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ABSTRACT

Recently, brain-inspired spiking neuron networks (SNNs) have attracted
widespread research interest because of their event-driven and energy-efficient
characteristics. Still, it is difficult to efficiently train deep SNNs due to the non-
differentiability of its activation function, which disables the typically used gradi-
ent descent approaches for traditional artificial neural networks (ANNs). Although
the adoption of surrogate gradient (SG) formally allows for the back-propagation
of losses, the discrete spiking mechanism actually differentiates the loss landscape
of SNNs from that of ANNs, failing the surrogate gradient methods to achieve
comparable accuracy as for ANNs. In this paper, we first analyze why the current
direct training approach with surrogate gradient results in SNNs with poor gen-
eralizability. Then we introduce the temporal efficient training (TET) approach
to compensate for the loss of momentum in the gradient descent with SG so that
the training process can converge into flatter minima with better generalizabil-
ity. Meanwhile, we demonstrate that TET improves the temporal scalability of
SNN and induces a temporal inheritable training for acceleration. Our method
consistently outperforms the SOTA on all reported mainstream datasets, includ-
ing CIFAR-10/100 and ImageNet. Remarkably on DVS-CIFAR10, we obtained
83% top-1 accuracy, over 10% improvement compared to existing state of the
art. Codes are available at https://github.com/Gus-Lab/temporal_
efficient_training.

1 INTRODUCTION

The advantages of Spiking neuron networks (SNNs) lie in their energy-saving and fast-inference
computation when embedded on neuromorphic hardware such as TrueNorth (DeBole et al., 2019)
and Loihi (Davies et al., 2018). Such advantages originate from the biology-inspired binary spike
transmitted mechanism, by which the networks avoid multiplication during inference. On the other
hand, this mechanism also leads to difficulty in training very deep SNNs from scratch because
the non-differentiable spike transmission hinders the powerful back-propagation approaches like
gradient descents. Recently, many studies on converting artificial neuron networks (ANNs) to SNNs
have demonstrated SNNs’ comparable power in feature representation as ANNs (Han & Roy, 2020;
Deng & Gu, 2020; Li et al., 2021a). Nevertheless, it is commonly agreed that the direct training
method for high-performance SNN is still crucial since it distinguishes SNNs from converted ANNs,
especially on neuromorphic datasets.

The output layer’s spike frequency or the average membrane potential increment is commonly used
as inference indicators in SNNs (Shrestha & Orchard, 2018; Kim et al., 2019). The current standard
direct training (SDT) methods regard the SNN as RNN and optimize inference indicators’ distri-
bution (Wu et al., 2018). They adopt surrogate gradients (SG) to relieve the non-differentiability
(Lee et al., 2016; Wu et al., 2018; Zheng et al., 2021). However, the gradient descent with SG does
not match with the loss landscape in SNN and is easy to get trapped in a local minimum with low
generalizability. Although using suitable optimizers and weight decay help ease this problem, the

B Corresponding author

1

https://github.com/Gus-Lab/temporal_efficient_training
https://github.com/Gus-Lab/temporal_efficient_training


Published as a conference paper at ICLR 2022

FC
…

Class 1

Class 2

Class 3

Class 4

𝐿(𝑂𝑚𝑒𝑎𝑛 , 𝑦)

Label

1

𝑇
෍

𝑡
𝐿(𝑂 𝑡 , 𝑦)

𝑂𝑚𝑒𝑎𝑛

𝑂(𝑡)

Leaky Integrate-Fire

Surrogate Gradient

Output Integrate

Standard Direct Training

Temporal  Efficient Training

Post-spike

𝜕𝐿

𝜕𝑂(𝑡)
=
1

𝑇
𝐿′(𝑂𝑚𝑒𝑎𝑛, 𝑦)

𝜕𝐿

𝜕𝑂(𝑡)
=
1

𝑇
𝐿′(𝑂 𝑡 , 𝑦)

Pre-synaptic

Input

Forward Backward Temporal Efficient Training Forward

Figure 1: Workflow of temporal efficient training (TET). To obtain a more generalized SNN, we
modify the optimization target to adjust each moment’s output distribution.

performance of deep SNNs trained from scratch still suffers a big deficit compared to that of ANNs
Deng et al. (2020). Another training issue is the memory and time consumption, which increases
linearly with the simulation time. Rathi & Roy (2020) initializes the target network by a converted
SNN to shorten the training epochs, indicating the possibility of high-performance SNN with limited
activation time. The training problem due to the non-differentiable activation function has become
the main obstruction of spiking neural network development.

