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Abstract

To process contexts with unlimited length using001
Large Language Models (LLMs), recent stud-002
ies explore hierarchically managing the long003
text. Only several text fragments are taken004
from the external memory and passed into the005
temporary working memory, i.e., LLM’s con-006
text window. However, existing approaches iso-007
latedly handle the text fragments without con-008
sidering their structural connections, thereby009
suffering limited capability on texts with inten-010
sive inter-relations, e.g., coherent stories and011
code repositories. This work attempts to re-012
solve this by exploiting the fragment-level rela-013
tions in external memory. First, we formulate014
the fragment-level relations and present several015
instantiations for different text types. Next, we016
introduce a relation-aware fragment assessment017
criteria upon previous independent fragment018
assessment. Finally, we present the fragment-019
connected Hierarchical Memory based LLM.020
We validate the benefits of involving these rela-021
tions on long story understanding, repository-022
level code generation, and long-term chatting.023

1 Introduction024

The limited context window length constrains appli-025

cations of Large Language Models (LLMs) in some026

practical scenarios, such as answering questions027

based on complete books or movie scripts (Kočiskỳ028

et al., 2018), writing codes within complete Github029

repositories (Zhang et al., 2023a), etc. To resolve030

this problem, some works (Ding et al., 2023; Han031

et al., 2023; Xiao et al., 2023) attempt to expand the032

context length of classical LLM inference frame-033

work via continual training or sparse attention034

mechanism. However, existing approaches are ei-035

ther limited to a finite expansion length (Packer036

et al., 2023; Schuurmans, 2023), or prone to perfor-037

mance degradation, especially when dealing with038

very long contexts (Liu et al., 2023).039

Recent studies (Packer et al., 2023; Wang et al.,040

2023b; Ram et al., 2023) explore to hierarchically041
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Figure 1: Schematic diagram of Fragment-connected
Hierarchical Memory based LLM.

process the long text. Each time only partial frag- 042

ments of long text are retrieved from external mem- 043

ory and fed into LLM’s context window, a.k.a, tem- 044

porary working memory, thereby eliminating the 045

context length constraint and alleviating the inferior 046

influence of substantial irrelevant content. How- 047

ever, current external memory managers simply 048

split the complete long context into independent 049

fragments, assessing their isolated importance dur- 050

ing retrieval. This constrains the inference capa- 051

bility of Hierarchical Memory based LLMs, par- 052

ticularly in scenarios (e.g. understanding coherent 053

story or code repository) where there are intensive 054

associations across fragments of long text. 055

To address this issue, we propose to integrate 056

these fragment-level relations into the external 057

memory management by introducing a relation- 058

aware fragments assessment score during retrieval. 059

First, we formulate the relations between two frag- 060
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ments as a real number, with higher values cor-061

