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Abstract

In the continuously evolving field of Natural001
Language Processing (NLP), we introduce a002
nuanced problem: Document-Level Dense Pas-003
sage Retrieval (DL-DPR). The specialized task004
of extracting relevant passages from within in-005
dividual, often complex, documents has not006
been adequately addressed, with prevalent007
dense retrieval methods primarily tailored for008
broader, corpus-level contexts. This identi-009
fied gap, where the intricacies and specifici-010
ties of single-document analysis are often over-011
looked, motivates our research. We propose a012
novel approach, embedding a contrastive fine-013
tuning method coupled with the augmentation014
of datasets through queries generated by Large015
Language Models (LLMs). This fusion of tech-016
niques is meticulously designed to finetune017
dense retrieval methods for the unique chal-018
lenges presented by DL-DPR. Our approach,019
when subjected to rigorous evaluation on mul-020
tiple benchmark datasets and metrics like top-021
k retrieval accuracy and MRR@10, exhibits022
a marked enhancement in performance. The023
findings not only validate our method but also024
underscore the untapped potentials of refining025
and adapting existing dense retrieval technolo-026
gies for specialized tasks. This study, thus,027
serves as both an introduction and a signifi-028
cant contribution to this intricate sub-domain029
of NLP, promising enhanced precision and effi-030
ciency in information extraction from detailed031
and lengthy documents.032

1 Introduction033

Passage retrieval, a cornerstone in fields rang-034

ing from ad-hoc information retrieval to retrieval-035

augmented generation (Lewis et al., 2020), open-036

domain question answering (Karpukhin et al.,037

2020), and fact verification (Thorne et al., 2018), is038

undergoing a paradigm shift. While the traditional039

sparse retrieval techniques like BM25 (Robertson040

and Zaragoza, 2009) have stood the test of time,041

the emergence of large-scale pre-trained language042

models (Radford and Narasimhan, 2018; Devlin 043

et al., 2019; Liu et al., 2019; He et al., 2020; 044

Beltagy et al., 2020) has catalyzed a transition to- 045

wards neural dense retrieval methods (Karpukhin 046

et al., 2020; Xiong et al., 2020). These methods, 047

adept at projecting both queries and passages into a 048

low-dimensional vector space, calculate relevance 049

through dot product or cosine similarity, marking 050

an evolution in the passage retrieval landscape. 051

However, an overlooked yet significant domain 052

is the application of dense retrieval methods at the 053

document level, a realm distinct from the traditional 054

corpus-wide application. In this study, we intro- 055

duce and delve into Document-Level Dense Pas- 056

sage Retrieval (DL-DPR), characterized by the ex- 057

traction of contextually relevant passages from spe- 058

cific, individual documents. This nuanced task is 059

distinguished by its focus and precision, addressing 060

the need for targeted information retrieval within a 061

given document’s confines - a scenario commonly 062

encountered in legal, medical, academic, and busi- 063

ness settings. 064

The motivation for this research is rooted in 065

the observed limitations of current dense retrieval 066

methods when applied to the document-level con- 067

text. While adept at corpus-wide tasks, these mod- 068

els exhibit suboptimal performance in the face of 069

the unique challenges posed by DL-DPR. The com- 070

plexity and context-specific nuances of individual 071

documents necessitate a tailored approach, driv- 072

ing our exploration into optimizing dense retrieval 073

methods for this specific application. 074

We bridge this identified gap with a two-pronged 075

strategy. First, we conduct a comprehensive evalu- 076

ation of existing dense retrieval methods within the 077

DL-DPR context, unveiling their strengths and ar- 078

eas for improvement. This baseline analysis serves 079

as a foundation for our second initiative - the intro- 080

duction of a novel contrastive fine-tuning method. 081

Recognizing the data constraints inherent in current 082

datasets, characterized by the limited availability of 083
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passage-level queries, we leverage Large Language084

