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Abstract

In the continuously evolving field of Natural
Language Processing (NLP), we introduce a
nuanced problem: Document-Level Dense Pas-
sage Retrieval (DL-DPR). The specialized task
of extracting relevant passages from within in-
dividual, often complex, documents has not
been adequately addressed, with prevalent
dense retrieval methods primarily tailored for
broader, corpus-level contexts. This identi-
fied gap, where the intricacies and specifici-
ties of single-document analysis are often over-
looked, motivates our research. We propose a
novel approach, embedding a contrastive fine-
tuning method coupled with the augmentation
of datasets through queries generated by Large
Language Models (LLMs). This fusion of tech-
niques is meticulously designed to finetune
dense retrieval methods for the unique chal-
lenges presented by DL-DPR. Our approach,
when subjected to rigorous evaluation on mul-
tiple benchmark datasets and metrics like top-
k retrieval accuracy and MRR@ 10, exhibits
a marked enhancement in performance. The
findings not only validate our method but also
underscore the untapped potentials of refining
and adapting existing dense retrieval technolo-
gies for specialized tasks. This study, thus,
serves as both an introduction and a signifi-
cant contribution to this intricate sub-domain
of NLP, promising enhanced precision and effi-
ciency in information extraction from detailed
and lengthy documents.

1 Introduction

Passage retrieval, a cornerstone in fields rang-
ing from ad-hoc information retrieval to retrieval-
augmented generation (Lewis et al., 2020), open-
domain question answering (Karpukhin et al.,
2020), and fact verification (Thorne et al., 2018), is
undergoing a paradigm shift. While the traditional
sparse retrieval techniques like BM25 (Robertson
and Zaragoza, 2009) have stood the test of time,
the emergence of large-scale pre-trained language

models (Radford and Narasimhan, 2018; Devlin
et al., 2019; Liu et al., 2019; He et al., 2020;
Beltagy et al., 2020) has catalyzed a transition to-
wards neural dense retrieval methods (Karpukhin
et al., 2020; Xiong et al., 2020). These methods,
adept at projecting both queries and passages into a
low-dimensional vector space, calculate relevance
through dot product or cosine similarity, marking
an evolution in the passage retrieval landscape.

However, an overlooked yet significant domain
is the application of dense retrieval methods at the
document level, a realm distinct from the traditional
corpus-wide application. In this study, we intro-
duce and delve into Document-Level Dense Pas-
sage Retrieval (DL-DPR), characterized by the ex-
traction of contextually relevant passages from spe-
cific, individual documents. This nuanced task is
distinguished by its focus and precision, addressing
the need for targeted information retrieval within a
given document’s confines - a scenario commonly
encountered in legal, medical, academic, and busi-
ness settings.

The motivation for this research is rooted in
the observed limitations of current dense retrieval
methods when applied to the document-level con-
text. While adept at corpus-wide tasks, these mod-
els exhibit suboptimal performance in the face of
the unique challenges posed by DL-DPR. The com-
plexity and context-specific nuances of individual
documents necessitate a tailored approach, driv-
ing our exploration into optimizing dense retrieval
methods for this specific application.

We bridge this identified gap with a two-pronged
strategy. First, we conduct a comprehensive evalu-
ation of existing dense retrieval methods within the
DL-DPR context, unveiling their strengths and ar-
eas for improvement. This baseline analysis serves
as a foundation for our second initiative - the intro-
duction of a novel contrastive fine-tuning method.
Recognizing the data constraints inherent in current
datasets, characterized by the limited availability of



passage-level queries, we leverage Large Language
Models (LLMs) for query generation, enriching
the datasets to facilitate an effective model opti-
mization process. Our code base is available at
<redacted> !.