In this work, we examine the limitation of the traditional direct training approach with SG and
propose the temporal efficient training (TET) algorithm. Instead of directly optimizing the integrated
potential, TET optimizes every moment’s pre-synaptic inputs. As a result, it avoids the trap into
local minima with low prediction error but a high second-order moment. Furthermore, since the
TET applies optimization on each time point, the network naturally has more robust time scalability.
Based on this characteristic, we propose the time inheritance training (TIT), which reduces the
training time by initializing the SNN with a smaller simulation length. With the help of TET, the
performance of SNNs has improved on both static datasets and neuromorphic datasets. Figure 1
depicts the workflow of our approach.

The following summarizes our main contributions:

• We analyze the problem of training SNN with SG and propose the TET method, a new loss
and gradient descent regime that succeeds in obtaining more generalizable SNNs.

• We analyze the feasibility of TET and picture the loss landscape under both the SDT and
TET setups to demonstrate TET’s advantage in better generalization.

• Our sufficient experiments on both static datasets and neuromorphic datasets prove the
effectiveness of the TET method. Especially on DVS-CIFAR10, we report 83.17% top-1
accuracy for the first time, which is over 10% better than the current state-of-the-art result.

2 RELATED WORK

In recent years, SNNs have developed rapidly and received more and more attention from the re-
search community. However, lots of challenging problems remain to be unsolved. In general, most
works on SNN training have been carried out in two strategies: ANN-to-SNN conversion and direct
training from scratch.

ANN-to-SNN Conversion. Conversion approaches avoid the training problem by trading high ac-
curacy through high latency. They convert a high-performing ANN to SNN and adjust the SNN
parameters w.r.t the ANN activation value layer-by-layer (Diehl et al., 2015; 2016). Some special
techniques have been proposed to reduce the inference latency, such as the subtraction mechanism
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(Rueckauer et al., 2016; Han et al., 2020), robust normalization Rueckauer et al. (2016), spike-norm
(Sengupta et al., 2018), and channel-wise normalization (Kim et al., 2019). Recently, Deng & Gu
(2020) decompose the conversion error to each layer and reduce it by bias shift. Li et al. (2021a)
suggest using adaptive threshold and layer-wise calibration to obtain high-performance SNNs that
require a simulation length of less than 50. However, converted methods significantly extend the
inference latency, and they are not suitable for neuromorphic data (Deng et al., 2020).

Direct training. In this area, SNNs are regarded as special RNNs and training with BPTT (Neftci
et al., 2019). On the backpropagation process, The non-differentiable activation term is replaced
with a surrogate gradient (Lee et al., 2016). Compared with ANN-to-SNN conversion, direct train-
ing achieves high accuracy with few time steps but suffers more training costs (Deng et al., 2020).
Several studies suggest that surrogate gradient (SG) is helpful to obtain high-performance SNNs
on both static datasets and neuromorphic datasets (Wu et al., 2019; Shrestha & Orchard, 2018; Li
et al., 2021b). On the backpropagation process, SG replaces the Dirac function with various shapes
of curves. Exceptionally, Wu et al. (2018) first propose the STBP method and train SNNs on the
ANN programming platform, which significantly promotes direct training development. Zheng et al.
(2021) further proposes the tdBN algorithm to smooth the loss function and first realize training a
large-scale SNN on ImageNet. Zhang & Li (2020) proposes TSSL-BP to break down error back-
propagation across two types of inter-neuron and intra-neuron dependencies and achieve low-latency
and high accuracy SNNs. Recently, Yang et al. (2021) designed a neighborhood aggregation (NA)
method to use the multiple perturbed membrane potential waveforms in the neighborhood to com-
pute the finite difference gradients and guide the weight updates. They significantly decrease the
required training iterations and improve the SNN performance.

3 PRELIMINARY

3.1 ITERATIVE LIF MODEL

We adopt the Leaky Integrate-and-Fire (LIF) model and translate it to an iterative expression with
the Euler method (Wu et al., 2019). Mathematically, the membrane potential is updated as

u(t+ 1) = τu(t) + I(t), (1)

where τ is the constant leaky factor, u(t) is the membrane potential at time t, and I(t) denotes
the pre-synaptic inputs, which is the product of synaptic weight W and spiking input x(t). Given
a specific threshold Vth, the neuron fires a spike and u(t) reset to 0 when the u(t) exceeds the
threshold. So the firing function and hard reset mechanism can be described as

a(t+ 1) = Θ(u(t+ 1)− Vth) (2)

u(t+ 1) = u(t+ 1) · (1− a(t+ 1)), (3)
where Θ denotes the Heaviside step function. The output spike a(t + 1) will become the post
synaptic spike and propagate to the next layer. In this study, we set the starting membrane u(0) to
0, the threshold Vth to 1, and the leaky factor τ to 0.5 for all experiments.