Models (LLMs) for query generation, enriching085

the datasets to facilitate an effective model opti-086

mization process. Our code base is available at087

<redacted> 1.088

2 Related Work089

The discipline of information retrieval (IR) aspires090

to locate pertinent information in response to a091

given ad-hoc query, serving as the backbone of092

contemporary search engines. (Kobayashi and093

Takeda, 2000; Manning, 2009; Chowdhury, 2010)094

In recent times, the focus in IR has started to095

transition from traditional BM25-based retrieval096

methods using an inverted index to more innova-097

tive dense retrieval techniques (Hofstätter et al.,098

2022). While BM25 retrieval is characterized by099

its efficiency and interpretability, it struggles to100

bridge the lexical mismatch between queries and101

passages. Efforts have been made to ameliorate102

this issue via approaches like document expansion103

(Tao et al., 2006) and query expansion (Carpineto104

and Romano, 2012; Azad and Deepak, 2019). In105

stark contrast, dense retrieval techniques, such106

as DSSM (Huang et al., 2013), C-DSSM (Shen107

et al., 2014), and DPR (Karpukhin et al., 2020),108

opt to map queries and passages into a shared109

low-dimensional vector space, promoting seman-110

tic matching. The employment of a bi-encoder111

architecture (Humeau et al., 2020), drawing from112

pre-trained language models, has become preva-113

lent for first-stage retrieval in knowledge-intensive114

endeavors (Karpukhin et al., 2020; Wang et al.,115

2022), spanning from open-domain question an-116

swering to fact verification tasks. The search for117

close matches can be performed efficiently using118

approximate nearest neighbor (ANN) algorithms119

(Aumüller et al., 2020), such as HNSW (Malkov120

and Yashunin, 2018).121

The application of contrastive objectives in train-122

ing dense retrieval models has emerged as an in-123

fluential approach, with the potential to augment124

retrieval effectiveness by influencing representation125

learning. By creating an embedding space where126

similar instances are drawn closer and dissimilar in-127

stances are distanced, the effectiveness of retrieval128

tasks can be enhanced. This technique has found129

notable success in Dense Passage Retrieval studies130

(Karpukhin et al., 2020) where models are trained131

1For review purposes, our code base is available as part of
supplementary material.

to maximize the similarity between relevant queries 132

and passages, while minimizing the similarity with 133

irrelevant ones. Further applications include Sim- 134

CSE(Gao et al., 2021) where contrastive learning 135

was employed for learning sentence embeddings, 136

and ANCE (Xiong et al., 2020) that leverages ap- 137

proximate nearest neighbor negative contrastive 138

learning for dense text retrieval. Contriever (Izac- 139

ard et al., 2021) explores the limits of contrastive 140

learning as a way to train unsupervised dense re- 141

trievers and shows that it leads to strong perfor- 142

mance in various retrieval settings, while the CLIP 143

model (Radford et al., 2021) incorporated a con- 144

trastive objective to learn to comprehend and gener- 145

ate images and text simultaneously. SimLM (Wang 146

et al., 2022) also utilizes a contrastive objective 147

for self-supervised pre-training method for dense 148

passage retrieval. 149

Data augmentation, a critical strategy in machine 150

learning (Shorten and Khoshgoftaar, 2019; Feng 151

et al., 2021), has been extensively employed in 152

dense retrieval, improving model performance by 153

expanding and diversifying the training data. Ini- 154

tially, studies like Dense Passage Retrieval (DPR) 155

(Karpukhin et al., 2020) and work by Xiong et al. 156

relied on traditional techniques such as negative 157

sampling and in-batch negatives, creating negative 158

instances from irrelevant passages or passages from 159

other queries within the same batch. However, 160

more recently, the potential of Large Language 161

Models (LLMs) has been harnessed for data aug- 162

mentation in information retrieval tasks, as evident 163

in several significant studies. For example, InPars 164

(Bonifacio et al., 2022), Doc2Query (Gospodinov 165

et al., 2023), and Promptagator (Dai et al., 2022) 166

have leveraged LLMs to generate new queries 167

and expand documents. Additional works such as 168

UDEG (Jeong et al., 2021) and Query2doc (Wang 169

et al., 2023) further demonstrated the applicability 170

of LLMs for query and document expansion. These 171

advancements underscore the utility of LLMs in 172

enriching datasets for retrieval tasks, thus broad- 173

ening the scope of data augmentation techniques 174

beyond the creation of negative examples. 175

3 Methodology 176

3.1 Problem Definition 177

In Document-Level Dense Passage Retrieval (DL- 178

DPR), our objective is to identify the top-k pas- 179

sages from a given document Di that are most rel- 180

evant to a given query q. We formally define it as 181
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Inference

Figure 1: Overview of Document-level Dense Passage Retrieval (DL-DPR). (Left) Training step using the contrastive
objective on a single document. (Right) Inference step to retrieve top-k relevant passages from document.