2 Related Work

The discipline of information retrieval (IR) aspires
to locate pertinent information in response to a
given ad-hoc query, serving as the backbone of
contemporary search engines. (Kobayashi and
Takeda, 2000; Manning, 2009; Chowdhury, 2010)
In recent times, the focus in IR has started to
transition from traditional BM25-based retrieval
methods using an inverted index to more innova-
tive dense retrieval techniques (Hofstitter et al.,
2022). While BM2S5 retrieval is characterized by
its efficiency and interpretability, it struggles to
bridge the lexical mismatch between queries and
passages. Efforts have been made to ameliorate
this issue via approaches like document expansion
(Tao et al., 2006) and query expansion (Carpineto
and Romano, 2012; Azad and Deepak, 2019). In
stark contrast, dense retrieval techniques, such
as DSSM (Huang et al., 2013), C-DSSM (Shen
et al., 2014), and DPR (Karpukhin et al., 2020),
opt to map queries and passages into a shared
low-dimensional vector space, promoting seman-
tic matching. The employment of a bi-encoder
architecture (Humeau et al., 2020), drawing from
pre-trained language models, has become preva-
lent for first-stage retrieval in knowledge-intensive
endeavors (Karpukhin et al., 2020; Wang et al.,
2022), spanning from open-domain question an-
swering to fact verification tasks. The search for
close matches can be performed efficiently using
approximate nearest neighbor (ANN) algorithms
(Aumiiller et al., 2020), such as HNSW (Malkov
and Yashunin, 2018).

The application of contrastive objectives in train-
ing dense retrieval models has emerged as an in-
fluential approach, with the potential to augment
retrieval effectiveness by influencing representation
learning. By creating an embedding space where
similar instances are drawn closer and dissimilar in-
stances are distanced, the effectiveness of retrieval
tasks can be enhanced. This technique has found
notable success in Dense Passage Retrieval studies
(Karpukhin et al., 2020) where models are trained

"For review purposes, our code base is available as part of
supplementary material.

to maximize the similarity between relevant queries
and passages, while minimizing the similarity with
irrelevant ones. Further applications include Sim-
CSE(Gao et al., 2021) where contrastive learning
was employed for learning sentence embeddings,
and ANCE (Xiong et al., 2020) that leverages ap-
proximate nearest neighbor negative contrastive
learning for dense text retrieval. Contriever (Izac-
ard et al., 2021) explores the limits of contrastive
learning as a way to train unsupervised dense re-
trievers and shows that it leads to strong perfor-
mance in various retrieval settings, while the CLIP
model (Radford et al., 2021) incorporated a con-
trastive objective to learn to comprehend and gener-
ate images and text simultaneously. SimLM (Wang
et al., 2022) also utilizes a contrastive objective
for self-supervised pre-training method for dense
passage retrieval.

Data augmentation, a critical strategy in machine
learning (Shorten and Khoshgoftaar, 2019; Feng
et al., 2021), has been extensively employed in
dense retrieval, improving model performance by
expanding and diversifying the training data. Ini-
tially, studies like Dense Passage Retrieval (DPR)
(Karpukhin et al., 2020) and work by Xiong et al.
relied on traditional techniques such as negative
sampling and in-batch negatives, creating negative
instances from irrelevant passages or passages from
other queries within the same batch. However,
more recently, the potential of Large Language
Models (LLMs) has been harnessed for data aug-
mentation in information retrieval tasks, as evident
in several significant studies. For example, InPars
(Bonifacio et al., 2022), Doc2Query (Gospodinov
et al., 2023), and Promptagator (Dai et al., 2022)
have leveraged LLMs to generate new queries
and expand documents. Additional works such as
UDEG (Jeong et al., 2021) and Query2doc (Wang
et al., 2023) further demonstrated the applicability
of LLMs for query and document expansion. These
advancements underscore the utility of LLMs in
enriching datasets for retrieval tasks, thus broad-
ening the scope of data augmentation techniques
beyond the creation of negative examples.

3 Methodology

3.1 Problem Definition

In Document-Level Dense Passage Retrieval (DL-
DPR), our objective is to identify the top-k pas-
sages from a given document D; that are most rel-
evant to a given query q. We formally define it as
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Figure 1: Overview of Document-level Dense Passage Retrieval (DL-DPR). (Left) Training step using the contrastive
objective on a single document. (Right) Inference step to retrieve top-k relevant passages from document.

follows:

P* = Top, {sim(q,p) |p € P;}

where k << | D] (the number of passages in
document), each p € F; is a passage in document
D; and sim(q, p) calculates the similarity score be-
tween the query ¢ and passage p, defined as:

sim(q, p) = Eq(q)" Ep(p).

Here, Eg and Ep denote the query and pas-
sage encoders that map their inputs into a shared
d-dimensional space.

3.2 Training Objective

We consider a collection of training documents
D = {Dy, Ds,...,Dn}, each associated with a
set of passages F; and queries ();. A crucial aspect
of our methodology is that each training batch is
optimized using query-passage pairs from a sin-
gle document. This constraint is pivotal for tailor-
ing the model to document-level contexts. From
a given document D;, we select m distinct query-
passage pairs (q1, 1), - - (Gm» Prm).