responding to stronger relation strength. The cal-062

culation of relation quantity could have different063

instantiations for different context types (e.g. nar-064

rative stories, code repositories, or historical di-065

alog) and different relation types (e.g. semantic066

relations or structural relations). Next, based on067

the isolated relevance scores used in past exter-068

nal memory retrievers, we further calculate every069

fragment’s environmental relevance score, which is070

defined as a normalized relation-weighted summa-071

tion of other fragments’ independent scores. Dur-072

ing retrieval, the combination of independent score073

and environmental score is employed for assess-074

ing every fragment’s importance. An adjustable075

coefficient is introduced to control the influence076

of environmental score. Finally, in the same as077

previous works (Packer et al., 2023; Ram et al.,078

2023), we concatenate the retrieved content and the079

requested instruction as LLM inference input.080

Extensive experiments validate the benefits of081

incorporating these fragment-level relations during082

retrieval. The experiments encompass a variety of083

base LLMs (Llama2 (Touvron et al., 2023), Chat-084

GPT, ChatGLM (Du et al., 2022), etc. ), different085

temporary context lengths (1K, 4K, 8K, 20K, etc. ),086

and multiple long context scenarios (Long Story087

Understanding (Kočiskỳ et al., 2018), Repository-088

level Code Completion (Zhang et al., 2023a), and089

Long-term Chatting with Human (Lu et al., 2023)).090

2 Related Work091

Temporarily Long Context Processing. One092

line of works explores how to process long con-093

text under the typical LLM inference framework,094

where all context is directly stored in the LLM con-095

text window (Temporary Memory). First, a series096

of works (Dai et al., 2019; Ding et al., 2023; Han097

et al., 2023; Xiao et al., 2023; Xiong et al., 2023)098

explore extending context length of Transformer-099

based models via efficient attention mechanism100

and recurrent inference strategic. In addition, some101

works (Li, 2023; Jiang et al., 2023a) investigate102

how to compress the length of long text content103

to mitigate the impact of excessive irrelevant text.104

Although the long-text processing capability of the105

LLM can be enhanced by expanding the context106

window or compressing the context content, the107

context length that can be handled remains limited.108

External Memory augmented LLM. Another109

line of work introduces additional external mem-110

ory, forming a hierarchical memory based infer- 111

ence framework, thereby processing context of any 112

length. Relevant content is retrieved from exter- 113

nal memory for knowledge updating (Wu et al., 114

2022; Wang et al., 2023b) or answering knowledge- 115

intensive questions (Lewis et al., 2020; Guu et al., 116

2020; Borgeaud et al., 2022; Lan et al., 2023; Wang 117

et al., 2023a). The most popular retrieval method 118

is calculating the text embedding similarity for 119

isolated fragments of external context using pre- 120

trained embedding models (Su et al., 2022; Zhang 121

et al., 2023b), and retrieving the text fragments 122

with higher similarity to the requested question or 123

current temporary context. 124

Benefiting from the zero-shot generalization ca- 125

pability of LLMs, the retrieved fragments can be 126

directly concatenated with instructions as model 127

input (Ram et al., 2023), eliminating the need 128

for additional training. This further facilitates 129

more flexible external memory augmented LLM 130

inference frameworks. Firstly, some studies ex- 131

plore the collaborative use of retrieval and gen- 132

eration (Gao et al., 2022; Yan et al., 2024), as 133

well as further multi-round retrieval-generation in- 134

terleaving framework (Trivedi et al., 2022; Jiang 135

et al., 2023b; Asai et al., 2023; Shao et al., 2023; 136

Feng et al., 2023). Saad-Falcon et al. (2023) uti- 137

lizes explicit prompts about the structure of exter- 138

nal context for enhanced retrieval. Additionally, 139

MemGPT (Packer et al., 2023) automatically reads 140

and writes the external memory, enabling more 141

flexible external memory reasoning. 142

3 Methodology 143

3.1 Preliminary 144

3.1.1 Temporary Memory based LLM 145

Formulation. Traditional language models re- 146

ceive input x and generate the output y by: 147

y = LLM(x). (1) 148

The input x is straightly passed into the con- 149

text window of LLM. Notably, the instructed 150

LLMs (Ouyang et al., 2022) could take various 151

user instructions x and produce the correspond- 152

ing responses y. Inspired by human cognition, 153

the LLM context window could be viewed as the 154

working memory which temporarily stores informa- 155

tion (Packer et al., 2023; Li et al., 2022). For clarity, 156

we refer to this traditional LLM reasoning frame- 157

work shown in Equation. 1 as Temporary Memory 158

based LLM (TempMem-LLM). 159
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Figure 2: Framework of Fragment-connected Hierarchical Memory based LLM. The long context (complete book,
code repository, or agent memory) is first split into a lot of fragments c∗. Then the independent relevance scores
Scoreind∗ to the user question for every fragment is calculated. Next the relation-aware score Scorerel∗ is calculated
as the combination of its independent score and the normalized relation-weighted summation of other fragments’
independent score. Finally, the fragments within Top-K relation-aware scores are retrieved for LLM inference.