follows:182

P∗ = Topk{sim(q, p) | p ∈ Pi}183

where k << |D| (the number of passages in184

document), each p ∈ Pi is a passage in document185

Di and sim(q, p) calculates the similarity score be-186

tween the query q and passage p, defined as:187

sim(q, p) = EQ(q)
⊤EP (p).188

Here, EQ and EP denote the query and pas-189

sage encoders that map their inputs into a shared190

d-dimensional space.191

3.2 Training Objective192

We consider a collection of training documents193

D = {D1, D2, . . . , DN}, each associated with a194

set of passages Pi and queries Qi. A crucial aspect195

of our methodology is that each training batch is196

optimized using query-passage pairs from a sin-197

gle document. This constraint is pivotal for tailor-198

ing the model to document-level contexts. From199

a given document Di, we select m distinct query-200

passage pairs (q1, p1), . . . , (qm, pm).201

We initiate the training with pre-trained encoders202

EQ and EP that are already adept at open-domain203

passage retrieval. The objective then is to fine-tune204

these base models, namely the query and passage205

encoders, to specialize in document-level retrieval.206

The embeddings for queries and passages are com-207

puted as:208

Qe = [EQ(q1), EQ(q2), . . . , EQ(qm)], 209

Pe = [EP (p1), EP (p2), . . . , EP (pm)]. 210

The similarity matrix S is computed as the scaled 211

dot-product of these embeddings, adjusted by an 212

exponential temperature parameter t: 213

S = Qe · P⊤
e × et. 214

Cross-entropy losses for the queries and pas- 215

sages are then calculated: 216

Lq = −
m∑
i=1

yi log(f(Si)), 217

Lp = −
m∑
i=1

yi log(f(S
⊤
i )), 218

with each element being defined as follows: 219

• Si and S⊤
i are the i-th row of the similarity 220

matrix and its transpose respectively, 221

• yi represents the true label i, encoded as one- 222

hot vector, 223

• f(·) is the softmax function, transforming the 224

similarity scores into probabilities. 225

The symmetric contrastive loss L is then calcu- 226

lated as the average of Lq and Lp: 227
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L =
Lq + Lp