We initiate the training with pre-trained encoders
E¢ and E'p that are already adept at open-domain
passage retrieval. The objective then is to fine-tune
these base models, namely the query and passage
encoders, to specialize in document-level retrieval.
The embeddings for queries and passages are com-
puted as:

Qe = [EQ<Q1)7EQ<q2)v s 7EQ(qm>]7
P = [Ep(pl),EpQ)Q), cee >EP(pm)}'

The similarity matrix S is computed as the scaled
dot-product of these embeddings, adjusted by an
exponential temperature parameter ¢:

S=Q. P xeé.

Cross-entropy losses for the queries and pas-
sages are then calculated:

Lo=— yilog(f(S:),
=1

Ly == wilog(f(S])),
i=1

with each element being defined as follows:

e S, and SiT are the ¢-th row of the similarity
matrix and its transpose respectively,

* y; represents the true label i, encoded as one-
hot vector,

* f(-) is the softmax function, transforming the
similarity scores into probabilities.

The symmetric contrastive loss £ is then calcu-
lated as the average of £, and L,:



Lq+ L,
—

This objective refines the model to efficiently
discern the relevancy of passages in response to
a given query, tailored specifically for individual
document contexts, thereby boosting its document-
level retrieval performance. Figure 1 depicts a
schematic representation of the training and in-
ference setups for document-level dense passage
retrieval (DL-DPR).

L=

3.3 Question-Generation-based
Data-Augmentation

The paradigm of our proposed methodology empha-
sizes the retrieval of positive question-passage pairs
from a singular document at each step. The Stan-
ford Question Answering Dataset (SQuAD) (Ra-
jpurkar et al., 2018) fits well with this requirement
due to its rich distribution of question-associated
passages at the document level. However, certain
large-scale datasets such as Natural Questions (NQ)
(Kwiatkowski et al., 2019), NewsQA (Trischler
et al., 2017), despite their extensive content, pose a
challenge with their sparse provision of question-
passage pairs at the document level. In these
datasets, an entire document might be linked with
only one or two questions, leaving a substantial
number of passages without any corresponding
questions. Our contrastive objective thrives on a
wider set of pairs at the document level to enhance
performance. This sparsity of question-passage
pairs in these datasets inhibits the optimal opera-
tion of our method.

Inspired by recent works that have effectively
employed Large Language Models (LLMs) for data
augmentation, we decided to incorporate the same
approach for our use-case. Specifically, we utilize
Flan-T5 (Chung et al., 2022), a publicly available
instruction-tuned LLM, to enrich our datasets. We
prompt Flan-T5 to generate questions for passages
that lack associated questions in the dataset. This
method significantly alleviates data sparsity and en-
riches the documents with a larger set of question-
passage pairs, thereby enhancing the performance
of our model.

3.4 Fine-tuning Process

Our approach begins by utilizing the pre-trained
models specifically designed for dense passage re-
trieval tasks. These models are trained on large-
scale datasets like MS MARCO (Bajaj et al., 2016),

Natural Questions (NQ) (Kwiatkowski et al., 2019)
and CCNet (Wenzek et al., 2020). Subsequently,
these models undergo a fine-tuning process using
our unique contrastive objective on the enriched
training data, which has been augmented using the
aforementioned question-generation process. The
fine-tuning phase consists of optimizing the pa-
rameters of the model to minimize the discrepancy
between embeddings of relevant question-passage
pairs using the symmetric cross-entropy loss.

4 Experiments

In this section, we describe our experimental setup,
including the datasets we used, the baseline mod-
els we compared with, and the evaluation metrics.
Furthermore, we delve into the specifics of our fine-
tuning process and the implementation details of
our proposed method.

4.1 Datasets

In our research, we utilize a diverse set of datasets
including widely used English language bench-
marks SQuAD (Rajpurkar et al., 2018), Natural
Questions (NQ) (Kwiatkowski et al., 2019), and
NewsQA (Trischler et al., 2017), along with sev-
eral non-English datasets SQuAD-es (Carrino et al.,
2019), SQuAD-bn (Tasmiah Tahsin Mayeesha and
Rahman, 2021), FQuAD (Martin et al., 2020), Ko-
rQuAD (Lim et al., 2019), and ARCD (Mozannar
et al., 2019) catering to Spanish, Bengali, French,
Korean, and Arabic languages respectively. Our
method is applied to fine-tune dense retrieval mod-
els on these datasets for the document-level passage
retrieval task, offering a thorough evaluation across
different languages and contexts. Each dataset,
with its linguistic and contextual nuances, provides
a distinct set of challenges, enabling a comprehen-
sive appraisal of our method’s versatility.