Long Text Processing. In many practical tasks,160

the input content includes not only user instructions161

x, but also an additional long context T , such as an-162

swering questions based on complete storybooks or163

movie scripts (Kočiskỳ et al., 2018), writing codes164

in long Github repository (Zhang et al., 2023a), and165

constructing agents capable of engaging in long-166

term conversations (Lu et al., 2023; Zhong et al.,167

2023). In these scenarios, TempMem-LLM simply168

concatenates and processes the long context T and169

instruction x in its working memory:170

y = LLM(x⊕ T ), (2)171

where ⊕ represents the concatenation operation.172

When the text length of T exceeds the context173

window limitations of LLM, we could cut its addi-174

tional content of T for executing inference. In next175

section, we present another framework for effec-176

tively processing the lengthy context T via storing177

it in external memory and retrieving relevant frag-178

ments for inference every time.179

3.1.2 Hierarchical Memory based LLM180

Unlike TempMem-LLM which handles all context181

in its temporary working memory, the Hierarchical182

Memory based LLM (HieraMem-LLM) integrates183

an additional non-parametric external memory for184

managing the long context T .185

Formulation. Instead of directly being concate- 186

nated with the user instruction x, the context T 187

is independently processed in HieraMem-LLM. It 188

consists of two decoupled modules, i.e., the exter- 189

nal memory management module processing the 190

long context T , as well as the LLM forward in- 191

ference module containing the temporary working 192

memory. Formally, we have: 193

T ret = Mem-MGR(x, T ),

y = LLM(x⊕ T ret).
(3) 194

Mem-MGR is the external memory manager, 195

which takes the requested instruction x as input 196

and returns relevant fragments from T . 197

External Memory Manager. The typical exter- 198

nal memory manager consists of three steps, i.e., 199

fragment splitting, independent score calculation, 200

and fragment selection. 201

1. Fragment Splitting. It splits the long text T into 202

N short fragments c∗. 203

2. Independent Score Calculation. It calculates the 204

independent score sindi for every fragment ci based 205

on user input x, i.e., 206

sindi = Similarity(x, ci). (4) 207

The similarity function is often instantiated as the 208

cosine similarity between embedding vectors of x 209

and ci, which could be calculated using pre-trained 210

text embedding models (Izacard et al., 2021). 211
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3. Retrieved Context Picking. With fragment scores212