2
.228

This objective refines the model to efficiently229

discern the relevancy of passages in response to230

a given query, tailored specifically for individual231

document contexts, thereby boosting its document-232

level retrieval performance. Figure 1 depicts a233

schematic representation of the training and in-234

ference setups for document-level dense passage235

retrieval (DL-DPR).236

3.3 Question-Generation-based237

Data-Augmentation238

The paradigm of our proposed methodology empha-239

sizes the retrieval of positive question-passage pairs240

from a singular document at each step. The Stan-241

ford Question Answering Dataset (SQuAD) (Ra-242

jpurkar et al., 2018) fits well with this requirement243

due to its rich distribution of question-associated244

passages at the document level. However, certain245

large-scale datasets such as Natural Questions (NQ)246

(Kwiatkowski et al., 2019), NewsQA (Trischler247

et al., 2017), despite their extensive content, pose a248

challenge with their sparse provision of question-249

passage pairs at the document level. In these250

datasets, an entire document might be linked with251

only one or two questions, leaving a substantial252

number of passages without any corresponding253

questions. Our contrastive objective thrives on a254

wider set of pairs at the document level to enhance255

performance. This sparsity of question-passage256

pairs in these datasets inhibits the optimal opera-257

tion of our method.258

Inspired by recent works that have effectively259

employed Large Language Models (LLMs) for data260

augmentation, we decided to incorporate the same261

approach for our use-case. Specifically, we utilize262

Flan-T5 (Chung et al., 2022), a publicly available263

instruction-tuned LLM, to enrich our datasets. We264

prompt Flan-T5 to generate questions for passages265

that lack associated questions in the dataset. This266

method significantly alleviates data sparsity and en-267

riches the documents with a larger set of question-268

passage pairs, thereby enhancing the performance269

of our model.270

3.4 Fine-tuning Process271

Our approach begins by utilizing the pre-trained272

models specifically designed for dense passage re-273

trieval tasks. These models are trained on large-274

scale datasets like MS MARCO (Bajaj et al., 2016),275

Natural Questions (NQ) (Kwiatkowski et al., 2019) 276

and CCNet (Wenzek et al., 2020). Subsequently, 277

these models undergo a fine-tuning process using 278

our unique contrastive objective on the enriched 279

training data, which has been augmented using the 280

aforementioned question-generation process. The 281

fine-tuning phase consists of optimizing the pa- 282

rameters of the model to minimize the discrepancy 283

between embeddings of relevant question-passage 284

pairs using the symmetric cross-entropy loss. 285

4 Experiments 286

In this section, we describe our experimental setup, 287

including the datasets we used, the baseline mod- 288

els we compared with, and the evaluation metrics. 289

Furthermore, we delve into the specifics of our fine- 290

tuning process and the implementation details of 291

our proposed method. 292

4.1 Datasets 293

In our research, we utilize a diverse set of datasets 294

including widely used English language bench- 295

marks SQuAD (Rajpurkar et al., 2018), Natural 296

Questions (NQ) (Kwiatkowski et al., 2019), and 297

NewsQA (Trischler et al., 2017), along with sev- 298

eral non-English datasets SQuAD-es (Carrino et al., 299

2019), SQuAD-bn (Tasmiah Tahsin Mayeesha and 300

Rahman, 2021), FQuAD (Martin et al., 2020), Ko- 301

rQuAD (Lim et al., 2019), and ARCD (Mozannar 302

et al., 2019) catering to Spanish, Bengali, French, 303

Korean, and Arabic languages respectively. Our 304

method is applied to fine-tune dense retrieval mod- 305

els on these datasets for the document-level passage 306

retrieval task, offering a thorough evaluation across 307

different languages and contexts. Each dataset, 308

with its linguistic and contextual nuances, provides 309

a distinct set of challenges, enabling a comprehen- 310

sive appraisal of our method’s versatility. 311

SQuAD is a reading comprehension dataset on a 312

set of Wikipedia articles, with each article compris- 313

ing several paragraphs. Every paragraph is paired 314

with a set of questions that pertain specifically to 315

the information contained within that paragraph. 316

Unlike SQuAD, NQ does not explicitly provide 317

paragraphs for each document. Instead, we use 318

non-overlapping long answer candidates as para- 319

graphs for each document. It is noteworthy that 320

only a few questions are linked to the entire doc- 321

ument, leaving many paragraphs without associ- 322

ated questions. In NewsQA, we are not provided 323

with explicit paragraphs for each news story. To 324
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construct a comparable structure, we implement325

a rule-based heuristic to merge several sentences326

into paragraphs of less than 128 words. However,327

similar to NQ, not all paragraphs are paired with328

questions in this dataset. Note that we use the de-329

velopment set as a test set for SQuAD and NQ as330

their test sets are not available. For NQ, we use a331

subset of 9173 documents for data-augmentation332

and training. Table 1 shows the number of para-333

graphs and documents in the training and test sets334

for all the datasets.

Dataset Train Test
Docs Paras Docs Paras

SQuAD 442 19,035 35 1,204
NewsQA 11,469 66,042 634 3,697
NQ 9,173 303,579 3,486 125,601
SQuAD-es 442 18,896 48 2,067
SQuAD-bn 241 10,289 61 2,633
FQuAD 117 4,921 18 768
KorQuAD 1,420 9,681 140 964
ARCD 77 231 78 234

Table 1: Summary of datasets and their train-test splits.

335

Our proposed method operates by extracting pos-336

itive question-passage pairs from a single document337

per training batch. Therefore, if most paragraphs338

lack associated questions, it would significantly re-339

duce the batch-size, making it unsuitable for our340

fine-tuning method. To address this, we employ341

data augmentation on the training data through342

question generation. For data augmentation, we343

utilized passages that do not have linked questions344

within the same datasets. We generated questions345

for these passages using the Flan-T5 LLM (Chung346

et al., 2022), expanding our training set signifi-347

cantly. Note that we do not employ data augmen-348

tation for SQuAD and other non-English datasets,349

as most of the paragraphs in these datasets have350

multiple related questions available. Table 2 shows351

the number of questions before and after data aug-352

mentation in our training datasets.353

Dataset Original Augmented
NewsQA 68,009 338,047
NQ 10,000 1,099,373

Table 2: Total number of questions in training datasets
before and after data augmentation.