The last layer’s spike frequency is typically used as the final classification index. However, adopting
the LIF model on the last layer will lose information on the membrane potential and damage the
performance, especially on complex tasks (Kim et al., 2019). Instead, we integrate the pre-synaptic
inputs I(t) with no decay or firing (Rathi & Roy, 2020; Fang et al., 2021). Finally, we set the average
membrane potential as the classification index and calculate the cross-entropy loss for training.

3.2 SURROGATE GRADIENT

Following the concept of direct training, we regard the SNN as RNN and calculate the gradients
through spatial-temporal backpropagation (STBP) (Wu et al., 2018):

∂L

∂W
=

∑
t

∂L

∂a(t)

∂a(t)

∂u(t)

∂u(t)

∂I(t)

∂I(t)

∂W
, (4)

where the term ∂a(t)
∂u(t) is the gradient of the non-differentiability step function involving the derivative

of Dirac’s δ-function that is typically replaced by surrogate gradients with a derivable curve. So far,
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there are various shapes of surrogate gradients, such as rectangular (Wu et al., 2018; 2019), triangle
(Esser et al., 2016; Rathi & Roy, 2020), and exponential (Shrestha & Orchard, 2018) curve. In this
work, we choose the surrogate gradients shaped like triangles. Mathematically, it can describe as

∂a(t)

∂u(t)
=

1

γ2
max(0, γ − |u(t)− Vth|), (5)

where the γ denotes the constraint factor that determines the sample range to activate the gradient.

3.3 BATCH NORMALIZATION FOR SNN

Batch Normalization (BN) (Ioffe & Szegedy, 2015) is beneficial to accelerate training and increase
performance since it can smooth the loss landscape during training (Santurkar et al., 2018). Zheng
et al. (2021) modified the forward time loop form and proposed threshold-dependent Batch Nor-
malization (tdBN) to normalize the pre-synaptic inputs I in both spatial and temporal paradigms
so that the BN can support spatial-temporal input. We adopt this setup with the extension of the
time dimension to batch dimension 1. In the inference process, the BN layer will be merged into the
pre-convolutional layer, thus the inference rule of SNN remain the same but with modified weight:

Ŵ←W
γ

α
, b̂← β + (b− µ)γ

α
, (6)

where µ, α are the running mean and standard deviation on both spatial and temporal paradigm, γ, β
are the affine transformation parameters, and W, b are the parameters of the pre-convolutional layer.

4 METHODOLOGY

4.1 FORMULA OF TRAINING SNN WITH SURROGATE GRADIENTS

Standard Direct Training. We use O(t) to represent pre-synaptic input I(t) of the output layer
and calculate the cross-entropy loss. The loss function of standard direct training LSDT is:

LSDT = LCE(
1

T

T∑
t=1

O(t),y), (7)

where T is the total simulation time, LCE denotes the cross-entropy loss, and y represents the target
label. Following the chain rule, we obtain the gradient of W with softmax S(·) inference function :

∂LSDT

∂W
=

1

T

T∑
t=1

[S(Omean)− ŷ]
∂O(t)

∂W
, (8)

where Omean denotes the average of the output O(t) over time, and ŷ is the one-hot coding of y.

Temporal Efficient Training. In this section, we come up with a new kind of loss function LTET
to realize temporal efficient training (TET). It constrains the output (pre-synaptic inputs) at each
moment to be close to the target distribution. It is described as:

LTET =
1

T
·

T∑
t=1

LCE[O(t),y]. (9)

Recalculate the gradient of weights under the loss function LTET, and we have:

∂LTET

∂W
=

1

T

T∑
t=1

[S(O(t))− ŷ] · ∂O(t)

∂W
. (10)

1https://github.com/fangwei123456/spikingjelly
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4.2 CONVERGENCE OF GRADIENT DESCENT FOR SDT V.S. TET

In the case of SDT, the gradient consists of two parts, the error term (S(Omean)− ŷ) and the partial
derivative of output ∂O(t)/∂W. When the training process reaches near a local minimum, the term
(S(Omean)− ŷ) approximates 0 for all t = 1, ..., T , ignorant of the term ∂O(t)/∂W. For traditional
ANNs, the accumulated momentum may help get out of the local minima (e.g. saddle point) that
typically implies bad generalizability (Kingma & Ba, 2014; Kidambi et al., 2018). However, when
the SNN is trained with surrogate gradients, the accumulated momentum could be extremely small,
considering the mismatch of gradients and losses. The fact that the activation function is a step one
while the SG is bounded with integral constraints. This mismatch dissipates the momentum around
a local minimum and stops the SDT from searching for a flatter minimum that may suggest better
generalizability.

