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ABSTRACT

Compared with static knowledge graphs, temporal knowledge graphs (tKG),
which can capture the evolution and change of information over time, are more
realistic and general. However, due to the complexity that the notion of time in-
troduces to the learning of the rules, an accurate graph reasoning, e.g., predicting
new links between entities, is still a difficult problem. In this paper, we propose
TILP, a differentiable framework for temporal logical rules learning. By designing
a constrained random walk mechanism and the introduction of temporal operators,
we ensure the efficiency of our model. We present temporal features modeling
in tKG, e.g., recurrence, temporal order, interval between pair of relations, and
duration, and incorporate it into our learning process. We compare TILP with
state-of-the-art methods on two benchmark datasets. We show that our proposed
framework can improve upon the performance of baseline methods while provid-
ing interpretable results. In particular, we consider various scenarios in which
training samples are limited, data is biased, and the time range between training
and inference are different. In all these cases, TILP works much better than the
state-of-the-art methods.

1 INTRODUCTION

Knowledge graphs (KGs) contain facts (es, r, eo) representing relation r between subject entity es
and object entity eo, e.g., (David Beckham, plays for, Real Madrid). In real world, many relations
are time-dependent, e.g., a player joining a team for a season, a politician holding a position for a
certain period of time, and two persons’ marriage lasting for decades. To represent the evolution
and change of information, temporal knowledge graphs (tKGs) have been introduced. An interval
I , indicating the valid period of the fact, is utilized by tKGs to extend the triples (es, r, eo) into
quadruples (es, r, eo, I), e.g., (David Beckham, plays for, Real Madrid, [2003, 2007]).

Automatically reasoning over KGs such as link predication, i.e., inferring missing facts using ex-
isting facts, is a common task for real-world applications. However, the introduction of temporal
information makes this task more difficult. The important dynamic interactions between entities can
not be captured by learning methods developed for static KGs. Recently, a few embedding-based
frameworks have been proposed to address the above limitation, e.g., HyTE (Dasgupta et al. (2018)),
TNTComplEx (Lacroix et al. (2020)), and DE-SimplE (Goel et al. (2019)). The common principle
adopted by these models is to create time-dependent embeddings for entities and relations.

Alternatively, first-order inductive logical reasoning methods have some desirable features relative
to embedding methods when applied to KGs, as they provide interpretable and robust inference re-
sults. Since the resulting logical rules contain temporal information in tKGs, we call them temporal
logical rules. Some recent works, e.g., StreamLearner (Omran et al. (2019)), and TLogic (Liu et al.
(2021)), have introduced a framework for temporal KG reasoning. However, there are still several
unaddressed issues. First, these statistical methods count from graph the number of paths that sup-
port a given rule as its confidence estimation. As such, this independent rule learning ignores the
interactions between different rules from the same positive example. For instance, given certain
rules, the confidence of some rules might be enhanced, while that of others can be diminished. Sec-
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ond, these methods cannot deal with the similarity between different rules. Given a reliable rule,
it is reasonable to believe that the confidence of another similar rule, e.g., with the same predi-
cates but slightly different temporal patterns, is also high. However, its estimated confidence with
these methods can be quite low if it is infrequent in the dataset. Finally, the performance of these
timestamp-based methods on interval-based tKGs is not demonstrated. It should be noted that the
temporal relations between intervals are more complex than those of timestamps. All these problems
are solved by our neural-network-based framework.

In this paper, we propose TILP, a differentiable inductive learning framework. TILP benefits from a
novel mechanism of constrained random walk and an extended module for temporal features mod-
eling. We achieve comparable performance to the state-of-the-art methods, while providing logical
explanations for the inference results. More specifically, our main contributions are summarized as
follows:

• TILP, a novel differentiable and temporal inductive logic framework, is introduced based on
constrained random walks on temporal knowledge graphs and temporal features modeling.
It is the first differentiable approach that can learn temporal logical rules from tKGs without
restrictions.

• Experiments on two benchmark datasets, i.e., WIKIDATA12k and YAGO11k, are con-
ducted, where our framework shows comparable or improved performance relative to the
state-of-the-art methods. For test queries, our framework has the advantage that it provides
both the ranked list of candidates and explanations for the prediction.

• The superiority of our method compared to existing methods is demonstrated in several
scenarios such as when training samples are limited, data is biased, and time range of
training and testing are different.

2 RELATED WORKS

Embedding-based methods. Recently, embedding-based methods for tKGs started emerging for a
more accurate link prediction. The common principle of these methods is to create time-dependent
embeddings for entities and relations, e.g., HyTE (Dasgupta et al. (2018)), TA-ComplEx (Garcı́a-
Durán et al. (2018)), TNTComplEx (Lacroix et al. (2020)), and DE-SimplE (Goel et al. (2019)).
These embeddings are plugged into standard scoring functions in most cases. Further, other works,
e.g, TAE-ILP (Jiang et al. (2016)), and TimePlex (Jain et al. (2020)), have investigated the explicit
temporal feature modeling, and merged it into the embedding algorithms. The main weakness of
embedding-based methods is lack of interpretability, as well as their failure when previously unob-
served entities, relations, or timestamps present during inference.

Logical-rule-based methods. Logical-rule-based methods for link prediction on tKGs is mainly
based on random walks. Although these works show the ability of learning temporal rules, they
perform random walks in a very restricted manner, which impairs the quality of learned rules. For
example, Dynnode2vec (Mahdavi et al. (2018)) and Change2vec (Bian et al. (2019)) both process
tKGs as a set of graph snapshots at different times where random walks are performed separately.
DynNetEmbedd (Nguyen et al. (2018)) requires the edges in walks to be forward in time. Stream-
Learner (Omran et al. (2019)) first extracts rules from the static random walk, and then extend them
separately into time domain. The consequence is that all body atoms in the extended rules have the
same timestamp. TLogic (Liu et al. (2021)) is the most recent work which extracts temporal logi-
cal rules from the defined temporal random walks. The temporal constraints for temporal random
walks are built on timestamps instead of intervals, and are fixed during the learning. This inflex-
ibility impairs its ability in temporal constraints learning. Furthermore, both StreamLearner and
TLogic, which can truly learn temporal logical rules, are statistical methods which estimates the
rule confidence by counting the number of rule groundings and body groundings.