4.2 Baseline Models354

For our study, we select an array of retrieval models355

as our baselines, each embodying different strate-356

gies and techniques prevalent in the field of dense357

passage retrieval. We select BM25 (Robertson and 358

Zaragoza, 2009) as our sparse retrieval baseline, 359

given its wide acceptance and use in the field of 360

information retrieval. In the dense retrieval do- 361

main, we initially consider DPR (Karpukhin et al., 362

2020), which laid the foundation for dense pas- 363

sage retrieval. To provide a more comprehensive 364

evaluation, we include recently developed models 365

like RocketQA (Qu et al., 2021), PAIR (Ren et al., 366

2021a), and RocketQA v2 (Ren et al., 2021b), each 367

introducing unique approaches to dense passage re- 368

trieval. Moreover, we consider state-of-the-art mod- 369

els Contriever (Izacard et al., 2021) and SimLM 370

(Wang et al., 2022), which represent the most re- 371

cent advances in this field. Notably, we focus on 372

evaluating the retrieval component of these DPR 373

models, not the re-ranking component. We assess 374

the performance of these diverse retrieval models 375

specifically in the context of our document-level 376

passage retrieval task. For the fine-tuning exper- 377

iments, we select DPR, SimLM, and Contriever 378

models. Subsequently, by fine-tuning these base- 379

lines with our method, we aim to offer a compre- 380

hensive evaluation of our approach’s performance 381

and its potential improvements to the field. 382

4.3 Evaluation Metrics 383

We use standard evaluation metrics to evaluate the 384

performance of our model, namely Top-k Retrieval 385

Accuracy (Karpukhin et al., 2020) and Mean Re- 386

ciprocal Rank (MRR). In our datasets, only one 387

relevant passage corresponds to a given question. 388

Thus, we do not use metrics like normalized dis- 389

counted cumulative gain (NDCG) and mean av- 390

erage precision (MAP) which are generally used 391

to evaluate retrieval systems where multiple pas- 392

sages may be relevant to a single question. For 393

all datasets, we compute Top-1, Top-3, and Top-5 394

retrieval accuracies and MRR@10. 395

4.4 Implementation Details 396

For our experiments, we utilize PyTorch (Paszke 397

et al., 2017) deep learning framework, the Hugging 398

Face Transformers library (Wolf et al., 2020), and 399

the Sentence Transformers library (Reimers and 400

Gurevych, 2019). We use the pre-trained models 401

available in these libraries as the starting point for 402

our fine-tuning process. For each model, we run our 403

experiments on a single NVIDIA Tesla V100 GPU 404

with 32GB memory. We conduct a grid-search to 405

identify optimal hyperparameters for our method, 406

including learning rate, weight decay, and batch 407
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size. We use Adam (Kingma and Ba, 2017) opti-408

mizer for training. To prevent overfitting, we apply409

early-stopping during the fine-tuning process.410

For our data augmentation process, we use Flan-411

T5 LLM (Chung et al., 2022) with a maximum412

sequence length of 256 tokens to generate ques-413

tions. To prevent the generation of irrelevant or414

nonsensical questions, we carefully crafted the415

prompt, providing Flan-T5 with adequate context416

and setting clear expectations for the output with417

appropriate stopping conditions. To expedite the418

data-augmentation process and reduce the infer-419

ence cost, we perform batch inference for each420

paragraph to generate multiple questions in a sin-421

gle response in order to avoid making multiple422

requests for the same paragraph. We experimented423

with varied prompts to find the best prompt for424

our use-case. For our final experiments we used425

the following prompt to augment data: Generate a426

question which can be answered using given con-427

text: <paragraph>. We set the inference-time pa-428

rameters for the Flan-T5 LLM as follows: tempera-429

ture as 1, repetition penalty as 1.05 and number of430

beams as 9.431

4.5 Evaluation Setup432

The evaluation process is designed to measure the433

efficacy of retrieval model in determining the most434

relevant passage for each question within a given435

document. Here is the step-by-step procedure:436

1. Embedding Computation: We start by com-437

puting embeddings for all passages and ques-438

tions within each document. These embed-439

dings are generated using our trained model,440

encapsulating the contextual intricacies of441

each text piece.442

2. Similarity Scoring: Next, for each question,443

we measure its similarity scores with all the444

passages within the same document. This pro-445

cess involves calculating the dot product or446

cosine similarity between the question and447

passage embeddings, reflecting how semanti-448

cally close they are.449

3. Passage Ranking: Using the computed simi-450

larity scores, we rank all the passages within451

the document for each question. The passage452

with the highest similarity score for a given453

question receives the highest rank.454

4. Performance Metrics: After the ranking pro-455

cess, we compute aforementioned evaluation456

metrics based on these rankings to measure 457

the model’s ability in identifying the correct 458

passage in response to each question. 459

By following this setup, we are able to evaluate 460

the model’s performance in associating relevant 461

passages to the corresponding questions within a 462

document. The goal is to ensure that the correct pas- 463

sage is ranked as high as possible for each question, 464

thereby demonstrating the model’s effectiveness. 465

We leave the end-to-end evaluation of question- 466

answering accuracy as future work. 467

5 Results and Discussion 468

5.1 Results 469

First, we benchmark out-of-the-box performance 470

of various pre-trained dense retrieval models ap- 471

plied to our document-level passage retrieval task. 472

The detailed results are provided in Table 3. The 473

top-performing models from DPR, SimLM and 474

Contriever methods are utilized as a baseline for 475

evaluating the impact of our proposed fine-tuning 476

method. 477

Tables 4, 5, 6, 7 present the results of our method 478

on SQuAD, NewsQA, NQ and other non-English 479

datasets respectively. For each method, the first row 480

shows the retrieval performance of a pre-trained 481

model before fine-tuning and the second row shows 482

the retrieval performance after performing fine- 483

tuning with our method on a given dataset. This 484

allows us to isolate and assess the contribution of 485

our proposed method in improving the model’s ef- 486

ficacy. For the non-English datasets, we utilize 487

the multi-lingual dense retriever - the Contriever 488

model pre-trained on CC-net (29 languages) and 489

MS-MARCO datasets. 490

Figure 2 offers insight into an ablation study we 491

conducted, focusing on the configuration of our 492

fine-tuning method. In our approach, pairs in a 493

given training batch must originate from a single 494

document. We conducted this study to highlight 495

the importance of this constraint. Specifically, we 496

compare results of our method with an alternative 497

scenario - Mixed-Batch, where we loosen this con- 498

straint by allowing pairs to come from different doc- 499

uments. The results of this study clearly illustrate 500

the superiority of our method, as it outperforms the 501

alternative configuration. 502

We also conduct additional experiments to study 503

the impact of document length on the performance 504

of our approach. The detailed report of the results 505

is provided in Appendix A. 506
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Model SQuAD NewsQA NQ
Top-1 Top-3 MRR Top-1 Top-3 MRR Top-1 Top-3 Top-5 MRR

