parts, 1,000 images for validation, 1,000 images
for the test, and the rest for training.

4.2 Evaluation Metric

R@K is the most commonly used evaluation metric in ITR
and is the abbreviation for recall at K-th in the ranking list,
defined as the proportion of correct matchings in top-K re-
trieved results.

4.3 Accuracy Comparison

We compare the representative and latest ITR approaches in
terms of accuracy from two perspectives: feature extraction
and feature alignment.

Feature extraction. We present the comparison results in
Table 1. For comparison among the VSE based approaches,

Dual-path [Zheng et al., 2020] 47.1 656 | 253 412 |39.1 556
PCME [Chun et al., 2021] 546 68.8 | 31.9 442 - -
ALIGN* [Jia et al., 2021] - - 599 770|849 953
SCAN [Lee et al., 2018] 58.8 727 | 38.6 504|486 674

CAMP [Wang et al., 2019] 585 723|390 50.1 | 515 68.1
VSRN [Li et al., 2019a] 62.8 762 | 405 53.0 | 547 713
IMRAM [Chen ef al., 2020a] 61.7 76.7 | 39.7 53.7 | 539 741
MMCA [Wei et al., 2020] 61.6 748 | 387 54.0 | 548 742
Uniter* [Chen et al., 2020c] - - | 529 657|756 8713
Local. SGRAF [Diao et al., 2021] 632 79.6 | 419 578 | 585 778
SHAN [Ji et al., 2021] 62.6 768 - - 553 746
ViLT* [Kim et al., 2021] - - 427 615 | 644 835
ALBEF* [Li et al., 2021] - - | 607 776|856 959

Table 2: Accuracy comparison at R@1 among the ITR approaches
from the perspective of the feature alignment. The approach marked
with “x’ represents the pre-training approach. Global. and Local. are
short for the global-driven alignment and local-involved alignment
approaches, respectively. We show the best results of each approach
reported in the original paper.

ALIGN [Jia et al., 2021] achieves substantial improvement
over others on accuracy thanks to the large-scale pre-training
on more than one billion image-text pairs that far surpass the
amount of data from other pre-training approaches. For com-
parison among the CA approaches, we can see that the ac-
curacy is improved gradually by these approaches over time.
For comparison between the VSE based and CA approaches,
1) SCAN [Lee et al., 2018], as the first attempt to the CA
approach, makes a breakthrough at accuracy compared to the
VSE based approach LTBNN [Wang et al., 2018] at that time;
2) taken as a whole, the CA approaches have the overwhelm-
ing advantage over the VSE based ones at R@1 aside from
ALIGN, which is attributed to the in-depth exploration of
cross-modal feature interaction in the CA approaches. Nev-
ertheless, as an exception, the VSE based approaches pre-
training on extraordinarily massive data might offset the in-
ferior performance caused by the less exploration on cross-
modal interaction, which has been strongly supported by
the results of ALIGN. For comparison between the SA ap-
proaches and the VSE based and CA ones, under the same
setting, i.e., conventional ITR, the SA approach DIME [Qu
et al., 2021] outperforms the VSE based and CA approaches
on Flickr30k, and is inferior to the SAN [Ji et al., 2019] on
COCO Captions. There exists room for further development
of the SA technology.

Feature alignment. The comparison results are shown in
Table 2. In terms of comparison within the global alignment-
driven approaches, even with a basic two-stream architecture
for the global alignment, ALIGN is still on top of other ap-
proaches at R@ 1, including TIMAM [Sarafianos et al., 2019]
and PCME [Chun et al., 2021] with the sophisticated net-
work architecture for the global alignment. In terms of com-
parison within the local alignment-involved approaches, AL-
BEF [Li et al., 2021] displays excellent performance. It is
worth noting that Uniter [Chen et al., 2020c] and ViLT [Kim
et al., 2021] only with the vanilla attention mechanism can
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Figure 4: The development trend of ITR in recent years. The number
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the number with red is the amount of the multimodal training data.

get decent results. By contrast, SCAN [Lee et al., 2018]
and CAMP [Wang er al., 2019] with a similar mechanism
are underwhelming at R@1. The Uniter and ViLT conduct
the ITR task in a pretrain-then-finetune form, and the rich
knowledge from the pre-training cross-modal data benefits
the downstream ITR task. In terms of comparison between
the global alignment-driven and local alignment-involved ap-
proaches, the latter shows better performance than the former
on the whole, indicating the importance of local alignment
for achieving high-accuracy ITR.