Differentiable rule learning. Several works utilize neural network architectures for rule learning,
e.g., Neural-LP (Yang et al. (2017)), NTP (Rocktäschel & Riedel (2017)), DeepProblog (Manhaeve
et al. (2018)), ∂ILP (Evans & Grefenstette (2018)), RuLES (Ho et al. (2018)), IterE (Zhang et al.
(2019)), dNL-ILP (Payani & Fekri (2019)) and NLProlog (Weber et al. (2019)). These works mainly
focus on static KGs, lacking the ability of capturing temporal patterns. Converting from static KGs to
temporal KGs is not a trivial extension. For example, Neural-LP reduces the rule learning problem to
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matrix multiplication. By defining the operators and neural control system, this framework realizes
logical rule learning in an end-to-end fashion. However, the extra temporal constraints in logical
rules break down the Markovian property of random walks which serves as the foundation of the
past frameworks.

3 PRELIMINARIES

Temporal knowledge graph. A temporal knowledge graph (tKG) G is a collection of facts repre-
sented by a quadruple (es, r, eo, I). This fact, also called edge or link, implies a relation r from the
subject entity es to the object entity eo during interval I . We define an interval I with its start time
ts and end time te, i.e., I = [ts, te]. To allow bidirectional random walks, we imagine the existence
of inverse edges, i.e., (eo, r−1, es, I). The set of entities, relations, timestamps and intervals are
denoted by E ,R, T and I, respectively.

Link prediction. This task is to predict missing links with observed facts from the same tKG. To
be specific, given a query (es, r, ?, I) and the observed facts from the same tKG G, a ranked list
of candidates for the missing object is required. For subject prediction, the query is formulated as(
eo, r

−1, ?, I
)
. Compared with static link predication, the temporal link prediction is much harder:

Even given the same subject (or object) and relation, the correct answer can change with different
query intervals.

Temporal relation. Temporal relation (TR) between two timestamps t and t′ can take the form
before, equal, or after, which are denoted by t < t′, t = t′, and t > t′, respectively. For TR
between two intervals I and I ′, there are 13 different relations in total given by Allen’s interval
algebra (Allen (1983)). For example, I := [ts, te] is before I ′ := [t′s, t

′
e] iff te < t′s. However, the

resulting temporal logical rules would become too specific by directly using all these 13 types. Thus,
we group them into 3 classes: TR ∈ {before, touching, after}, where TR denotes the possible TR
between two intervals, before is defined as previously mentioned, after is the converse of before,
and touching is the group of all the other 11 types. In other words, touching is used when two
intervals have overlap with each other. It should be noted that timestamp can be considered as a
special kind of interval with equal start time and end time. Thus, our definition of temporal relation
TR can be also used to describe TR between timestamps.

Temporal logical rule. A temporal logical Rule of length l ∈ N is defined as

Pl+1 (E1, El+1, Il+1)← ∧li=1Pi (Ei, Ei+1, Ii) ∧lj=1

(
∧l+1
k=j+1TRj,k (Ij , Ik)

)
(1)

where Ei ∈ E denotes variables of entities, Ii ∈ I denotes variables of intervals, Pi ∈ R denotes
predicates, which are grounded relations in logical rules, and TRj,k ∈ {before, touching, after}
denotes grounded temporal relations between intervals.

The left arrow in Rule is called “entails”, i.e., the rule body on the right entails the rule head on
the left. The rule head contains a head predicate Pl+1, also called the target predicate. For the link
prediction task, target predicates are given. Thus, we use Ph to denote it in the following sections.
Il+1 is called query interval. Similarly, Pi and Ii for i ∈ [1, l] are called body predicates and body
intervals, respectively. The rule is also called “chain-like” because the rule body corresponds to a
walk from E1 to El+1.

A rule is grounded by substituting the variables E and I with constants. For example, a grounding
of the following temporal logical rule

ReceiveAward (E1, E2, I2)← NominatedFor (E1, E2, I1) ∧ touching(I1, I2)
is given by the edges (Alice Bradley Sheldon, receive award, Nebula Award for Best Novelette,
[1977, 1977]) and (Alice Bradley Sheldon, nominated for, Nebula Award for Best Novelette, [1977,
1977]) in WIKIDATA12k dataset. Since logical rules can be violated, rule confidence, the probabil-
ity that a rule is correct, needs to be estimated.

4 CONSTRAINED RANDOM WALK

Path constraint. Temporal logical rules can be considered as constraints for random walks on
tKG. Generally speaking, these constraints can be divided into two classes: Markovian and non-
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Markovian. With Markovian constraints, the calculation of next state probability is only related
to current state probability, i.e., a random walk is performed without the consideration of previous
visited edges. Otherwise, we need to record the previous visited edges to ensure that non-Markovian
constraints are satisfied.

For the temporal logical rule given in (1), Markovian constraints include body predicates, i.e., Pi

for i ∈ [1, l], and TRs between query interval and every body interval, i.e., TRi,l+1 for i ∈ [1, l].
Further, the non-Markovian constraints include pairwise TRs between body intervals, i.e., TRj,k for
j ∈ [1, l − 1] and k ∈ [j + 1, l]. Filtering operators f for these constraints are defined as

fP ((es, r, eo, I)) =

{
1 if r = P ,
0 otherwise.

(2)

fTR ((es, r, eo, I) , (e
′
s, r

′, e′o, I
′)) =

{
1 if g(I, I ′) = TR,
0 otherwise.

(3)

g (I, I ′) =


before if te < t′s,
after if ts > t′e,
touching otherwise.

(4)

where fP and fTR denote filtering operators for predicate P and temporal relation TR, respectively,
and g is the TR evaluation function with I := [ts, te] and I ′ := [t′s, t

′
e].