BM25 68.7 83.1 76.8 57.8 83.9 73.3 19.9 40.1 51.8 33.7
DPR
Single-NQ 47.7 70.6 61.1 40.1 73.4 59.6 39.7 64.6 75.7 54.8
Multi 51.2 72.1 63.6 49.7 82.3 67.4 40.0 64.6 75.5 55.1
RocketQA
MS MARCO 67.0 84.4 76.6 61.8 88.6 76.0 41.6 67.3 77.9 56.8
NQ 64.6 83.0 75.0 62.7 89.8 76.9 41.1 69.4 81.0 57.8
PAIR
MS MARCO 66.6 83.4 76.1 61.4 88.0 75.7 40.5 67.0 77.3 56.1
NQ 61.0 79.7 71.8 58.3 87.1 73.5 42.0 68.8 79.5 57.9
RocketQA v2
MS MARCO 64.0 82.1 74.1 61.0 88.6 75.5 41.1 66.9 76.5 56.3
NQ 57.9 78.8 69.7 57.9 86.6 73.1 45.3 70.5 79.8 59.9
Contriever
CC-net & Wiki pt 68.1 86.1 78.2 53.1 85.2 70.1 18.0 42.2 55.3 34.0
+ MS MARCO ft 75.2 90.7 83.5 65.2 91.0 78.7 39.0 64.7 75.6 54.6
CC-net 29 lang. pt 60.5 81.5 72.4 46.6 81.2 65.3 17.9 40.3 53.2 33.1
+ MS MARCO ft 73.4 89.7 82.2 63.6 89.9 77.3 33.3 61.2 72.8 50.1
SimLM
MS MARCO pt 51.2 71.8 63.5 44.4 81.2 64.3 4.8 17.2 29.6 15.9
+ finetune & distill 68.0 84.4 77.2 63.6 88.7 77.0 41.0 66.0 76.5 56.2
Wiki pt 47.1 66.9 59.2 45.9 79.9 64.4 9.6 27.0 39.8 22.6

Table 3: Benchmarking various dense retrieval models for document-level passage retrieval task on SQuAD,
NewsQA and NQ datasets. Top-k retrieval accuracy and MRR@10 metrics are shown for each model. Note that pt
and ft stand for pre-training and fine-tuning respectively.

Model Top-1 Top-3 Top-5 MRR@10
DPR 51.2 72.1 80.2 63.6
+ DL-DPR 55.2 75.6 83.3 67.1
SimLM 68.0 84.4 89.5 77.2
+ DL-DPR 71.1 86.9 91.8 79.9
Contriever 75.2 90.7 94.5 83.5
+ DL-DPR 81.3 94.2 96.8 88.0

Table 4: DL-DPR fine-tuning results on SQuAD.

Model Top-1 Top-3 Top-5 MRR@10
DPR 49.7 82.3 93.0 67.4
+ DL-DPR 59.0 86.7 95.1 73.9
SimLM 63.6 88.7 95.5 77.0
+ DL-DPR 67.3 90.1 96.5 79.5
Contriever 65.2 91.0 97.1 78.7
+ DL-DPR 71.6 93.3 97.7 82.7

Table 5: DL-DPR fine-tuning results on NewsQA.

5.2 Discussion507

Our experimental results underline the significant508

contribution of our fine-tuning method to the ef-509

fectiveness of dense retrieval models in document-510

level passage retrieval tasks. The ablation study511

elucidates the critical importance of extracting posi-512

tive question-passage pairs from a single document513

Model Top-1 Top-3 Top-5 MRR@10
DPR 40.7 65.4 76.2 55.8
+ DL-DPR 43.3 69.0 79.9 58.6
SimLM 42.1 67.0 77.4 57.1
+ DL-DPR 43.4 69.6 79.9 58.6
Contriever 39.0 64.7 75.6 54.6
+ DL-DPR 40.8 67.8 78.1 56.7

Table 6: DL-DPR fine-tuning results on NQ.