In the case of TET, this issue of mismatch is relieved by reweighting the contribution of ∂O(t)/∂W.
Indeed, considering the fact that the first term (S(O(t))− ŷ) is impossible to be 0 at every moment
of SNN since the early output accuracy on the training set is not 100%. So TET needs the second
term ∂O(t)/∂W close to 0 to make the LTET convergence. This mechanism increases the norm of
gradients around sharp local minima and drives the TET to search for a flat local minimum where
the disturbance of weight does not cause a huge change in O(t).

Further, to ensure that the convergence with TET implies the convergence of SDT, we prove the
following lemma:

Lemma 4.1. LSDT is upper bounded by LTET.

Proof. Suppose Oi(t) and ŷi denote the i-th component of O(t) and ŷ, respectively. Expand Eqn.9,
we have:

LTET = − 1

T

T∑
t=1

n∑
i=1

ŷi logS(Oi(t)) = −
1

T

n∑
i=1

ŷi log(

T∏
t=1

S(Oi(t)))

= −
n∑

i=1

ŷi log(

T∏
t=1

S(Oi(t)))
1
T ≥ −

n∑
i=1

ŷi log(
1

T

T∑
t=1

S(Oi(t)))

≥ −
n∑

i=1

ŷi log(S(
1

T

T∑
t=1

Oi(t))) = LSDT, (11)

where the first inequality is given by the Arithmetic Mean-Geometric Mean Inequality, and the
second one is given by Jensen Inequality since the softmax function is convex. As a corollary, once
the LTET gets closed to zero, the original loss function LSDT also approaches zero.

Furthermore, the network output O(t) at a particular time point may be a particular outlier that dra-
matically affects the total output since the output of the SNN has the same weight at every moment
under the rule of integration. Thus it is necessary to add a regularization term like LMSE loss to
confine each moment’s output to reduce the risk of outliers:

LMSE =
1

T

T∑
t=1

MSE(O(t), φ), (12)

where φ is a constant used to regularize the membrane potential distribution. And we set φ = Vth
in our experiments. In practice, we use a hyperparameter λ to adjust the proportion of the regular
term, we have:

LTOTAL = (1− λ)LTET + λLMSE. (13)

It is worth noting that we only changed the loss function in the training process and did not change
SNN’s inference rules in the testing phase for a fair comparison. This algorithm is detailed in Algo.1.
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Algorithm 1: Temporal efficient training for one epoch
Input: SNN model; Simulation length: T ; Threshold: Vth; Training dataset; Validation dataset;

total training iteration in one epoch: Itrain; total validation iteration in one epoch: Ival
for all i = 1, 2, ...Itrain iteration do

Get mini-batch training data, and class label: Y i;
Compute the SNN output Oi(t) of eatch time step;
Calculate loss function: LTOTAL = (1− λ)LTET + λLMSE =

(1− λ) · 1
T

∑T
t=1 LCE(Oi(t),Y i) + λ · 1

T

∑T
t=1 MSE(Oi(t), φ);

Backpropagation and update model parameters;
end
for all i = 1, 2, ...Ival iteration do

Get mini-batch validation data, and class label: Y i;
Compute the SNN average output Oi

mean = 1
T

∑T
t=1 Oi(t) over all time step;

Compare the classification factor Oi
mean and Y i for classification;

end

4.3 TIME INHERITANCE TRAINING

SNN demands simulation length long enough to obtain a satisfying performance, but the training
time consumption will increase linearly as the simulation length grows. So how to shorten the
training time is also an essential problem in the direct training field. Traditional loss function LSDT
only optimizes the whole network output under a specific T , so its temporal scalability is poor.
Unlike the standard training, TET algorithm optimizes each moment’s output, enabling us to extend
the simulation time naturally. We introduce Time Inheritance Training (TIT) to alleviate the training
time problem. We first use long epochs to train an SNN with a short simulation time T, e.g., 2. Then,
we increase the simulation time to the target value and retrain with short epochs. We discover that
TIT performs better than training from scratch on accuracy and significantly saves the training time.
Assuming that training an SNN with simulation length T = 1 cost ts time per epoch, the SNN needs
300 epochs to train from scratch, and the TIT needs 50 epochs for finetuning. So we need 1800ts
time to train an SNN with T = 6 from scratch, but following the TIT pipeline with the initial T = 2
only requires 900ts. As a result, the TIT can reduce the training time cost by half.