sindi , we select top related fragments and feed them213

into the temporary memory of LLM.214

Although HieraMem-LLM effectively manages215

the long context T by utilizing external memory,216

the context is decomposed into unrelated segments,217

disrupting the structural integrity of the context.218

TempMem vs. HieraMem. TempMem-LLM219

straightly handles the complete long text T in its220

working memory, integrating token-level correla-221

tions during inference. However, the simple con-222

catenation approach in Equation 2 suffers the fol-223

lowing issues: (1) When T exceeds the model’s224

context length constraint, the LLM is unable to225

do prediction. (2) The information irrelevant to226

instruction x can interfere with the model’s pro-227

cessing, leading to performance decline (Liu et al.,228

2023). (3) Reprocessing the lengthy context T229

each time consumes excessive computational re-230

sources. To address the issues of TempMem-LLM,231

HieraMem-LLM incorporates the external memory232

to manage the prolix context T . Only a few related233

fragments are extracted for LLM inference.234

However, existing external memory managers235

select fragments based on only isolated fragment236

content, overlooking intensive relations between237

fragments. While in TempMem-LLM, the long-238

term correlations could be employed via the atten-239

tion mechanism over the complete text, enabling240

comprehensive context modeling.241

3.2 Fragment Relations242

3.2.1 Definition243

We formulate the relations between every pair of244

fragments (ci, cj) as follows:245

wi,j = Frel(ci, cj), 1 ≤ i, j ≤ N, (5)246

where wi,j is a real numbers measuring the relation247

strength between fragment ci and fragment cj . The248

larger value of wi,j indicates the stronger correla-249

tion between ci and cj . Next, we present several250

specific implementations for Frel.251

3.2.2 Fragment Relation Instantiations252

This section introduces several instantiations of253

fragment-level relations and discusses the impor-254

tance of considering these relations.255

Semantic Relation. Semantic association is the256

most common type of connection between text seg-257

ments. The semantic correlation between text frag-258

ments can be measured by the cosine similarity259

between the latent embeddings of fragments, 260

Frel(ci, cj) = 1− ei · ej
∥ei∥∥ej∥

, (6) 261

where ei and ej represent the latent embeddings of 262

fragments ci and cj respectively. 263

Context Structure Relation. In consecutive 264

books or long-term dialog, there are significant 265

content correlations between the contiguous pre- 266

ceding and following fragments. The fragments 267

with closer positions in the context have stronger 268

relevance. This contextual relationship strength 269

can be defined as: 270

Frel(ci, cj) = w
|loci−locj |
rel , wrel ∈ [0, 1]. (7) 271

where loci refers the absolute position of fragment 272

ci in the external context T . wrel can be adjusted 273

to control the relation strength between fragments. 274

When wrel = 0, it represents there is no relation 275

between fragments, and our method degrades to 276

previous fragment-independent external memory. 277

Code Structure Relation. Compared to natural 278

language, code repository fragments have more 279

complex interrelations. We construct the struc- 280

ture graph G for a complete code repository. The 281

code graph G consists of all code parsing nodes 282

(including function definition, function body, as- 283

signment expression, etc. ), and edges based on 284

the parsing tree, function calling relation, and the 285

files directory structure. The edge weights take 286

values in [0, 1] and are set based on the edge types. 287

Section. A.1 presents more details about the con- 288

struction of G. The i-th code fragment ci contains 289

NG
ci non-overlapping graph nodes, represented as 290

{gcik }
NG

ci
k=1. Based on the code graph G, we formu- 291

late the code structure relation as follows: 292

Frel(ci, cj) =

∑NG
ci

k=1

∑NG
cj

l=1 K
ci,cj
k,l ·Dis(gcik , g

cj
l )∑NG

ci
k=1

∑NG
cj

l=1 K
ci,cj
k,l

,

K
ci,cj
k,l = lenci

k · lencj
l

(8) 293

where lenci
k represents the text length of the k-th 294

paring node in fragment ci. Dis(gcik , g
cj
k ) is the 295

shortest path distance between node gcik and g
cj
k on 296

the code graph G. Section. A.1 shows more detail. 297

More Relations. More relations could be de- 298

signed for specific text properties and practical 299

needs. For example, we can gauge the correla- 300

tion strength between academic papers based on 301

citation relationships and author associations. 302
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Importance of Fragments Relations. The303