Dataset Top-1 Top-3 Top-5 MRR@10

SQuAD-es 70.1 87.1 91.7 79.4
75.2 89.8 93.8 83.3

SQuAD-bn 56.7 74.9 81.5 67.3
61.7 79.5 85.5 71.8

FQuAD 56.0 75.5 82.0 67.1
63.2 81.0 87.0 73.4

KorQuAD 77.9 91.5 95.0 85.3
82.9 94.1 96.4 88.9

ARCD 75.4 - - 86.4
80.1 - - 89.1

Table 7: Results on non-English datasets with multi-
lingual Contriever before/after DL-DPR fine-tuning.

per training batch. This configuration manifests 514

in a substantial improvement in the model’s per- 515

formance when compared to allowing pairs to be 516

drawn from different documents. This finding im- 517
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Figure 2: Ablation study on the effect of batch composition in the fine-tuning process. Each sub-figure presents the
performance comparison (MRR@10) of pre-trained models, Mixed-Batch, and DL-DPR on different datasets.

plies that preserving the document-level context is518

crucial for the model to better understand and infer519

the relevance of the passages to the questions.520

Note that the NQ dataset contains on an av-521

erage longer documents than other datasets and522

the number of documents in the test set of NQ is523

much bigger compared to any other dataset in our524

study, which makes it more challenging compared525

to SQuAD and NewsQA.526

When comparing our results with the baseline527

models, it is evident that our method leads to an ap-528

preciable enhancement in evaluation metrics across529

all the datasets. Even with the state-of-the-art mod-530

els like Contriever and SimLM, our method fine-531

tunes them to achieve superior performance. This532

signifies the potential of our fine-tuning approach533

to serve as a novel strategy in the ongoing evolution534

of dense passage retrieval techniques.535

On the non-English datasets too, we observe536

a consistent and considerable improvement in all537

metrics after fine-tuning with our method. This538

demonstrates the soundness of our approach across539

different languages.540

Our experiments to study the impact of docu-541

ment length (Appendix A) on the document level542

retrieval suggest that the increase in the number543

of passages leads to gradual decrease in the perfor-544

mance. This is understandable as the increase in the545

number of passages increases the search space as546

well. The key point to note is that, our fine-tuning547

approach consistently surpasses the baseline, un-548

derscoring its effectiveness across a diverse range549

of document lengths.550

5.3 Future Work551

Looking forward, we envision abundant opportuni-552

ties for enhancing our methodology and expanding553

its applications. Firstly, we aim to refine the ques-554

tion generation process by probing more sophis-555

ticated techniques that could yield better quality 556

questions, thus amplifying the efficacy of our data 557

augmentation. This might involve delving into ad- 558

vanced fine-tuning techniques of language models 559

or harnessing novel developments in controllable 560

text generation. 561

Secondly, to scale up our fine-tuning process for 562

larger datasets and better computational efficiency, 563

we propose exploring strategies that are adept at 564

identifying and ranking multiple relevant passages 565

for a given question. This would more accurately 566

reflect real-world information retrieval scenarios. 567

Finally, the relevance and impact of our approach 568

extend to domain-specific tasks. Particularly in 569

areas such as legal, academic, or medical fields, 570

where document-level retrieval can significantly 571

aid in information extraction and comprehension. 572

This potential for domain-specific applicability em- 573

phasizes the robustness and versatility of our ap- 574

proach, thereby inspiring us to continually push its 575

boundaries in future explorations. 576

6 Conclusion 577

This study introduces the problem of document- 578

level dense passage retrieval (DL-DPR) and pro- 579

poses a novel fine-tuning approach, leveraging 580

a contrastive objective with a constraint to limit 581

query-passage pairs in a batch from the same doc- 582

ument. Our method addresses the challenge of 583

sparse query-passage pairs in large-scale datasets 584

by employing LLM for question-generation-based 585

data augmentation, thereby enriching the training 586

set. Through comprehensive experiments, our ap- 587

proach consistently surpasses the efficacy of tradi- 588

tional methods across various datasets and metrics. 589

The promise of this method opens up potential fu- 590

ture avenues for its application across a broader 591

range of information retrieval tasks, establishing 592

the state-of-the-art in this domain. 593
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Limitations594

Despite the encouraging results of our approach, it595

is not without its limitations. First and foremost,596

our method relies heavily on the quality of ques-597

tions generated by the LLM during data augmenta-598

tion. While it typically generates questions that are599

coherent and contextually sensible, there could be600

instances where the questions lack relevance to the601

corresponding passage or fail to accurately reflect602

its content. Moreover, the process of generating603

questions using an LLM can be time-consuming604

and computationally costly, which could pose chal-605

lenges for large-scale applications. Second, our606

current implementation assumes a single relevant607

passage per question. The future works can investi-608

gate ways to adapt it for the real-world scenarios609

where multiple passages within a document may610

provide valuable context or insights in response to611

a given question. These limitations offer avenues612

for potential future work to further enhance the613

applicability and effectiveness of our method.614
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A Impact of Document Length on 889