5 EXPERIMENTS

We validate our proposed TET algorithm and compare it with existing works on both static and
neuromorphic datasets. The network architectures in this paper include ResNet-19 (Zheng et al.,
2021), Spiking-ResNet34 (Zheng et al., 2021), SEW-ResNet34 (Fang et al., 2021), SNN-5, and
VGGSNN. SNN-5 (16C3-64C5-AP2-128C5-AP2-256C5-AP2-512C3-AP2-FC) is a simple convo-
lutional SNN suitable for multiple runs to discover statistical rules (Figure A. 7). The architec-
ture of VGGSNN (64C3-128C3-AP2-256C3-256C3-AP2-512C3-512C3-AP2-512C3-512C3-AP2-
FC) is based on VGG11 with two fully connected layers removed as we found that additional fully
connected layers were unnecessary for neuromorphic datasets.

5.1 MODEL VALIDATION AND ABLATION STUDY

Effectiveness of TET over SDT with SG. We first examine whether the mismatch between SG and
loss causes the convergence problem. For this purpose, we set the simulation length to 4 and change
the spike function Θ in Eqn.2 to Sigmoid σ(k · input). We find that the TET and SDT achieved
similar accuracy (Table 2) when k = 1, 10, 20. This indicates that both TET and SDT work when
the gradient and loss function match each other. Next, we compare the results training withLSDT and
LTET on SNNs (ResNet-19 on CIFAR100) training with surrogate gradient for three runs. As shown
in Table 1, our proposed new TET training strategy dramatically increases the accuracy by 3.25%
when the simulation time is 4 and 3.53% when the simulation time is 6. These results quantitatively
support the effectiveness of TET in solving the mismatch between gradient and loss in training SNNs
with SG.
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Figure 2: Loss landscape of VGGSNN. The 2D landscape of LSDT and LTET from two different
training methods.

Table 1: Comparison between SDT and TET.
We adopt the SNN architecture ResNet-19 with
SG on CIFAR100 and record the results with
three different simulation lengths 2, 4, and 6.

Method T=2 T=4 T = 6
Direct training 69.41±0.08 70.86±0.22 71.12±0.57

TET 72.37±0.21 74.11±0.18 74.65±0.12

Table 2: Comparison of SDT and TET with sig-
moid function σ(k·input). We fix the simulation
length to 4 and record the results of CNN-5 un-
der three different k on CIFAR10.

Method k=1 k=10 k=20
Direct training 88.00±0.15 88.83±0.32 88.50±0.32

TET 87.63±0.38 89.31±0.15 88.64±0.28

Loss Landscape around Local Minima. We further inspect the 2D landscapes (Li et al., 2018) of
LSDT and LTET around their local minima (see Figure. 2) to demonstrate why TET generalizes better
than SDT and how TET helps the training process jump out of the sharp local minima typically
found by SDT. First, comparing Figure. 2 A and C, we can see that although the values of local
minima achieved by SDT and TET are similar in LSDT, the local minima of TET (Figure. 2 C)
is flatter than that of SDT (Figure. 2 A). This indicates that the TET is effective in finding flatter
minima that are typically more generalizable even w.r.t the original loss in TET. Next, we examine
the two local minima under LTET to see how it helps jump out the local minima found by SDT.
When comparing Figure. 2 B and D, we observe that the local minima found by SDT (Figure. 2 B)
is not only sharper than that found by TET (Figure. 2 D) under LSDT but also maintains a higher loss
value. This supports our claim that TET loss cannot be easily minimized around sharp local minima
(Figure. 2 B), thus preferable to converge into flatter local minima (Figure. 2 D). Put together, the
results here provide evidence for our reasoning in Section 4.2.

Training from SDT to TET. In this part, we further validate the ability of TET to escape from the
local minimum found by SDT. We adopt the VGGSNN with 300 epochs training on DVS-CIFAR10.
First, we optimize LSDT for 200 epochs and then change the loss function to LTET after epoch 200.
Figure 3 demonstrates the accuracy and loss change on the test set. After 200 epochs training, SDT

SDT Loss (SDT)
TET Loss (SDT)
SDT Loss (Change to TET)
TET Loss (Change to TET)

Te
st

 L
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EpochsEpochs

Te
st

 A
cc
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y

SDT
Change to TET

A B

Figure 3: TET helps to jump out the local minimum point. We provide the test accuracy (A) and
loss (B) change after changing the SDT to TET at epoch 200. TET efficiently improves the test
performance and reduces the two kinds of loss.
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Figure 4: Time scalability robustness and network efficiency of ResNet-19 on CIFAR100. (A) The
comparison of training from scratch (dots) and inheriting from a small simulation length (lines). (B)
SNN network performance changes with energy consumption.

gets trapped into a local minimum, and the LSDT no longer decreases. The LTET is much higher
than LSDT since SDT does not optimize it. Nevertheless, after we change the loss function to LTET,
the LTET and LSDT on the test set both have a rapid decline. This phenomenon illustrates the TET
ability to help the SNN efficiently jump out of the local minimum with poor generalization and find
another flatter local minimum.