fragments-level relations are significant for:304

1. Ubiquitous existence. These fragments-level305

relations ubiquitously appear in a variety of long306

texts. For example, in narrative books or movie307

scripts, the storyline progresses coherently from308

beginning to end, with each fragment c∗ intricately309

connected to its preceding and following fragments310

c∗. In code repository, structural correlations exist311

among different code lines, and function calling or312

variable passing relationships exist between differ-313

ent code files and functions. Therefore, the content314

of different code fragments c∗ are densely related.315

2. Assisting long text understanding. Unlike316

TempMem-LLM latently utilizes long-term rela-317

tions, we posit that involving explicit inter-relations318

plays its role in external memory management by319

forming a more comprehensive assessment crite-320

ria for fragment selection. Specifically, when ne-321

glecting the fragments relations, the external mem-322

ory retriever greedily supposes only the fragments323

with high direct similarity to the input x is helpful324

(Previous). The consideration of fragment relations325

allows a more comprehensive fragments assess-326

ment criteria: i.e. the fragments with both higher327

direct similarity and contextual similarity to x is328

important (Ours). The contextual similarity of frag-329

ment ci refers to the similarity between the ci’s330

related fragments and the input x. The new as-331

sessment criteria retrieve not only directly similar332

fragments but also take account of: (a) fragments333

within a relevant environment, (b) contextual frag-334

ments of relevant fragments, which could help un-335

derstand the directly relevant fragment, (c) indi-336

rectly relevant fragments.337

3.3 Fragment-connected Memory Retrieval338

This section introduces the integration of fragment339

relations by calculating the relation-aware assess-340

ment scores, and presents the overall framework of341

Fragment-connected HieraMem-LLM.342

3.3.1 Relation-aware Fragment Assessment343

Different from vanilla retriever which considers344

the independent importance of every fragment us-345

ing independent score sindi , we instead propose to346

calculate a Relation-aware Score for more com-347

prehensively considering the importance of every348

fragment.349

Definition. For the i-th fragment, the relation-350

aware score is composed of two parts: its indepen-351

dent score sindi and its environment score senvi . The352

independent score measures its direct relevance de- 353

gree with question x, defined in Equation 4. The 354

environment score senvi assesses its related frag- 355

ments’ relevance with question x. We formulate 356

senvi as the normalized weighted summation over 357

independent scores senvj of related fragments: 358

senvi =

∑
j wi,j · sindj∑

j wi,j
, (9) 359

where wi,j is the fragment relation defined in Equa- 360

tion 5. The normalization operation is introduced 361

to ensure the consistent numerical scale of senvi 362

with sindi . 363

Combining sindi and senvi , we define Relation- 364

aware Score of the i-th fragment as follows: 365

sreli = sindi + α · senvi , (10) 366

where α is an adjustable coefficient, employed to 367

control the influence of environment score. 368

Relation Distance and Complexity. The utiliza- 369

tion of explicit fragment-level relations shown in 370

Equation. 9 is irrelevant with fragments distance, 371

while TempMem-LLM extracts relations within 372

ranges limited by the context window length. Ad- 373

ditionally, some complex relations (e.g. code struc- 374

ture relations) are challenged to automatically learn 375

while they could be employed explicitly. 376

3.3.2 Fragment-connected HieraMem-LLM 377

Based on the proposed relation-aware score, we 378

introduce the overall framework of Fragment- 379

connected HieraMem-LLM, shown in Figure. 2. 380

We first split the long text T into fragments 381

and acquire their independent scores. Next, con- 382

sidering the extracted relations, we calculate the 383

relation-aware score sreli for every fragment using 384

Equation 10. Based on these fragments along with 385

relation-aware scores, we select relevant fragments 386

as retrieved context: 387

T rel
ret = cr1 ⊕ cr2 ⊕ ...⊕ crK ,

r1, r2, ..., rK = arg TopKi sreli ,
(11) 388

where ⊕ represents operation of concatenating two 389

text fragments, r∗ is the indexes of retrieved frag- 390

ments. The final response is generated y with LLM 391

as follows: 392

ŷ = LLM(x, T rel
ret ). (12) 393
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Figure 3: Performance comparison on NarrativeQA (Kočiskỳ et al., 2018). The horizontal lines and columnas
represent Temporary Memory based LLMs and Hierarchical Memory based LLMs respectively. The Hierarchical
Memory based LLMs contain 3 categories: no relation incorporation, semantic relation incorporation and context
structure relation incorporation, denoted as "No-FragRel-*", "A-FragRel-*", and "B-FragRel-*" respectively.