Constrained random walk. Since a successful random walk should satisfy both classes of con-
straints, we first perform random walk under Markovian ones, and then filter out the results accord-
ing to non-Markovian ones. To ensure the efficiency of our framework, we use matrix operators
built from the filtering operators. Given a query (es, r, ?, I), for every pair of entities ex, ey ∈ E ,
the operator Mi,CMi ∈ {0, 1}|E|×|E| related to step i under corresponding Markovian constraints
CM i = {Pi, TRi,l+1} is defined as:

(Mi,CMi)x,y = max
F∈Fy,x

fCMi (F )

= max
F∈Fy,x

fPi
(F ) fTRi,l+1

(F, (es, r, ?, I))
(5)

where (Mi,CMi
)x,y denotes the (x, y) entry of Mi,CMi

, F denotes a single fact, and Fy,x denotes
the set of facts from ey to ex. The essence of the operator is the adjacency matrix under Markovian
constraints, and we set the entry maximum to 1. With these operators, we can actually find all the
paths between any pair of entities that satisfy these Markovian constraints. Suppose we start from
entity es. After l steps of random walk under corresponding Markovian constraints, the process is
written as

vi+1 =Mi,CMi
vi for 1 ≤ i ≤ l (6)

where vi ∈ N|E| is the indicator vector, e.g., for v1 only the entry related to es is set to 1, other
entries being 0. When arriving at some entities, the corresponding entries would be greater than 0.
With these indicator vectors, we can obtain every single constrained random walk W (n)

CM for n ∈ N
given by ((e

(n)
1 , r

(n)
1 , e

(n)
2 , I

(n)
1 ), . . . , (e

(n)
l , r

(n)
l , e

(n)
l+1, I

(n)
l )).

For non-Markovian constraints CNj,k = {TRj,k}, we apply corresponding filtering functions to
these walks as:

fCN (W
(n)
CM ) =

l−1∏
j=1

l∏
k=j+1

fCNj,k
((e

(n)
j , r

(n)
j , e

(n)
j+1, I

(n)
j ), (e

(n)
k , r

(n)
k , e

(n)
k+1, I

(n)
k ))

=

l−1∏
j=1

l∏
k=j+1

fTRj,k
((e

(n)
j , r

(n)
j , e

(n)
j+1, I

(n)
j ), (e

(n)
k , r

(n)
k , e

(n)
k+1, I

(n)
k ))

(7)

The set of filtered walks SWC
:= {W (n)

CM : fCN (W
(n)
CM ) = 1} is the final result of our algorithm.

In this process, we also remove walks that involve repeated edges. In fact, by introducing new
filtering functions, this framework can have more possibilities. For example, using the numerical
comparison filtering functions (Wang et al. (2019)), our method is able to learn logical rules with
numerical features such as a person’s age, height and weight.
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5 LEARNING TEMPORAL LOGICAL RULES

The framework mainly consists of two stages: rule learning followed by rule application. In the
learning stage, given a set of positive examples for the target predicates, we are going to find all
the paths from the subject entity to the object entity in the tKG. Then we extract temporal logical
rules from these paths, and estimate their confidence. The parameterised distributions of different
temporal features introduced in this sections are also measured at this stage.

In the application stage, given a query and a set of temporal logical rules related to the target pred-
icate, we are going to find all the random walks that satisfy these rules. By calculating the arriving
rate of each rule and aggregating all the rules, we can obtain the temporal logical rule score for
all candidates. In addition, we use all the evidences related to these candidates to evaluate their
temporal feature scores which, together with temporal logical rule scores, form the final scores.

Rule confidence. For the extracted temporal logical rules, we need to estimate their confidence
for the rule application. Instead of estimating confidence for every single rule, we create attention
vectors for every type of constraints, and re-use them in different rules. Sharing confidence of
constraints creates a joint and robust learning process, and largely reduces model parameters.

In our temporal logical rules, there are two types of constraints, predicates and temporal relations.
For every target predicate, we create a set of attention vectors to denote the confidence of using
a certain constraint. Obviously, there are many factors that can affect these attention vectors, e.g,
the target predicate, the query interval, the rule length, entity properties, and so on. To make this
problem tractable, some simplifications are made here. We suppose that the attention vectors of
predicates and TRs are dependent on the target predicate and the rule length. Furthermore, to deal
with varying lengths of rules, an attention vector of the rule length is also required. Inspired by
Neural-LP (Yang et al. (2017)), we design a set of mapping functions based on RNN.

Figure 1: The RNN-based system for solving the attention vectors

Specifically, as shown in Fig.1, let wLen ∈ RL be the attention vector of rule length where L is the
maximum. For a certain length l ∈ [1, L], at each step i ∈ [1, l] we calculate the attention vector of
predicate (wP )

l
i ∈ R|R| and its TR between query interval (wTR)

l
i,l+1 ∈ R|TR|. We also calculate

the attention vector of pairwise TR between body intervals (wTR)
l
j,k ∈ R|TR| for j ∈ [1, l − 1] and

k ∈ [j + 1, l] using corresponding states.

hl
i = update

(
hl
i−1, f

T
embdd(X

l, Ph)
)

(8)

(wP )
l
i = softmax

(
WPh

l
i + bP

)
(9)

(wTR)
l
i,l+1 = softmax

(
WTRh

l
i + bTR

)
(10)

(wTR)
l
j,k = softmax

(
W ′

TR[h
l
j ;h

l
k] + b′TR

)
(11)

wLen = softmax
(
WLenf

T
embdd(X

0, Ph) + bLen

)
(12)

where hl
i ∈ Rd denotes the ith-step state in the l-length rule with feature dimension d, hl

0 is set as
0, Xl ∈ R|R|×d denotes the embedding matrix for target predicate Ph, fembdd(X, p) := uTp X
is an embedding lookup function in which up is a one-hot indicator vector for input p, i.e.,
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fTembdd(X
l, Ph) ∈ Rd, and WP ∈ R|R|×d, WTR ∈ R|TR|×d, W ′

TR ∈ R|TR|×2d, WLen ∈ RL×d,
bP ∈ R|R|, bTR, b

′
TR ∈ R|TR|, bLen ∈ RL are all learnable parameters.