SQuAD is a reading comprehension dataset on a
set of Wikipedia articles, with each article compris-
ing several paragraphs. Every paragraph is paired
with a set of questions that pertain specifically to
the information contained within that paragraph.
Unlike SQuAD, NQ does not explicitly provide
paragraphs for each document. Instead, we use
non-overlapping long answer candidates as para-
graphs for each document. It is noteworthy that
only a few questions are linked to the entire doc-
ument, leaving many paragraphs without associ-
ated questions. In NewsQA, we are not provided
with explicit paragraphs for each news story. To



construct a comparable structure, we implement
a rule-based heuristic to merge several sentences
into paragraphs of less than 128 words. However,
similar to NQ, not all paragraphs are paired with
questions in this dataset. Note that we use the de-
velopment set as a test set for SQuUAD and NQ as
their test sets are not available. For NQ, we use a
subset of 9173 documents for data-augmentation
and training. Table 1 shows the number of para-
graphs and documents in the training and test sets
for all the datasets.

Dataset Train Test

Docs Paras | Docs Paras
SQuAD 442 19,035 35 1,204
NewsQA 11,469 66,042 634 3,697
NQ 9,173 | 303,579 | 3,486 | 125,601
SQuAD-es 442 18,896 48 2,067
SQuAD-bn 241 10,289 61 2,633
FQuAD 117 4,921 18 768
KorQuAD 1,420 9,681 140 964
ARCD 77 231 78 234

Table 1: Summary of datasets and their train-test splits.

Our proposed method operates by extracting pos-
itive question-passage pairs from a single document
per training batch. Therefore, if most paragraphs
lack associated questions, it would significantly re-
duce the batch-size, making it unsuitable for our
fine-tuning method. To address this, we employ
data augmentation on the training data through
question generation. For data augmentation, we
utilized passages that do not have linked questions
within the same datasets. We generated questions
for these passages using the Flan-T5 LLM (Chung
et al., 2022), expanding our training set signifi-
cantly. Note that we do not employ data augmen-
tation for SQuAD and other non-English datasets,
as most of the paragraphs in these datasets have
multiple related questions available. Table 2 shows
the number of questions before and after data aug-
mentation in our training datasets.

Dataset | Original | Augmented
NewsQA 68,009 338,047
NQ 10,000 1,099,373

Table 2: Total number of questions in training datasets
before and after data augmentation.

4.2 Baseline Models

For our study, we select an array of retrieval models
as our baselines, each embodying different strate-
gies and techniques prevalent in the field of dense

passage retrieval. We select BM25 (Robertson and
Zaragoza, 2009) as our sparse retrieval baseline,
given its wide acceptance and use in the field of
information retrieval. In the dense retrieval do-
main, we initially consider DPR (Karpukhin et al.,
2020), which laid the foundation for dense pas-
sage retrieval. To provide a more comprehensive
evaluation, we include recently developed models
like RocketQA (Qu et al., 2021), PAIR (Ren et al.,
2021a), and RocketQA v2 (Ren et al., 2021b), each
introducing unique approaches to dense passage re-
trieval. Moreover, we consider state-of-the-art mod-
els Contriever (Izacard et al., 2021) and SimLM
(Wang et al., 2022), which represent the most re-
cent advances in this field. Notably, we focus on
evaluating the retrieval component of these DPR
models, not the re-ranking component. We assess
the performance of these diverse retrieval models
specifically in the context of our document-level
passage retrieval task. For the fine-tuning exper-
iments, we select DPR, SimLLM, and Contriever
models. Subsequently, by fine-tuning these base-
lines with our method, we aim to offer a compre-
hensive evaluation of our approach’s performance
and its potential improvements to the field.

4.3 Evaluation Metrics

We use standard evaluation metrics to evaluate the
performance of our model, namely Top-k Retrieval
Accuracy (Karpukhin et al., 2020) and Mean Re-
ciprocal Rank (MRR). In our datasets, only one
relevant passage corresponds to a given question.
Thus, we do not use metrics like normalized dis-
counted cumulative gain (NDCG) and mean av-
erage precision (MAP) which are generally used
to evaluate retrieval systems where multiple pas-
sages may be relevant to a single question. For
all datasets, we compute Top-1, Top-3, and Top-5
retrieval accuracies and MRR@10.