Time Scalability Robustness. Here, we study the time scalability robustness of SNNs trained with
TET (LTET). First, we use 300 epochs to train a small simulation length ResNet-19 on CIFAR100
as the initial SNN. Then, we directly change the simulation length from 2 to 8 without finetuning
and report the network accuracy on the test set. Figure. 4. A displays the results after changing the
simulation length. We use 2, 3, and 4, respectively, as the simulation length of the initial network.
When we increase the simulation length, the accuracy of all networks gradually increases. After the
simulation time reaches a certain value, the network performance will slightly decrease. Interest-
ingly, SNNs trained from scratch (T=4 and T=6) are not as good as those trained following the TIT
procedure.

Network Efficiency. In this section, we measure the relationship between energy consumption
and network performance. SNN avoids multiplication on the inference since its binary activation
and event-based operation. The addition operation in SNN costs 0.9pJ energy while multiplication
operation consumes 4.6pJ measured in 45nm CMOS technology (Rathi & Roy, 2020). In our
SNN model, the first layer has multiplication operations, while the other layers only have addition
operations. Figure 4. B summarizes the results of different simulation times. In all cases, the SNN
obtained by TET has higher efficiency.

5.2 COMPARISON TO EXITING WORKS

In this section, we compare our experimental results with previous works. We validate the full TIT
algorithm (LTOTAL) both on the static dataset and neuromorphic dataset. All of the experiment results
are summarized in Table 5.2. We specify all the training details in the appendix A.1.

CIFAR. We apply TET and TIT algorithm on CIFAR (Krizhevsky et al., 2009), and report the mean
and standard deviation of 3 runs under different random seeds. The λ is set to 0.05. On CIFAR10,
our TET method achieves the highest accuracy above all existing approaches. Even when T = 2,
there is a 1.82% increment compare to STBP-tdBN with simulation length T = 6. It is worth noting
that our method is only 0.47% lower than the ANN performance. TET algorithm demonstrates
a more excellent ability on CIFAR100. It has an accuracy increase greater than 3% on all report
simulation lengths. In addition, when T = 6, the reported accuracy is only 0.63% lower than that
of ANN. We can see that the proposed TET’s improvement is even higher on complex data like
CIFAR100, where the generalizability of the model distinguishes a lot among minima with different
flatness.
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Table 3: Compare with existing works. Our method improves network performance across all tasks.
* denotes self-implementation results. † denotes data augmentation (Li et al., 2022).

Dataset Model Methods Architecture Simulation Length Accuracy

CIFAR10

Rathi et al. (2019) Hybrid training ResNet-20 250 92.22
Rathi & Roy (2020) Diet-SNN ResNet-20 10 92.54

Wu et al. (2018) STBP CIFARNet 12 89.83
Wu et al. (2019) STBP NeuNorm CIFARNet 12 90.53

Zhang & Li (2020) TSSL-BP CIFARNet 5 91.41

Zheng et al. (2021) STBP-tdBN ResNet-19
6 93.16
4 92.92
2 92.34

our model TET ResNet-19
6 94.50±0.07
4 94.44±0.08
2 94.16±0.03

ANN* ANN ResNet-19 1 94.97

CIFAR100

Rathi et al. (2019) Hybrid training VGG-11 125 67.87
Rathi & Roy (2020) Diet-SNN ResNet-20 5 64.07

Zheng et al. (2021)* STBP-tdBN ResNet-19
6 71.12±0.57
4 70.86±0.22
2 69.41±0.08

our model TET ResNet-19
6 74.72±0.28
4 74.47±0.15
2 72.87±0.10

ANN* ANN ResNet-19 1 75.35

ImageNet

Rathi et al. (2019) Hybrid training ResNet-34 250 61.48
Sengupta et al. (2018) SPIKE-NORM ResNet-34 2500 69.96

Zheng et al. (2021) STBP-tdBN Spiking-ResNet-34 6 63.72
Fang et al. (2021) SEW ResNet SEW-ResNet-34 4 67.04

our model TET Spiking-ResNet-34 6 64.79
TET SEW-ResNet-34 4 68.00

DVS-CIFAR10

Zheng et al. (2021) STBP-tdBN ResNet-19 10 67.8
Kugele et al. (2020) Streaming Rollout DenseNet 10 66.8

Wu et al. (2021) Conv3D LIAF-Net 10 71.70
Wu et al. (2021) LIAF LIAF-Net 10 70.40

our model TET VGGSNN 10 77.33±0.21
TET† VGGSNN 10 83.17±0.15

ImageNet. The training set of ImageNet (Krizhevsky et al., 2012) provides 1.28k training samples
for each label. We choose the two most representative ResNet-34 to verify our algorithm on Ima-
geNet with λ = 0.001. SEW-ResNet34 is not a typical SNN since it adopts the IF model and mod-
ifies the Residual structure. Although we only train our model for 120 epochs, the TET algorithm
achieves a 1.07% increment on Spiking-ResNet-34 and a 0.96% increment on SEW-ResNet34.