4 Experiment394

We evaluate the proposed Fragment-connected395

HieraMem-LLM on three long text understand-396

ing tasks: long story understanding (Section. 4.1),397

repository-level code generation (Section. 4.2), and398

memory-enhanced chatting agent (Section. 4.3).399

4.1 Long Story Understanding400

4.1.1 Setup401

Dataset. NarrativeQA (Kočiskỳ et al., 2018) is a402

challenging story comprehension benchmark, con-403

sisting of human-written question-answer paris404

based on long (average 18K words) story books405

or movie scrips. LLMs are required to understand406

the long-term relations in the lengthy stories to an-407

swer these questions. We employ the 200 extracted408

testing samples in LongBench (Bai et al., 2023).409

Metrics. Following LongBench (Bai et al., 2023),410

we assess the generated response with the F1 Score,411

a widely used metric in question-answering tasks.412

Baselines. We classify baselines into 2 cate-413

gories: Temporary Memory based LLMs (Temp-414

Mem LLMs) and Hierarchical Memory based415

LLMs (HieraMem LLMs). (a) TempMem-LLMs:416

We directly compare the results shown in Long-417

Bench (Bai et al., 2023), covering LLMs with ex-418

tensive parameter amount and context length (in-419

cluding the context length expanded LLMs). When420

the input text exceeds LLM’s context length, the421

content in the middle position of the text is trun-422

cated. (b) HieraMem-LLMs: We experiment with423

different context lengths (1K, 2K, ..., 20K, 28K424

words), and different fragments lengths (500 and425

800 words per fragment). The embeddings are cal-426

culated using the pre-trained Contriever (Izacard 427

et al., 2021). The base LLMs includes Llama2-7B- 428

4K (Touvron et al., 2023), ChatGLM3-6B-32K (Du 429

et al., 2022) and GPT-3.5-Turbo-16K. 430

Relation Integration Details. We calculate the 431

fragment relations using semantic relation (Equa- 432

tion. 6) and context structure relevance (Equa- 433

tion. 7), denoted as "A-FragRel" and "B-FragRel" 434

respectively. Except for specific statements, we set 435

wrel = 0.3 and α = 0.5. 436

4.1.2 Result 437

TempMem vs. HieraMem. According to Fig- 438

ure. 3, the Hierarchical Memory based LLMs (the 439

columns) could outperform Temporary Memory 440

based LLMs (the horizontal lines), especially on 441

large context windows (more than 8K tokens). This 442

is consistent with the conclusion that retrieval aug- 443

mentation could help improve long context LLM 444

in previous works (Xu et al., 2023). 445

Benefits of Fragment-level Relations. As 446

shown in Figure. 3, across all base LLMs and 447

context length, the structural relation augmented 448

HieraMem-LLMs (noted as B-FragRel-*) con- 449

sistently outperforms the counterpart HieraMem- 450

LLMs (noted as No-FragRel-*). The performance 451

enhancement is especially noticeable under enough 452

long context length. This indicates that the intro- 453

duction of fragment-level correlations effectively 454

alleviates the deficiencies of HieraMem-LLM in 455

terms of external memory management. 456

Semantic Relation vs. Structure Relation. Fig- 457

ure. 3 compares semantic relation ("A-FragRel-*") 458

and context structure relation ("B-FragRel-*") on 459
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Figure 4: Performance improvement using different edge weight wrel and relation weight α.

fragment length 500. The semantic relation offers460

a slight enhancement under enough long context,461

while the context structure relation provides con-462

sistent and significant improvement across various463

context lengths. We posit this is due to that the em-464

bedding based retrieval has implicitly considered465

the semantic association between segments.466

Different Relation Parameters. Figure. 4467

presents the performance with varied relation pa-468

rameters wrel and α on different context lengths469

and fragment lengths. Although the optimal values470

of relations parameters (wrel and α) for different se-471

tups (including fragment length, context types, and472

context length constraint etc. ) are difficult to ascer-473

tain, most empirical values (α ∈ [0.2, 0.5], wrel ∈474

[0.1, 0.7]) can lead to performance enhancement.475

4.2 Repository-level Code Generation476

4.2.1 Setup477

Dataset. We conduct the code generation ex-478

periment on RepoEval (Zhang et al., 2023a), a479

benchmark constructed using the latest repositories480

source from GitHub. Specifically, two code com-481

pletion tasks are considered: (a) Line Completion:482

completing random code lines, (b) Api Invocation483

Completion: completing random code lines that484

invoke in-repository apis. Both tasks contain 1600485

test samples across 8 repositories.486

Metrics. Following previous works (Zhang et al.,487

2023a; Lu et al., 2021, 2022), we evaluate the code488

generation performance using two metrics: Exact489

Match (EM Score) and Edit Similarity (ES Score).490

EM score evaluates how many completions are491

exactly the same to real code. ES score represents492

the similarity between the generated and real code.493

Baselines. We employ Codellama-34b (Roziere494

et al., 2023) with 4K context length as the base495

LLMs, and the same prompt formats as Re-496

poCoder (Zhang et al., 2023a). To extensively eval-497

Method EM Score ES Score

Single Step Retrieval
Vanilla Retriever 46.31 66.26

Vanilla Retriever + FragRel 48.25 67.05

Iterative Retrieval
RepoCoder (Zhang et al., 2023a) 49.13 68.39

RepoCoder + FragRel 50.44 68.50

Table 1: Performance evaluation on line completion task
of RepoEval (Zhang et al., 2023a) using Codellama-
34b (Roziere et al., 2023).