4.4 Implementation Details

For our experiments, we utilize PyTorch (Paszke
et al., 2017) deep learning framework, the Hugging
Face Transformers library (Wolf et al., 2020), and
the Sentence Transformers library (Reimers and
Gurevych, 2019). We use the pre-trained models
available in these libraries as the starting point for
our fine-tuning process. For each model, we run our
experiments on a single NVIDIA Tesla V100 GPU
with 32GB memory. We conduct a grid-search to
identify optimal hyperparameters for our method,
including learning rate, weight decay, and batch



size. We use Adam (Kingma and Ba, 2017) opti-
mizer for training. To prevent overfitting, we apply
early-stopping during the fine-tuning process.

For our data augmentation process, we use Flan-
T5 LLM (Chung et al., 2022) with a maximum
sequence length of 256 tokens to generate ques-
tions. To prevent the generation of irrelevant or
nonsensical questions, we carefully crafted the
prompt, providing Flan-T5 with adequate context
and setting clear expectations for the output with
appropriate stopping conditions. To expedite the
data-augmentation process and reduce the infer-
ence cost, we perform batch inference for each
paragraph to generate multiple questions in a sin-
gle response in order to avoid making multiple
requests for the same paragraph. We experimented
with varied prompts to find the best prompt for
our use-case. For our final experiments we used
the following prompt to augment data: Generate a
question which can be answered using given con-
text: <paragraph>. We set the inference-time pa-
rameters for the Flan-T5 LLM as follows: tempera-
ture as 1, repetition penalty as 1.05 and number of
beams as 9.

4.5 Evaluation Setup

The evaluation process is designed to measure the
efficacy of retrieval model in determining the most
relevant passage for each question within a given
document. Here is the step-by-step procedure:

1. Embedding Computation: We start by com-
puting embeddings for all passages and ques-
tions within each document. These embed-
dings are generated using our trained model,
encapsulating the contextual intricacies of
each text piece.

2. Similarity Scoring: Next, for each question,
we measure its similarity scores with all the
passages within the same document. This pro-
cess involves calculating the dot product or
cosine similarity between the question and
passage embeddings, reflecting how semanti-
cally close they are.

3. Passage Ranking: Using the computed simi-
larity scores, we rank all the passages within
the document for each question. The passage
with the highest similarity score for a given
question receives the highest rank.

4. Performance Metrics: After the ranking pro-
cess, we compute aforementioned evaluation

metrics based on these rankings to measure
the model’s ability in identifying the correct
passage in response to each question.

By following this setup, we are able to evaluate
the model’s performance in associating relevant
passages to the corresponding questions within a
document. The goal is to ensure that the correct pas-
sage is ranked as high as possible for each question,
thereby demonstrating the model’s effectiveness.
We leave the end-to-end evaluation of question-
answering accuracy as future work.

5 Results and Discussion

5.1 Results

First, we benchmark out-of-the-box performance
of various pre-trained dense retrieval models ap-
plied to our document-level passage retrieval task.
The detailed results are provided in Table 3. The
top-performing models from DPR, SimLLM and
Contriever methods are utilized as a baseline for
evaluating the impact of our proposed fine-tuning
method.

Tables 4, 5, 6, 7 present the results of our method
on SQuAD, NewsQA, NQ and other non-English
datasets respectively. For each method, the first row
shows the retrieval performance of a pre-trained
model before fine-tuning and the second row shows
the retrieval performance after performing fine-
tuning with our method on a given dataset. This
allows us to isolate and assess the contribution of
our proposed method in improving the model’s ef-
ficacy. For the non-English datasets, we utilize
the multi-lingual dense retriever - the Contriever
model pre-trained on CC-net (29 languages) and
MS-MARCO datasets.

Figure 2 offers insight into an ablation study we
conducted, focusing on the configuration of our
fine-tuning method. In our approach, pairs in a
given training batch must originate from a single
document. We conducted this study to highlight
the importance of this constraint. Specifically, we
compare results of our method with an alternative
scenario - Mixed-Batch, where we loosen this con-
straint by allowing pairs to come from different doc-
uments. The results of this study clearly illustrate
the superiority of our method, as it outperforms the
alternative configuration.

We also conduct additional experiments to study
the impact of document length on the performance
of our approach. The detailed report of the results
is provided in Appendix A.