Given these attention vectors, the confidence of a l-length Rule given by (1) is written as:

score(Rule) =fembdd(wLen, l)

l∏
i=1

fembdd((wP )
l
i, Pi) fembdd((wTR)

l
i,l+1, TRi,l+1)

l−1∏
j=1

l∏
k=j+1

fembdd((wTR)
l
j,k, TRj,k)

(13)

where fembdd(wLen, l) ∈ R denotes the confidence of length l, fembdd((wP )
l
i, Pi) ∈ R denotes the

confidence of predicate Pi, fembdd((wTR)
l
i,l+1, TRi,l+1) ∈ R denotes the confidence of temporal

relation TRi,l+1, and fembdd((wTR)
l
j,k, TRj,k) ∈ R denotes the confidence of temporal relation

TRj,k.

Temporal feature modeling. In our framework, we only focus on the connecting paths between
the two entities in a query, and the TR between intervals is actually discretized, which might impair
our model performance. To address these limitations, we introduce temporal features modeling
where extra evidences and continuous distribution measurements are involved. Inspired by TimePlex
(Jain et al. (2020)), we design an extended module. The main features considered here include
Recurrence, TemporalOrder, RelationPairInterval and Duration.

• Recurrence describes the distribution of recurrence of the same relation. Different from
TimePlex’s description (es, r, eo, ∗), we measure this feature with a more general form
(es, r, ∗, ∗). For each relation r, we use a parameter (prec)r to denote the probability that
this relation will happen again for the same subject. It should be noted that inverse relations
r−1 are also involved.

• TemporalOrder describes the distribution of the temporal order between relation pairs
happening for the same subject, i.e., (es, r, ∗, I) , (es, r′, ∗, I ′). This feature is implied by
TRs in temporal logical rules to some extent. However, for two touching intervals, we still
cannot tell which one happens earlier. Thus, a parameter (porder)r,r′ is adopted for every
pair of relations r and r′ to denote the probability that r happens earlier than r′.

• RelationPairInterval describes the distribution of the time gaps between relation pairs
happening for the same subject. Different from TimePlex, given a pair of relations r and
r′, we consider two types of distributions for their time gap, Gaussian and exponential,
with parameters (µpair)r,r′ , (σpair)r,r′ and (λpair)r,r′ , respectively. Gaussian distribution
is preferred when there is a roughly fixed interval such as the birth date and death date of
the same person, while exponential distribution is more suitable for two strongly correlated
relations.

• Duration describes the distribution of the interval length of every relation. We suppose the
duration of each relation r follows a Gaussian distribution with parameters (µd)r, (σd)r. It
is common in large tKGs that the exact date of some facts are missing. With this feature,
we can estimate these missing dates and improve our model performance.

With these temporal feature distributions, we can further evaluate the candidates of a query. Similar
to TimePlex, a linear function of probability is used as scoring function, i.e., ϕrec, ϕorder, ϕpair.
However, more evidences are used by our model in the evaluation. The evidences of TimePlex
only include facts happening between the known entity and every candidate, while our model ex-
tends with the constrained random walks. Given a query (es, r, ?, I) and a candidate ec, all the
evidences used in the temporal feature modeling module include facts between es and ec, i.e,
Fc,s := {(ec, ∗, es, ∗)}, facts on ec but not on es, i.e., Fc,s̄ := {(ec, ∗, ∗, ∗)} − Fc,s and con-
strained random walks SWC

between es and ec. The temporal feature modeling score ϕtfm of the
candidate is given as

ϕtfm(ec) = γ1ϕtfm,1(ec) + γ2ϕtfm,2(ec) + γ3ϕtfm,3(ec) (14)

where ϕtfm,1(ec), ϕtfm,2(ec), ϕtfm,3(ec) are the scoring functions givenFc,s,Fc,s̄ and SWC(es,ec),
respectively, and γ1, γ2, γ3 ≥ 0 are the corresponding weights. The details of these scoring functions
are shown in Appendix A.
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Table 1: Link prediction performance on the two benchmark datasets

Dataset WIKIDATA12k YAGO11k

Model MRR hit@1 hit@10 MRR hit@1 hit@10

Neural-LP 0.1823 0.0908 0.3848 0.1001 0.0401 0.1845
AnyBURL 0.1908 0.1030 0.3904 0.0908 0.0378 0.1814
TLogic 0.2536 0.1754 0.4424 0.1545 0.1180 0.2309

ComplEx 0.2482 0.1430 0.4890 0.1814 0.1146 0.3111
TA-ComplEx 0.2278 0.1269 0.4600 0.1524 0.0936 0.2626
HyTE (TransE) 0.2528 0.1470 0.4826 0.1355 0.0332 0.2981
DE-SimplE 0.2529 0.1468 0.4905 0.1512 0.0875 0.2674
TNT-Complex 0.3010 0.1973 0.5069 0.1801 0.1102 0.3128
TimePlex (base) 0.3238 0.2203 0.5279 0.1835 0.1099 0.3186
TimePlex 0.3335 0.2278 0.5320 0.2364 0.1692 0.3671

TILP (w/o tfm) 0.3114 0.2152 0.5077 0.1880 0.1336 0.3089
TILP 0.3328 0.2342 0.5289 0.2411 0.1667 0.4149

Candidate ranking. Suppose by applying a temporal logical Rule, we find a total of N successful
random walks in which Nc of them arrive at entity ec. With the assumption that each walk has equal
contribution, we can calculate the arriving rate αc := Nc/N . By aggregating all the rules learned
for the target predicate, we obtain the logical rule score ϕTLR. Combining with the temporal feature
modeling score ϕtfm via corresponding weights γTLR, γtfm ≥ 0, the final score ϕTILP becomes

ϕTLR(ec) =
∑
Rule

αc(Rule)score(Rule) (15)

ϕTILP (ec) = γTLRϕTLR(ec) + γtfmϕtfm(ec) (16)

The training is divided into two phases. In the first phase, the attention vectors for predicates, TRs
and rule length are learned by maximizing the score of correct candidates. In the second phase, all
the distribution parameters of temporal features are fitted with training samples. Then we train the
parameters of weights for the temporal feature modeling module with frozen attention vectors, i.e,
ϕTLR is used for prediction in the first stage, and ϕTILP is adopted in the second stage.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