DVS-CIFAR10. The neuromorphic datasets suffer much more noise than static datasets. Thus the
well-trained SNN is easier to overfit on these datasets than static datasets. DVS-CIFAR10 (Li et al.,
2017), which provides each label with 0.9k training samples, is the most challenging mainstream
neuromorphic dataset. Recent works prefer to deal with this dataset by complex architectures, which
are more susceptible to overfitting and do not result in very high accuracy. Here, we adopt VGGSNN
on the DVS-CIFAR10 dataset, set λ = 0.001, and report the mean and standard deviation of 3
runs under different random seeds. Along with data augmentation methods, VGGSNN can achieve
an accuracy of 77.4%. Then we apply the TET method to obtain a more generalizable optima.
The accuracy rises to 83.17%. Our TET method outperforms existing state-of-the-art by 11.47%
accuracy. Without data augmentation methods, VGGSNN obtains 73.3% accuracy by SDT and
77.3% accuracy by TET.

6 CONCLUSION

This paper focuses on the SNN generalization problem, which is described as the direct training
SNN performs well on the training set but poor on the test set. We find this phenomenon is due to
the incorrect SG that makes the SNN easily trapped into a local minimum with poor generalization.
To solve this problem, we propose the temporal efficient training algorithm (TET). Extensive ex-
periments verify that our proposed method consistently achieves better performance than the SDT
process. Furthermore, TET significantly improves the time scalability robustness of SNN, which
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enables us to propose the time inheritance training (TIT) to significantly reduce the training time
consumption by almost a half.
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A APPENDIX

A.1 DATASET AND TRAINING DETAIL

CIFAR. The CIFAR dataset (Krizhevsky et al., 2009) consists of 50k training images and 10k testing
images with the size of 32 × 32. We use ResNet-19 for both CIFAR10 and CIFAR100. Moreover,
random horizontal flip and crop are applied to the training images the augmentation. First, we use
300 epoch to train the SNN with the simulation length T = 2. We use an Adam optimizer with
a learning rate of 0.01 and cosine decay to 0. Next, following the TIT algorithm, we increase the
simulation time (to 4 and 6) and continue training the SNN for only 50 epochs, with the learning
rate changing to 1e− 4.

ImageNet. ImageNet (Deng et al., 2009) contains more than 1250k training images and 50k valida-
tion images. We crop the images to 224×224 and using the standard augmentation for the training
data. We use an SGD optimizer with 0.9 momentum and weight decay 4e− 5. The learning rate is
set to 0.1 and cosine decay to 0. We train the SEW-ResNet34 (Fang et al., 2021) with T = 4 for 120
epochs. As for the Spiking-ResNet34 (Zheng et al., 2021), we use TIT algorithm to train 90 epochs
with T = 4 first, then change the simulation time to 6 and finetune the network for 30 epochs.
We adopt an Adam optimizer on the finetune phase and change the learning rate to 1e − 4. TIT
algorithm significantly reduces the training time consumption since training the Spiking-ResNet34
is extremely slow.

DVS-CIFAR10. DVS-CIFAR10 (Li et al., 2017), the most challenging mainstream neuromor-
phic data set, is converted from CIFAR10. It has 10k images with the size 128×128. Following
Samadzadeh et al. (2020), we divide the data stream into 10 blocks by time and accumulate the
spikes in each block. Then, we split the dataset into 9k training images and 1k test images and
reduce the spatial resolution to 48×48. Random horizontal flip and random roll within 5 pixels are
taken as augmentation (Li et al., 2022). We adopt VGGSNN architecture with 300 epochs training
on this classification task. And we use an Adam optimizer with the learning rate 1e− 3 and cosine
decay to 0. As for the case that does not apply any augmentation, we add a weight decay of 5e-4 to
the optimizer.

A.2 LSDT LOSS LANDSCAPE OF RESNET-19

Here we compare the classification loss (LSDT) landscapes of ResNet-19 on CIFAR100. The po-
sition around the local minimal value found by the SDT (LSDT) is very sharp. However, the area
around the local minimum found by TET (LTET) is much smoother (Figure 5), which indicates that
TET effectively improves the network generalization. Such improvements could be further utilized
to other techniques like privacy-preserving data generalization (Kim et al., 2021) and neural archi-
tecture search (Kim et al., 2022).