Model SQuAD NewsQA NQ

Top-1 | Top-3 | MRR | Top-1 | Top-3 | MRR | Top-1 | Top-3 | Top-5 | MRR
BM25 68.7 83.1 76.8 57.8 83.9 73.3 19.9 40.1 51.8 33.7
DPR
Single-NQ 47.7 70.6 61.1 40.1 73.4 59.6 39.7 64.6 75.7 54.8
Multi 51.2 72.1 63.6 49.7 82.3 67.4 40.0 64.6 75.5 55.1
RocketQA
MS MARCO 67.0 84.4 76.6 61.8 88.6 76.0 41.6 67.3 77.9 56.8
NQ 64.6 83.0 75.0 62.7 89.8 76.9 41.1 69.4 81.0 57.8
PAIR
MS MARCO 66.6 83.4 76.1 61.4 88.0 75.7 40.5 67.0 71.3 56.1
NQ 61.0 79.7 71.8 58.3 87.1 73.5 42.0 68.8 79.5 57.9
RocketQA v2
MS MARCO 64.0 82.1 74.1 61.0 88.6 75.5 41.1 66.9 76.5 56.3
NQ 57.9 78.8 69.7 57.9 86.6 73.1 453 70.5 79.8 59.9
Contriever
CC-net & Wiki pt 68.1 86.1 78.2 53.1 85.2 70.1 18.0 422 55.3 34.0
+ MS MARCO ft 75.2 90.7 83.5 65.2 91.0 78.7 39.0 64.7 75.6 54.6
CC-net 29 lang. pt 60.5 81.5 72.4 46.6 81.2 65.3 17.9 40.3 53.2 33.1
+ MS MARCO ft 73.4 89.7 82.2 63.6 89.9 71.3 333 61.2 72.8 50.1
SimLM
MS MARCO pt 51.2 71.8 63.5 44.4 81.2 64.3 4.8 17.2 29.6 15.9
+ finetune & distill | 68.0 84.4 77.2 63.6 88.7 77.0 41.0 66.0 76.5 56.2
Wiki pt 47.1 66.9 59.2 45.9 79.9 64.4 9.6 27.0 39.8 22.6

Table 3: Benchmarking various dense retrieval models for document-level passage retrieval task on SQuAD,
NewsQA and NQ datasets. Top-k retrieval accuracy and MRR@ 10 metrics are shown for each model. Note that pt

and ft stand for pre-training and fine-tuning respectively.

Model Top-1 | Top-3 | Top-5 | MRR@10 Model Top-1 | Top-3 | Top-5 | MRR@10
DPR 51.2 72.1 80.2 63.6 DPR 40.7 65.4 76.2 55.8
+DL-DPR | 55.2 75.6 83.3 67.1 +DL-DPR | 433 69.0 79.9 58.6
SimLM 68.0 84.4 89.5 77.2 SimLM 42.1 67.0 77.4 57.1
+DL-DPR | 71.1 86.9 91.8 79.9 +DL-DPR | 434 69.6 79.9 58.6
Contriever 75.2 90.7 94.5 83.5 Contriever 39.0 64.7 75.6 54.6
+ DL-DPR 81.3 94.2 96.8 88.0 +DL-DPR | 40.8 67.8 78.1 56.7

Table 4: DL-DPR fine-tuning results on SQuAD.

Model Top-1 | Top-3 | Top-5 | MRR@10
DPR 49.7 82.3 93.0 67.4
+DL-DPR | 59.0 86.7 95.1 73.9
SimLM 63.6 88.7 95.5 77.0
+DL-DPR | 67.3 90.1 96.5 79.5
Contriever | 65.2 91.0 97.1 78.7
+DL-DPR | 71.6 93.3 97.7 82.7

Table 5: DL-DPR fine-tuning results on NewsQA.

5.2 Discussion

Our experimental results underline the significant
contribution of our fine-tuning method to the ef-
fectiveness of dense retrieval models in document-
level passage retrieval tasks. The ablation study
elucidates the critical importance of extracting posi-
tive question-passage pairs from a single document

Table 6: DL-DPR fine-tuning results on NQ.