Method EM Score ES Score

Single Step Retrieval
Vanilla Retriever 40.00 66.32

Vanilla Retriever + FragRel 40.94 66.39

Iterative Retrieval
RepoCoder (Zhang et al., 2023a) 41.81 68.31

RepoCoder + FragRel 43.00 69.07

Table 2: Performance evaluation on api invocation com-
pletion task of RepoEval (Zhang et al., 2023a) using
Codellama-34b (Roziere et al., 2023).

uate the integrated relations, we consider not only 498

the single step Vanilla Retriever but also the iter- 499

ative retrieval method RepoCoder (Zhang et al., 500

2023a). Noted that we report the result of oracle 501

iterative retrieval, i.e. the upper bound of perfor- 502

mance during the iterative retrieval procedure. Sec- 503

tion. B.1 presents more implementation detail. 504

Relation Integration Details. In this experiment, 505

we use the Code Structure Relation shown in Equa- 506

tion. 8 , and we set relation weight α = 0.5. 507

4.2.2 Result 508

Table 1, 2 present the results of the line completion 509

task and api invocation completion task, respec- 510

tively. On the two tasks, the integrated relation 511

consistently improves the performance of both the 512

single step retrieval inference framework and the 513

iterative retrieval inference framework. This em- 514

pirically demonstrates that fragment-level relations 515

are greatly helpful in long code scenarios. 516
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Method Auto-rated Score by GPT4-4K (1-100)

Retrospection Continuation Conjunction Average

ChatGPT-2K 52.11 55.33 48.22 51.89
MPC-ChatGPT (Lee et al., 2023) 53.00 61.22 49.33 54.52

MemoryBank-ChatGPT (Zhong et al., 2023) 23.39 55.28 48.67 42.44
MemoChat-ChatGPT (Lu et al., 2023) 66.28 73.50 72.50 70.76

MemRetrieval-ChatGPT 81.17 74.56 69.39 75.04
MemRetrieval-ChatGPT + FragRel 81.56 77.89 82.17 80.54

Table 3: Performance comparison on MTBench+ (Lu et al., 2023).