Furthermore, we summarize the development trend of ITR
from 2017 to 2021 in Figure 4. A clear trend of increasing ac-
curacy can be seen over the years. Specifically, the big jump
comes in 2020 thanks to the pre-training ITR technology. Af-
ter this, the accuracy of the pre-training ITR approach con-
tinues to keep the momentum of development. It follows that
the pre-training ITR technology plays a leading role in pro-
moting ITR development. It can not be separated from the
support of the enlarging scale of training data. We can ob-
serve a dramatic increase in the amount of training data with
the coming of the pre-training ITR.

5 Conclusion and Future Works

In this paper, we presented a comprehensive review of ITR
approaches from four perspectives: feature extraction, fea-
ture alignment, system efficiency and pre-training paradigm.
We also summarized extensively used datasets and evalua-
tion metric in ITR, based on which we quantitatively ana-
lyzed the performance of the representative approaches. It
concludes that ITR technology has made considerable devel-
opment over the past few years, especially with the coming
of the cross-modal pre-training age. However, there still exist
some less-explored issues in ITR. We make some interesting
observations on possible future developments as follows.
Data. The current ITR approaches are essentially data-
driven. In other words, the researchers design and optimize
the network for seeking an optimal retrieval solution based
on available benchmark datasets. For one thing, the hetero-
geneity and semantic ambiguity of cross-modal data can in-
evitably introduce noise into the datasets. For example, as
shown in Figure 5, there exist the elusive textual description
for the image and the multiplicity of the correspondences be-
tween the images and texts in the COCO Captions. To some
extent, therefore, the results of current ITR approaches on
such datasets remain controversial. There have been a few ex-

a man sitting at a table having a
glass of wine.

not many people are attending
this tennis match.

(a) elusive descriptions for image (b) multiplicity of the correspondence

Figure 5: Illustration of noise data in the COCO Captions. (a) It is
difficult to capture the content in the image based on the paired tex-
tual description highlighted by orange. (b) In addition to the positive
image-text pair with a solid arrow, it seems to be correspondence for
the negative image-text pair with a dotted arrow.

plorations about the data multiplicity [Song and Soleymani,
2019; Chun et al., 2021; Hu et al., 2021], yet only considering
the training data and ignoring the test one. For another thing,
beyond the vanilla data information, i.e., the image and text,
the scene-text appearing in images is a valuable clue for ITR,
which is usually ignored in the existing approaches. [Mafla
et al., 2021] is a pioneer work to explicitly incorporate the
scene-text information into ITR model. These studies leave
room for further ITR development at the data level.

Knowledge. Humans have the powerful ability to estab-
lish semantic connections between vision and language. It
benefits from their cumulative commonsense knowledge, to-
gether with the capacity of causal reasoning. Naturally, in-
corporating this high-level knowledge into the ITR model is
valuable for improving its performance. CVSE [Wang et al.,
2020] is a pioneer work that computes the statistical corre-
lations in the image captioning corpus as the commonsense
knowledge for ITR. However, such commonsense knowledge
is constrained by the corpus and is not a perfect fit for ITR.
It might be promising to tailor-make a commonsense knowl-
edge and model the causal reasoning for ITR in the future.

New paradigm. Under the current trend, the pre-training
ITR approaches have an overwhelming advantage on accu-
racy compared to the conventional ITR ones. The pretrain-
then-finetune over a large-scale cross-modal model becomes
a fundamental paradigm for achieving state-of-the-art re-
trieval results. However, this paradigm with the need for large
amounts of labeled data in the finetun phase is hard to apply
in real-world scenarios. It is meaningful to seek and develop
a new resource-friendly ITR paradigm. For example, the re-
cently budding prompt-based tuning technology with an ex-
cellent few-shot capability provides a guide for developing
such a new paradigm, so-called pretrain-then-prompt.
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