Dataset Top-1 | Top-3 | Top-5 | MRR@10
SQuAD-es | I | &0 | o3s | g3
sQuAD-bn | 207 | 200 | 8 | ST
FQUAD | 55 | 1o | w70 | 754
KorQuaD | 0 | a7 | oo | sao
ARCD Q0T T

Table 7: Results on non-English datasets with multi-
lingual Contriever before/after DL-DPR fine-tuning.

per training batch. This configuration manifests
in a substantial improvement in the model’s per-
formance when compared to allowing pairs to be
drawn from different documents. This finding im-
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Figure 2: Ablation study on the effect of batch composition in the fine-tuning process. Each sub-figure presents the
performance comparison (MRR @ 10) of pre-trained models, Mixed-Batch, and DL-DPR on different datasets.

plies that preserving the document-level context is
crucial for the model to better understand and infer
the relevance of the passages to the questions.

Note that the NQ dataset contains on an av-
erage longer documents than other datasets and
the number of documents in the test set of NQ is
much bigger compared to any other dataset in our
study, which makes it more challenging compared
to SQuAD and NewsQA.

When comparing our results with the baseline
models, it is evident that our method leads to an ap-
preciable enhancement in evaluation metrics across
all the datasets. Even with the state-of-the-art mod-
els like Contriever and SimL.M, our method fine-
tunes them to achieve superior performance. This
signifies the potential of our fine-tuning approach
to serve as a novel strategy in the ongoing evolution
of dense passage retrieval techniques.

On the non-English datasets too, we observe
a consistent and considerable improvement in all
metrics after fine-tuning with our method. This
demonstrates the soundness of our approach across
different languages.

Our experiments to study the impact of docu-
ment length (Appendix A) on the document level
retrieval suggest that the increase in the number
of passages leads to gradual decrease in the perfor-
mance. This is understandable as the increase in the
number of passages increases the search space as
well. The key point to note is that, our fine-tuning
approach consistently surpasses the baseline, un-
derscoring its effectiveness across a diverse range
of document lengths.

5.3 Future Work

Looking forward, we envision abundant opportuni-
ties for enhancing our methodology and expanding
its applications. Firstly, we aim to refine the ques-
tion generation process by probing more sophis-

ticated techniques that could yield better quality
questions, thus amplifying the efficacy of our data
augmentation. This might involve delving into ad-
vanced fine-tuning techniques of language models
or harnessing novel developments in controllable
text generation.

Secondly, to scale up our fine-tuning process for
larger datasets and better computational efficiency,
we propose exploring strategies that are adept at
identifying and ranking multiple relevant passages
for a given question. This would more accurately
reflect real-world information retrieval scenarios.

Finally, the relevance and impact of our approach
extend to domain-specific tasks. Particularly in
areas such as legal, academic, or medical fields,
where document-level retrieval can significantly
aid in information extraction and comprehension.
This potential for domain-specific applicability em-
phasizes the robustness and versatility of our ap-
proach, thereby inspiring us to continually push its
boundaries in future explorations.

6 Conclusion

This study introduces the problem of document-
level dense passage retrieval (DL-DPR) and pro-
poses a novel fine-tuning approach, leveraging
a contrastive objective with a constraint to limit
query-passage pairs in a batch from the same doc-
ument. Our method addresses the challenge of
sparse query-passage pairs in large-scale datasets
by employing LLM for question-generation-based
data augmentation, thereby enriching the training
set. Through comprehensive experiments, our ap-
proach consistently surpasses the efficacy of tradi-
tional methods across various datasets and metrics.
The promise of this method opens up potential fu-
ture avenues for its application across a broader
range of information retrieval tasks, establishing
the state-of-the-art in this domain.



Limitations

Despite the encouraging results of our approach, it
is not without its limitations. First and foremost,
our method relies heavily on the quality of ques-
tions generated by the LLM during data augmenta-
tion. While it typically generates questions that are
coherent and contextually sensible, there could be
instances where the questions lack relevance to the
corresponding passage or fail to accurately reflect
its content. Moreover, the process of generating
questions using an LLM can be time-consuming
and computationally costly, which could pose chal-
lenges for large-scale applications. Second, our
current implementation assumes a single relevant
passage per question. The future works can investi-
gate ways to adapt it for the real-world scenarios
where multiple passages within a document may
provide valuable context or insights in response to
a given question. These limitations offer avenues
for potential future work to further enhance the
applicability and effectiveness of our method.
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A Impact of Document Length on
Performance

We conduct supplementary experiments to study
the influence of document length on the efficacy of
our approach. The documents within the datasets
were categorized based on the number of passages
they contained as shown in Tables 8, 9, 10. We eval-
uated the performance metrics, namely MRR@10
and Top-1 retrieval accuracy, across these differ-
ent categories to gain insights into the relationship
between document length and retrieval accuracy.
These results are provided in Tables 11, 12, 13, 14,
15, 16. We notice that, as the number of passages
increase, the search space increases which leads to
gradual decrease in metric value. Nevertheless, it is
evident that our fine-tuning approach consistently
surpasses the baseline, underscoring its effective-
ness across a diverse range of document lengths.