We evaluate TILP on two standard tKG datasets, WIKIDATA12k and YAGO11k (Dasgupta et al.
(2018)). Detailed dataset introduction and statistics are given in Appendix B. These datasets contain
temporal facts in the form (es, r, eo, I), e.g. (John Okell, worksAt, SOAS University of London,
[1959, 1999]). The temporal specificity of facts in these datasets can be at the year, month, or day
level, although month and day data are not present in the majority of examples; we remove month
and day information from such facts to achieve a more uniform data representation. For datasets with
higher granularity, we would expect improved performance due to more precise temporal relations.
For the link predication task on data of the form (es, r, eo, I), we generate a list of ranked candidates
for both object prediction (es, r, ?, I) and subject prediction

(
eo, r

−1, ?, I
)
. The maximum rule

length is set to 5 for both datasets. The standard metrics, mean reciprocal rank (MRR), hit@1,
hit@10 are used for comparison of the methods. Similar to Jain et al. (2020), we perform time-
aware filtering which gives a more valid performance evaluation.

We compare TILP with state-of-the-art baselines in two dimensions: static v.s. temporal, logical-
rule-based v.s. embedding-based. The static logical-rule-based methods include Neural-LP (Yang
et al. (2017)), and AnyBURL (Meilicke et al. (2020)). The temporal logical-rule-based method is
TLogic (Liu et al. (2021)). The static embedding-base model is ComplEx (Trouillon et al. (2016)).
The temporal embedding-base model include TA-ComplEx (Garcı́a-Durán et al. (2018)), HyTE
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(Dasgupta et al. (2018)), DE-SimplE (Goel et al. (2019)), TNT-Complex (Lacroix et al. (2020)), and
TimePlex (Jain et al. (2020)). The results for all embedding-based models are from Jain et al. (2020).
Ablation studies on the temporal feature modeling module (TILP w/o tfm) are also conducted.

6.2 RESULTS AND ANALYSIS

The results of the experiments are shown in Table 1 with the efficiency study given in Appendix
C. The performance of TILP is comparable with the best temporal embedding method across all
metrics, with TimePlex performing slightly better than TILP against half of the evaluated metrics.
Note that because of the human-interpretable form of the TILP predictions, its temporal logical
rules provide explanatory support for predictions, while the interpretation of TimePlex embeddings
would be more opaque. Some examples of the learned rules and groundings from TILP on the
WIKIDATA12k dataset are given below.

Rule 1:

memberOf (E1, E4, I4)← memberOf (E1, E2, I1) ∧memberOf−1 (E2, E3, I2)

∧memberOf (E3, E4, I3) ∧3i=1 (∧4j=i+1touching(Ii, Ij))

Grounding: E1 = Somalia, E2 = International Development Association, E3 = Kingdom of the
Netherlands, E4 = International Finance Corporation, I1 = [1962, present], I2 = [1961, present], I3
= [1956, present], I4 = [1962, present].

Rule 2:

receiveAward (E1, E4, I4)← nominatedFor (E1, E2, I1) ∧ nominatedFor−1 (E2, E3, I2)

∧receiveAward (E3, E4, I3) ∧ before(I1, I2) ∧2i=1 after(Ii, I3) ∧3j=1 before(Ij , I4)

Grounding: E1 = ZDF, E2 = International Emmy Award for best drama series, E3 = DR, E4 =
Peabody Awards, I1 = [2005, 2005], I2 = [2009, 2009], I3 = [1997, 1997], I4 = [2013, 2013].

Granularity of temporal relations: We observe that the well-known TLogic approach, which
uses a point-in-time data representation of temporal facts, doesn’t perform as well as more recently
developed methods on these two interval-based tKGs. Several factors likely contribute to this phe-
nomenon. First, the foundation of the temporal walks in TLogic is the relative order of time points.
Without the introduction of temporal relation between intervals, TLogic can not be simply extended
for interval-based tKGs. Second, to improve model efficiency, TLogic uses sampling strategy with
the control of the total number of temporal walks. This strategy actually impairs model performance
due to no guarantee for successful long-distance random walks. It is proven by the facts that a lot of
temporal logical rules we found in these two datasets are of length 5, which can be challenges for
TLogic.

Temporal feature modeling: These experiments suggest that time-aware learning is an important
component for link prediction in tKGs since all static learning methods are out-performed by their
counterparts with temporal learning abilities. This leaves us with a comparison of logical-rule-based
methods to embedding-based methods. The former integrates temporal relations into logical rule
representation, while the latter uses time-dependent embeddings. Both approaches can be imple-
mented in a variety of ways, for example previous explicit temporal features modeling approaches
have used: Recurrence, TemporalOrder, RelationPairInterval and Duration. The alterna-
tive representation of temporal intervals as continuous distributions has demonstrated the greater
success than these previous models, as shown by the evaluation of both TimePlex and TILP (our
model). However, our extensions of the temporal feature modeling module are non-trivial since
evidences of constrained random walks can not be found by any embedding-based methods.

6.3 MORE DIFFICULT PROBLEM SETTINGS

Our model uses neurally generated symbolic representations of temporal and entity relationships,
while performing on par with state-of-the-art embedding-based methods. Looking beyond perfor-
mance, symbolic representations convey several advantages in understanding the prediction quality
in tKGs. To demonstrate these strengths, we propose the following more difficult problem settings
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in consideration of data efficiency, model robustness, and transfer learning. All these scenarios are
important and changeling tasks in KG reasoning, and temporal information in tKGs makes the prob-
lems even harder. A few related works (Mirtaheri et al. (2020),Xu et al. (2021),Liu et al. (2021))
try to give some solutions, but there is still room for improvements. To simplify the discussion, we
restrict comparison of our model to the standard and highest performing methods for temporal link
prediction: TLogic (logical-rule-based) and TimePlex (embedding-based).