Standard Direct Training
SDT Loss

Temporal Efficient Training
SDT Loss

Figure 5: STD loss landscape of ResNet-19 on CIFAR100 from different training approaches.

A.3 EFFECT OF LMSE

In this part, we examine the effect of the regular term LMSE with 5 different levels of λ. Figure
6 Summarizes the final results. The regular term LMSE effectively increases the performance of
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both ResNet-19 on CIFAR100 and VGGSNN on DVS-CIFAR10. The static dataset CIFAR100 is
more suitable for larger λ, while smaller λ is suitable for DVS-CIFAR10. Theoretically, it is hard to
obtain satisfying performance at the early simulation moment due to the sparseness of neuromorphic
datasets. So too large regular term LMSE is not suitable for the neuromorphic dataset. Furthermore,
we find that a high λ may harm the early training phase on ImageNet, especially if zero-initialize
(Goyal et al., 2017) is not performed. As a result, we set λ to 5e − 2 for CIFAR10 and CIFAR100,
1e− 3 for ImageNet and DVS-CIFAR10.
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ResNet-19 on CIFAR100 VGGSNN on DVS-CIFAR10

Figure 6: The accuracy under different levels of λ.

A.4 STATISTICAL RESULTS

Here we provide statistical results (Figure 7) to prove that the total SNN accuracy is positively
associated with every average of moment’s output test accuracy. We train CNN-5 on CIFAR10 for
a total of 20 runs with SDT and 5 runs with TET.
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Figure 7: Statistical results. The overall performance of SNN is highly positively associated with
the average accuracy of each moment. The standard training obtains the green dots, while the red
dots are trained by the TET method.

A.5 TIME SCALABILITY ROBUSTNESS OF SDT AND TET.

Here we first show the test accuracy (ResNet19 on CIFAR100) of the membrane potential increment
at each moment instead of the integrated membrane potential. We set the initial simulation length of
the SNNs to 3 or 4 and trained them for a full 300 epochs. Then we expand their simulation length
to 8. As shown in table 4, TET (LTET) makes the membrane potential increment at each moment
have a higher classification ability than SDT (LSDT). And TET (1.41 and 0.08) also acquires a low
accuracy variance than SDT (3.81 and 4.04).

Then we compare the time scalability robustness between SDT (LSDT) and TET (LTET). We set the
initial simulation length of ResNet19 SNNs to 2, 3, 4 and train with SDT or TET. Then we gradually
increase SNN simulation length to 64 and record test accuracy of the integrated membrane potential.

14



Published as a conference paper at ICLR 2022

Simulation Length

A
cc

ur
ac

y

0 10 20 30 40 50 60 70
62.0

64.0

66.0

68.0

70.0

72.0

74.0

76.0

SDT with T = 4
SDT with T = 3
SDT with T = 2
TET with T = 4
TET with T = 3
TET with T = 2

SDT with T = 4
SDT with T = 3
SDT with T = 2
TET with T = 4
TET with T = 3
TET with T = 2

Simulation Length
0 10 20 30 40 50 60 70

A
cc

ur
ac

y 
 re

la
tiv

e 
gr

ow
th

 ra
te

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08
A B

Figure 8: The accuracy after increasing the simulation length. We first train the SNN with TET (only
use LTET) and SDT (LSDT) with simulation length (T) is 2, 3, or 4. Then, we increase the simulation
to 64 without finetuning and record the test the classification accuracy (A) and the accuracy relative
growth rate (B) of the total SNN output (integrate membrane potential) at each simulation time.

As we increase the simulation length, all the SNNs’ accuracy will first increase and then be stable
in a certain area. Meanwhile, TET (1.80) has a small accuracy variance than the SDT (11.13) after
increasing the simulation length. This phenomenon indicates that the initialization steps of TIT only
need a small simulation length SNN for TET but a sufficiently large simulation (or enough epochs
for finetuning step) for SDT.

Table 4: Accuracy of each moment’s membrane potential increment. We use LSDT or LTET to train
the networks with simulation length 3 or 4. Then directly increase their simulation length to 8 and
record each moment’s potential increment test accuracy.

Method T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8
SDT (T=3) 55.61 57.95 56.87 55.09 57.56 53.54 57.72 54.04
SDT (T=4) 37.96 61.78 55.03 56.64 57.47 54.24 58.74 55.48
TET (T=3) 65.97 72.22 71.78 70.55 71.90 69.57 72.15 69.78
TET (T=4) 62.17 71.57 71.05 72.08 71.77 71.23 71.81 71.36
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