#passages | count
20-24 10
25-29 5
30-34 2
35-39 7
40-44 5
45-49 6

Table 8: Distribution of documents according to passage
count in SQuUAD test set.
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#passages | Count
1-50 2,741
51-100 536
101-150 138
151-200 50
201-250 15
250+ 6

Table 9: Distribution of documents according to passage count in NQ test set.

#passages | Count
1-5 338
6-10 233
11-15 58
16-20 5

Table 10: Distribution of documents according to passage count in NewsQA test set.

Model 20-24 | 25-29 | 30-34 | 35-39 | 40-44 | 45-49
DPR 684 | 67.8 | 61.1 64.3 | 59.1 61.2
+DL-DPR | 724 | 69.5 | 61.5 | 485 | 63.1 65.2
SimLM 80.6 | 77.6 | 764 | 777 | 74.8 | 75.8

+DL-DPR | 83.7 | 80.6 | 78.3 80.5 | 76.8 | 80.0
Contriever | 858 | 857 | 81.9 | 84.2 | 809 | 82.1
+ DL-DPR | 90.1 88.9 | 86.3 87.1 84.7 | 854

Table 11: SQuAD - #passages vs MRR@ 10

Model 20-24 | 25-29 | 30-34 | 35-39 | 40-44 | 45-49
DPR 55.6 | 56.6 | 46.7 | 51.7 | 473 | 48.7
+DL-DPR | 60.6 | 584 | 483 | 57.0 | 51.8 | 52.6
SimLM 719 | 689 | 658 | 68.8 | 654 | 66.0

+ DL-DPR | 75.7 71.7 67.9 72.3 67.2 68.6
Contriever | 77.7 78.2 72.5 76.7 72.0 73.2
+ DL-DPR | 84.1 82.7 78.3 80.3 77.3 77.7

Table 12: SQuAD - #passages vs Top-1 Accuracy

Model 1-50 | 51-100 | 101-150 | 151-200 | 201-250 | 251+
DPR 584 | 448 50.3 43.9 48.8 37.5
+DL-DPR | 62.0 | 44.7 46.7 47.7 48.0 50.0

SimLM 59.7 | 46.2 54.8 42.2 44.4 18.5
+ DL-DPR | 60.5 | 48.0 52.4 40.4 43.3 222
Contriever | 58.2 | 45.2 46.9 41.5 37.5 354
+DL-DPR | 595 | 459 50.6 46.6 43.5 354

Table 13: NQ - #passages vs MRR@10
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Model 1-50 | 51-100 | 101-150 | 151-200 | 201-250 | 251+
DPR 428 | 31.7 36.2 30.0 40.0 333
+ DL-DPR | 46.3 | 29.1 333 36.0 40.0 50.0
SimLM 442 | 32.8 43.5 30.0 333 16.7
+ DL-DPR | 445 | 343 37.7 28.0 26.7 16.7
Contriever | 42.2 | 31.1 32.6 28.0 26.7 333
+DL-DPR | 429 | 328 37.7 32.0 333 333

Table 14: NQ - #passages vs Top-1 Accuracy

Model 1-5 | 6-10 | 11-15 | 16-20
DPR 74.4 | 55.1 | 50.7 333
+ DL-DPR | 80.5 | 62.6 | 56.9 | 43.2
SimLM 83.4 | 664 | 60.3 54.9
+ DL-DPR | 857 | 69.3 | 65.5 51.8
Contriever | 84.4 | 69.0 | 64.7 58.6
+DL-DPR | 87.3 | 73.9 | 68.6 | 72.1

Table 15: NewsQA - #passages vs MRR@10

Model 1-5 | 6-10 | 11-15 | 16-20
DPR 56.7 | 35.0 | 30.6 11.3
+ DL-DPR | 66.5 | 445 | 40.5 28.0
SimLM 70.8 | 50.0 | 45.3 35.3
+DL-DPR | 747 | 53.7 | 51.6 | 26.0
Contriever | 72.3 | 52.1 | 46.9 38.7
+DL-DPR | 77.3 | 59.0 | 54.0 | 58.7
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Table 16: NewsQA - #passages vs Top-1 Accuracy
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