Few training samples. Training data is often expensive to obtain for new scenarios, and therefore
the performance of a method under limited training data is an important consideration. We paramet-
rically examine the relative performance of our model in this low-data scenario, and demonstrate its
data efficiency using the MRR metric. Details of the setting and the results are shown in Appendix
D. It is observed that when the training set size decreases, TILP outperforms all the baseline meth-
ods. Through constrained random walks, TILP is able to capture all the patterns related to a query
relation which are independent on entities. Reducing training set size only changes the frequency of
different patterns. To contrast, embedding-based methods require enough training samples to learn
good embeddings of entities and relations.

Biased data. Another common problem in knowledge graph learning is data imbalance. For some
rare relations, it is hard to collect samples. For example, in the WIKIDATA12k dataset, where there
are 40621 edges in total, the number of edges for relation capitalOf and residence are only 86
and 80, respectively. This demonstrates that achieving a good model for every relation in the dataset
requires the ability to manage biased representation frequency. Details of the setting and the results
are shown in Appendix D. From the results, we conclude that the attention vectors of predicates,
temporal relations and rule length are relation-dependent in TILP, making it less susceptible than
other methods to data imbalance. In contrast, embeddings of entities are shared among all the
relations, making embedding-based method suffer more susceptible to data imbalance.

Time shifting. For tKG, the problem of time shifting is also noteworthy. Intuitively, more over-
lapping between the period of training set and that of test set brings the higher model performance.
However, this condition can be violated in scenarios such as link forecasting. Similar to TLogic,
we re-split the whole dataset according to the start time of each relation. Details of the setting are
shown in Appendix D, and the results are shown in Table 2. One major limitation of most time-aware
embedding-based methods is the use of absolute timestamp as anchors, preventing generalization to
either time shifting settings and inductive settings (Liu et al. (2021)). With such limitations in mind,
TILP extracts temporal logical rules with relative temporal relations, providing greater flexibility,
e.g. for transfer learning to arbitrary temporal periods.

Table 2: Link prediction performance with time shifting setting

Dataset WIKIDATA12k YAGO11k

Model MRR hit@1 hit@10 MRR hit@1 hit@10

TimePlex (base) 0.0975 0.0647 0.1588 0.0581 0.0299 0.1085
TimePlex 0.0976 0.0651 0.1580 0.0639 0.0341 0.1146
TLogic 0.1508 0.0934 0.3201 0.1107 0.0621 0.1804
TILP 0.2657 0.1623 0.4412 0.2069 0.1194 0.3686

7 CONCLUSION

TILP, the first differentiable framework for temporal logical rules learning, has been proposed for
the link predication task on temporal knowledge graphs. Experiments on two standard datasets indi-
cate that TILP achieves comparable performance to the state-of-the-art embedding-based methods
while additionally providing logical explanations for the link predictions. In addition, we consider
some important learning problems in temporal knowledge graphs, where TILP outperforms most
baselines. An interesting direction for future work is to predict event intervals with temporal logical
rules. In such a task, the learned rules must contain both numerical values and temporal relations, a
situation which should further benefit from the expressive power of the logical rules considered in
the TILP framework.
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A DETAILS OF TEMPORAL FEATURE MODELING

Given a query (es, r, ?, I) and a candidate ec, the facts used in this module include three parts: the
set of edges from ec to es denoted by Fc,s, the set of edges from ec to other entities denoted by
Fc,s̄, and the set of paths from es to ec denoted by SWC(es,ec). Let R(1), R(2), R(3) ⊆ R denote
the set of relations existing in Fc,s, Fc,s̄ and SWC(es,ec), respectively. Given a relation r′, let (Ts)1r′ ,
(Ts)

2
r′ , (Ts)

3
r′ ∈ R be the closest start time, existing in Fc,s, Fc,s̄ and SWC(es,ec), to the start time

of the query interval denoted by ts, respectively. In addition, we introduce a scoring function ϕ to
integrate different probabilities:

ϕ(ec;h,w, b) =

∑
r′∈R(ec)

exp(wr,r′)(hr,r′ + br,r′)∑
r′′∈R(ec)

exp(wr,r′′)
(17)
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where ϕ(ec) ∈ R denotes the score of ec, the probability h ∈ R|R|×|R| is corresponding with the
query relation r and another relation r′, i.e., hr,r′ ∈ R, R(ec) ⊆ R denotes the set of relations
related to ec, and w, b ∈ R|R|×|R| are learnable parameters, i.e, wr,r′ , br,r′ ∈ R.

In our model, given a temporal feature x ∈ R related to candidate ec, query relation r, and an-
other relation r′, its probability hr,r′ may follow three types of distributions: 1) Bernoulli with
parameter p ∈ R|R|×|R|, i.e., hr,r′ = (pr,r′)

x(1 − pr,r′)
1−x; 2) Gaussian with parameters

µ, σ ∈ R|R|×|R|, i.e., hr,r′ = N (x;µr,r′ , σr,r′); 3) Exponential with parameter λ ∈ R|R|×|R|,
i.e., hr,r′ = λr,r′ exp(−λr,r′x).

For example, with a yearly resolution in YAGO11k dataset, we found the RelationPairInterval
between a person’s birth and graduation is normally distributed with mean 22 and standard devia-
tion 1, and that between a person’s birth and death is also normally distributed with mean 70 and
standard deviation 6. Let r = wasBornIn, r′ = graduatedFrom, r′′ = diedIn, we have µr,r′ = 22,
σr,r′ = 1, µr,r′′ = 70, σr,r′′ = 6. Given a query (?,wasBornIn,Nashville, [1872, 1872]) and a
candidate ec = Cass Canfield, we first check the known facts related to ec which include (Cass
Canfield, graduatedFrom, Harvard University, [1919, 1919]) and (Cass Canfield, diedIn, New York
City, [1986, 1986]). Then the temporal feature, i.e., RelationPairInterval, related to ec, r and r′

is x = |1872 − 1919| = 47. Thus, hr,r′ = N (x;µr,r′ , σr,r′) = N (47; 22, 1) = 7.65 × e−137.
Similarly, hr,r′′ = N (|1872 − 1986|; 70, 6) = 1.39 × e−13. These probabilities hr,r′ , hr,r′′ are
integrated with (17) to form the scoring function ϕpair(ec). As for other temporal features, the cal-
culation processes of the scoring functions are similar. The differences are: 1) Since Recurrence
is only related to the query relation, we use (18) which can be considered as a simplified version
of (17). 2) Both Recurrence and TemporalOrder follow Bernoulli distribution, i.e., x = 0 or 1.
More details are shown below.