4.3 Memory-enhanced Chatbot517

4.3.1 Setup518

Dataset. We perform the long-term chatting ex-519

periment on MTBench+ (Lu et al., 2023). Every520

chatting stream consists of 12 ∼ 15 turns dialogs,521

covering topics such as "STEM exams", and "liter-522

ary writing". At the end of every dialog, a challeng-523

ing question is added by the experts. The questions524

could be classified into 3 categories: (a) “Retro-525

spection” requires the model to respond content526

mentioned previously, (b) "Continuation" requires527

the model to finish a further task about talked top-528

ics, (c) “Conjunction” requires answering ques-529

tions involving multiple topics existing in the dia-530

log. There are 54 test samples, 18 for every type.531

Metrics. Following the origin benchmark (Lu532

et al., 2023), we assess the generated response us-533

ing LLM-as-a-judge method (Zheng et al., 2023),534

where GPT4 is instructed to check the faithfulness535

of the model response and produces a 1 ∼ 100 inte-536

ger score. We utilize exactly the same testing setup537

(including prompt format, GPT4 version, hyperpa-538

rameters, etc. ) as (Lu et al., 2023).539

Baselines. We consider the ChatGPT-based base-540

lines reported in MemoChat (Lu et al., 2023), in-541

cluding various external memory enhanced frame-542

works (Zhong et al., 2023; Lee et al., 2023). In ad-543

dition, we introduce a dense retrieval augmentation544

baseline, named MemRetrieval-ChatGPT. Follow-545

ing previous work (Lu et al., 2023), we constraint546

the temporary context length as 2K tokens. Sec-547

tion. B.2 presents more implementation detail.548

Relation Integration Details. Based on549

MemRetrieval-ChatGPT, we integrate the context550

structure relations defined in Equation. 7. We set551

wrel = 0.8 and α = 0.5 in our experiments.552

4.3.2 Result553

Inference Expense Comparison. Approxi-554

mately, MemoChat (Lu et al., 2023) consumes555

about 1M input tokens and 170K output tokens. 556

MemRetrieval (+FragRel) costs about 680K input 557

tokens and 65K output tokens. The introduced 558

dense retrieval framework relatively reduces about 559

32% input tokens and 62% output tokens cost. 560

Performance Comparison. Table 3 presents the 561

experimental results. Utilizing the same 2K tem- 562

porary context length, the introduced MemRe- 563

trieval achieves comparable performance to Mem- 564

oChat (Lu et al., 2023). Our fragment relations 565

augmented methods consistently outperform all 566

baseline, validating the effectiveness of incorporat- 567

ing fragments relations on the long-term chatting 568

task. 569

5 Conclusion 570

This work focuses on the isolated fragment assess- 571

ment issue in current external memory retrieval 572

methods and proposes a fresh relation-embedded 573

fragment assessment criteria. Experiments across 574

multiple long text processing tasks substantiate the 575

advantage of the proposed method. We hope our 576

findings provide inspiration for future explorations 577

about External Memory enhanced LLMs. 578

6 Limitation 579

Despite the fragment-level relations significantly 580

improve the external memory management, current 581

framework still suffers following limitations: (1) 582

The best value for relation parameters (including 583

wrel and α) varies for different text types, fragment 584

lengths, and relation categories. We can only em- 585

pirically select a relatively good, but not the best 586

parameter value. (2) The relation definitions shown 587

in Equation. 6, 7, 8 are empirically defined, thus 588

they have limited generalizability. (3) The relation 589

incorporation method shown in Section. 3.3 is only 590

applicable upon dense similarity based retrievers 591

while overlooking other retrieval methods. 592
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A Relation Calculation Details803

A.1 Code Relation Calculation804

Code Repository Graph G Construction. The805

code repository graph is created with the follow-806

ing steps: (1) For a specific code repository, we807

first construct the code syntax tree for every code808

source file using tree-sitter 1 (edge weight is set as809

0.5). (2) In addition, we construct the file directory810

tree where every node corresponds to a file or di-811

rectory in the repository (edge weight is set as 0.3).812

(3) Next, we connect the root node of every code813

syntax tree with its counterpart file node on the file814

directory tree (edge weight is set as 1.0), obtain-815

ing the code repository parsing tree. (4) Finally,816

we create node connections (edge weight is set as817

0.8) between every function invoking node and its818

corresponding function definition node (including819

both in-file invoking and cross-file invoking).820

Distance calculation. On code repository graph821

G, the edge weight is set according to the edge822

types (a connection between files, a connection823

between in-file code syntax node, etc. ), and con-824

strained in [0, 1].825

The length of a path through multiple nodes is826

defined as the product of the weights of all edges827

on the path, thus a longer path will have a smaller828

weight. The relation strength Dis(gcik , g
ci
l ) of the829

relationship between two nodes is defined as the830

weight of maximum weight path between the two831

nodes gcik and gcil ). We calculate Dis(·, ·) via the832

Dijkstra algorithm in our experiment.833

B Framework Implementation Details834

B.1 Code Completion Framework Details835

Retrieval. Every fragment consists of exactly Sw836

lines of code and adjacent have Ss overlapped lines837

of code. We set Sw = 20 and Ss = 10 same as838

Zhang et al. (2023a). Following RepoCoder (Zhang839

et al., 2023a), the BM25 (Robertson and Zaragoza,840

2009) is used for retrieval. The fragments within841

Top 10 similarity scores to the completed code842

context are taken as retrieved results every time.843

LLM Inference. We employ Codellama-844

34b (Roziere et al., 2023) with 4K context845

length as the base LLMs in our experiment,846

and exactly the same prompt formats as used in847

RepoCoder (Zhang et al., 2023a).848

1https://tree-sitter.github.io

B.2 Memory-enhanced Chatbot Details 849

Retrieval In MemRetrieval-ChatGPT (+Fra- 850

gRel), every fragment consists of exactly one turn 851

of the dialog. The text embedding is calculated us- 852

ing the text-embedding-ada-002 model. Every time 853

we load related historical fragments within Top 8 854

embedding similarity to the recent dialog (last turn 855

of dialog and latest user prompt). The retrieved 856

fragments are reordered according to their chatting 857

time. 858

LLM Inference. Same as MemoChat (Lu et al., 859

2023), we use the GPT-3.5-Turbo as the base LLM 860

for inference, and the context length is constrained 861

to 2K tokens. In the initial rounds of conversation, 862

all historical records are directly inputted into the 863

model. Once the length of the historical record 864

exceeds 1K tokens or the conversation rounds sur- 865

pass 10, the historical chat content will be stored in 866

external memory. Subsequently, each conversation 867

will load relevant fragments to the recent chatting 868

context from the external memory. 869
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