Performance 890

We conduct supplementary experiments to study 891

the influence of document length on the efficacy of 892

our approach. The documents within the datasets 893

were categorized based on the number of passages 894

they contained as shown in Tables 8, 9, 10. We eval- 895

uated the performance metrics, namely MRR@10 896

and Top-1 retrieval accuracy, across these differ- 897

ent categories to gain insights into the relationship 898

between document length and retrieval accuracy. 899

These results are provided in Tables 11, 12, 13, 14, 900

15, 16. We notice that, as the number of passages 901

increase, the search space increases which leads to 902

gradual decrease in metric value. Nevertheless, it is 903

evident that our fine-tuning approach consistently 904

surpasses the baseline, underscoring its effective- 905

ness across a diverse range of document lengths. 906

#passages count
20-24 10
25-29 5
30-34 2
35-39 7
40-44 5
45-49 6

Table 8: Distribution of documents according to passage
count in SQuAD test set.
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#passages Count
1-50 2,741

51-100 536
101-150 138
151-200 50
201-250 15

250+ 6

Table 9: Distribution of documents according to passage count in NQ test set.

#passages Count
1-5 338
6-10 233

11-15 58
16-20 5

Table 10: Distribution of documents according to passage count in NewsQA test set.

Model 20-24 25-29 30-34 35-39 40-44 45-49
DPR 68.4 67.8 61.1 64.3 59.1 61.2
+ DL-DPR 72.4 69.5 61.5 48.5 63.1 65.2
SimLM 80.6 77.6 76.4 77.7 74.8 75.8
+ DL-DPR 83.7 80.6 78.3 80.5 76.8 80.0
Contriever 85.8 85.7 81.9 84.2 80.9 82.1
+ DL-DPR 90.1 88.9 86.3 87.1 84.7 85.4

Table 11: SQuAD - #passages vs MRR@10

Model 20-24 25-29 30-34 35-39 40-44 45-49
DPR 55.6 56.6 46.7 51.7 47.3 48.7
+ DL-DPR 60.6 58.4 48.3 57.0 51.8 52.6
SimLM 71.9 68.9 65.8 68.8 65.4 66.0
+ DL-DPR 75.7 71.7 67.9 72.3 67.2 68.6
Contriever 77.7 78.2 72.5 76.7 72.0 73.2
+ DL-DPR 84.1 82.7 78.3 80.3 77.3 77.7

Table 12: SQuAD - #passages vs Top-1 Accuracy

Model 1-50 51-100 101-150 151-200 201-250 251+
DPR 58.4 44.8 50.3 43.9 48.8 37.5
+ DL-DPR 62.0 44.7 46.7 47.7 48.0 50.0
SimLM 59.7 46.2 54.8 42.2 44.4 18.5
+ DL-DPR 60.5 48.0 52.4 40.4 43.3 22.2
Contriever 58.2 45.2 46.9 41.5 37.5 35.4
+ DL-DPR 59.5 45.9 50.6 46.6 43.5 35.4

Table 13: NQ - #passages vs MRR@10
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Model 1-50 51-100 101-150 151-200 201-250 251+
DPR 42.8 31.7 36.2 30.0 40.0 33.3
+ DL-DPR 46.3 29.1 33.3 36.0 40.0 50.0
SimLM 44.2 32.8 43.5 30.0 33.3 16.7
+ DL-DPR 44.5 34.3 37.7 28.0 26.7 16.7
Contriever 42.2 31.1 32.6 28.0 26.7 33.3
+ DL-DPR 42.9 32.8 37.7 32.0 33.3 33.3

Table 14: NQ - #passages vs Top-1 Accuracy

Model 1-5 6-10 11-15 16-20
DPR 74.4 55.1 50.7 33.3
+ DL-DPR 80.5 62.6 56.9 43.2
SimLM 83.4 66.4 60.3 54.9
+ DL-DPR 85.7 69.3 65.5 51.8
Contriever 84.4 69.0 64.7 58.6
+ DL-DPR 87.3 73.9 68.6 72.1

Table 15: NewsQA - #passages vs MRR@10

Model 1-5 6-10 11-15 16-20
DPR 56.7 35.0 30.6 11.3
+ DL-DPR 66.5 44.5 40.5 28.0
SimLM 70.8 50.0 45.3 35.3
+ DL-DPR 74.7 53.7 51.6 26.0
Contriever 72.3 52.1 46.9 38.7
+ DL-DPR 77.3 59.0 54.0 58.7

Table 16: NewsQA - #passages vs Top-1 Accuracy
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