• Recurrence describes the probability distribution of recurrence of relation r on entity ec,
and is considered in Fc,s and Fc,s̄. We suppose this probability follows a Bernoulli distri-
bution with parameter prec,1, prec,2 ∈ R|R| in Fc,s and Fc,s̄, respectively. The following
scoring function is defined:

ϕrec(ec;hrec, wrec, brec) = (wrec)r(hrec)r + (brec)r (18)

where the temporal feature related to ec and r is x = 1(r ∈ R(ec)), its probability
(hrec)r = ((prec)r)

x(1 − (prec)r)
1−x ∈ R is based on prec ∈ R|R|, i.e., hrec ∈ R|R|,

and wrec, brec ∈ R|R| are learnable parameters. Given R(ec) = R(1), we have ϕrec,1(ec;
hrec,1, wrec,1, brec,1) with parameters hrec,1, wrec,1, brec,1 ∈ R|R|; Given R(ec) = R(2),
we have ϕrec,2(ec; hrec,2, wrec,2, brec,2) with parameters hrec,2, wrec,2, brec,2 ∈ R|R|.

• TemporalOrder describes the probability distribution of the temporal order of two re-
lations r and r′, and is considered in Fc,s, Fc,s̄ and SWC(es,ec). We suppose this
probability follows a Bernoulli distribution with parameter porder,1, porder,2, porder,3 ∈
R|R|×|R| in Fc,s, Fc,s̄ and SWC(es,ec), respectively. Given R(ec) = R(1), we calculate
ϕorder,1(ec;horder,1, worder,1, border,1) with (17), where horder,1 ∈ R|R|×|R| is based on
porder,1 with x = 1(ts < (Ts)

1
r′), and worder,1, border,1 ∈ R|R|×|R| are learnable parame-

ters. Similarly, given R(ec) = R(2), we calculate ϕorder,2(ec;horder,2, worder,2, border,2)
with parameters horder,2, worder,2, border,2 ∈ R|R|×|R|, where horder,2 is based on
porder,2 with x = 1(ts < (Ts)

2
r′); Given R(ec) = R(3), we calculate ϕorder,3(ec;

horder,3, worder,3, border,3) with parameters horder,3, worder,3, border,3 ∈ R|R|×|R|, where
horder,3 is based on porder,3 with x = 1(ts < (Ts)

3
r′).

• RelationPairInterval describes the distribution of the time gap between two relations
r and r′, and is considered in Fc,s, Fc,s̄ and SWC(es,ec). We suppose this probabil-
ity follows a Gaussian or exponential distribution with parameters µpair,1, σpair,1, λpair,1,
µpair,2, σpair,2, λpair,2, µpair,3, σpair,3, λpair,3 ∈ R|R|×|R| in Fc,s, Fc,s̄ and SWC(es,ec),
respectively. Given R(ec) = R(1), we calculate ϕpair,1(ec;hpair,1, wpair,1, bpair,1)
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with (17), where hpair,1 ∈ R|R|×|R| is based on {µpair,1, σpair,1} or λpair,1 with
x = |ts − (Ts)

1
r′ |, and wpair,1, bpair,1 ∈ R|R|×|R| are learnable parameters. Simi-

larly, given R(ec) = R(2), we calculate ϕpair,2(ec;hpair,2, wpair,2, bpair,2) with param-
eters hpair,2, wpair,2, bpair,2 ∈ R|R|×|R|, where hpair,2 is based on {µpair,2, σpair,2} or
λpair,2 with x = |ts − (Ts)

2
r′ |; Given R(ec) = R(3), we calculate ϕpair,3(ec;hpair,3,

wpair,3, bpair,3) with parameters hpair,3, wpair,3, bpair,3 ∈ R|R|×|R|, where hpair,3 is
based on {µpair,3, σpair,3} or λpair,3 with x = |ts − (Ts)

3
r′ |.

• Duration describes the probability distribution of interval length of every relation. We
suppose this probability follows a truncated Gaussian distribution with parameters µd, σd ∈
R|R| within the interval [0,+∞). It is common in large tKGs that the exact date of some
events are missing. With this feature, we can estimate these missing dates and improve our
model performance. For example, given a fact or query with incomplete interval I = [ts, ?],
we generate a duration td ∼ ψ((µd)r, (σd)r, 0,+∞) where r is the corresponding relation,
and set Î = [ts, ts + td].

With these temporal feature distributions, we can further evaluate the candidates given a query.
We fisrt combine the scores in each part with (19)-(21). Then the scores from different parts are
combined to obtain the temporal feature modeling score ϕtfm given in (14).

ϕtfm,1(ec) =γrec,1ϕrec,1(ec) + γorder,1ϕorder,1(ec) + γpair,1ϕpair,1(ec) (19)
ϕtfm,2(ec) =γrec,2ϕrec,2(ec) + γorder,2ϕorder,2(ec) + γpair,2ϕpair,2(ec) (20)
ϕtfm,3(ec) =γorder,3ϕorder,3(ec) + γpair,3ϕpair,3(ec) (21)

where all γ ≥ 0 are learnable weights. For each part, the sum of weights is equal to 1, i.e., γrec,1 +
γorder,1 + γpair,1 = 1, γrec,2 + γorder,2 + γpair,2 = 1, and γorder,3 + γpair,3 = 1.

B DATASET DISCUSSION

There are four benchmark temporal knowledge graph datasets including ICEWS(Lautenschlager
et al. (2015)), GDELT(Leetaru & Schrodt (2013)), WIKIDATA(Leblay & Chekol (2018)) and
YAGO (Mahdisoltani et al. (2014)). As for the temporal representation, the first two datasets use
timestamps, while the last two uses intervals. Compared with timestamp-based methods, interval-
based tKGs are both more general and more difficult to learn. Thus, we mainly focus on WIKIDATA
and YAGO datasets in our experiments.

WIKIDATA is a large knowledge base based on Wikipedia. To form the WIKIDATA12k dataset, a
subgraph with temporal information is extracted by Dasgupta et al. (2018). It is guaranteed that ev-
ery single node are related to multiple facts, and the top 24 frequent relations are selected. YAGO is
another large knowledge graph built from multilingual Wikipedias. Similarly, some temporally as-
sociated facts are distilled out from YAGO3 to form the YAGO11k dataset (Dasgupta et al. (2018)).
In this dataset, every single node is connected by more than one edge, and the top 10 frequent rela-
tions are selected. For the WIKIDATA12k and YAGO11k datasets, they contain many time-sensitive
relations such as ’residence’, ’position held’, ’member of sports team’, ’member of’, ’educated at’ in
WIKIDATA12k and ’worksAt’, ’playsFor’, ’isAffiliatedTo’, ’hasWonPrize’, ’owns’ in YAGO11k.
These time-sensitive relations make the link prediction task in these two datasets more challenging.
For example, in the WIKIDATA12k datatset, a person can become a member of different teams, hold
different positions, and receive different awards in various periods. Thus, it is necessary to model
temporal information for link prediction tasks in tKGs. Table 3 shows the dataset statistics with a
yearly time resolution, where G, E ,R, T , I are the set of edges, entities, relations, timestamps and
intervals, respectively.

C EFFICIENCY STUDY

For the rule learning process, the time complexity of TLR module (path search, rule extraction, and
the arriving rate calculation) is O(NposNrule(L|G| + L2Npath)), where L is the maximum rule
length, Npos is the number of positive examples, Nrule is the maximum number of rules found in
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Table 3: Dataset statistics with a yearly time resolution

Dataset |Gtrain| |Gvalid| |Gtest| |E| |R| |T | |I|
WIKIDATA12k 32,497 4,062 4,062 12,544 24 237 2,564
YAGO11k 16,408 2,051 2,050 10,622 10 251 6,651

a single example, and Npath is the maximum number of paths for a given rule that can be found
in a single example. The time complexity of tfm module (distribution parameters measurement) is
O(Npos(δ + |R| + LNruleNpath)), where δ is the maximum node degree. Similarly, for the rule
application process, the time complexity of TLR module isO(NqryN

′
rule(L|G|+L2N ′

path)), where
Nqry is the number of queries, N ′

rule is the maximum number of rules for a given target predicate,
and N ′

path is the maximum number of paths for a given rule that can be found in a single query. The
time complexity of tfm module isO(Nqry(Kδ+K|R|+LN ′

ruleN
′
path)), whereK is the maximum

number of candidates for a single query. Since the path search for each positive example and the
rule application for each query are both independent, these processes are done in parallel. Given the
maximum rule length L = 5, the rule searching of TLR module on a 4-CPU machine takes 1740.6s
on WIKIDATA12k training set, and 571.9s on YAGO11k training set. The distribution parameters
measurement of tfm module takes 44.1s on WIKIDATA12k training set, and 6.7s on YAGO11k
training set. The rule application of TLR module takes 1522.8s on WIKIDATA12k validation set,
and 529.6s on YAGO11k validation set. The scoring of tfm module takes 1713.8s on WIKIDATA12k
validation set, and 527.8s on YAGO11k validation set.

D DETAILS OF THE MORE DIFFICULT PROBLEM SETTINGS

Few training samples. In experiments, we randomly reduce the number of training samples in
training set and evaluate different models for the two datasets. To alleviate the effects of different
data distributions, we repeat this experiments for 5 rounds. The results are shown in Fig.2, where we
draw the average MRR curve with err bars. When the training set size decreases, TILP outperforms
all the baseline methods. Through constrained random walks, TILP is able to capture all the patterns
related to a query relation which are independent on entities. Reducing training set size only changes
the frequency of different patterns. To contrast, embedding-based methods require enough training
samples to learn good embeddings of entities and relations. In this setting, our method is also better
than TLogic, which demonstrates the advantages of the neural-network-based logical rule learning
framework relative to the statistical methods.
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Figure 2: Link prediction performance with few training samples

Biased data. For the two datasets, we first obtain statistic results on the number of edges for each
relation. Then for a specific relation, we randomly reduce 50% of the edges in the training set, and
evaluate the performance changes caused by this setting. We conduct the experiments for every
relation separately, and repeat for 5 rounds to alleviate the influence of different data distributions.
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The original test set from random generation contains few queries of rare relations. To guarantee
enough test queries for each relation, we adjust the distribution of queries in the test set, trying
to set the number of queries of different relations to be equal. If queries of a certain relation are
not enough, we would randomly choose half of them. In Fig.3, the average change of MRR for
different models is shown, where error bars have been suppressed for readability. We conclude that
the attention vectors of predicates, temporal relations and rule length are relation-dependent in TILP,
making it less susceptible than other methods to data imbalance. In contrast, embeddings of entities
are shared among all the relations, making embedding-based method suffer more susceptible to data
imbalance. As a statistical method, TLogic also fails since it can not build dependency between
different rules.
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Figure 3: Link prediction performance with biased data

Time shifting. In practice, we put the edges missing start time into training set, and correct the
edges with wrong start time (greater than the year of 2022). For WIKIDATA12k dataset, the start
time range for training set, validation set and test set are [0, 2008], [2008, 2012], [2012, 2018], re-
spectively. For YAGO11k dataset, the start time range for training set, validation set and test set
are [−431, 2006], [2006, 2011], [2011, 2022], respectively. The results are shown in Table 2. One
major limitation of most time-aware embedding-based methods is the use of absolute timestamp as
anchors, preventing generalization to either time shifting settings and inductive settings (Liu et al.
(2021)). With such limitations in mind, TILP extracts temporal logical rules with relative temporal
relations, providing greater flexibility, e.g. for transfer learning to arbitrary temporal periods. In this
setting, our method is still better than TLogic which builds their model on timestamps, and ignores
the necessity of learning all possible temporal patterns from data.
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