
Published as a conference paper at ICLR 2021

LEARNING LONG-TERM VISUAL DYNAMICS WITH
REGION PROPOSAL INTERACTION NETWORKS

Haozhi Qi
UC Berkeley

Xiaolong Wang
UC San Diego

Deepak Pathak
CMU

Yi Ma
UC Berkeley

Jitendra Malik
UC Berkeley

ABSTRACT

Learning long-term dynamics models is the key to understanding physical common
sense. Most existing approaches on learning dynamics from visual input sidestep
long-term predictions by resorting to rapid re-planning with short-term models.
This not only requires such models to be super accurate but also limits them only
to tasks where an agent can continuously obtain feedback and take action at each
step until completion. In this paper, we aim to leverage the ideas from success
stories in visual recognition tasks to build object representations that can capture
inter-object and object-environment interactions over a long-range. To this end,
we propose Region Proposal Interaction Networks (RPIN), which reason about
each object’s trajectory in a latent region-proposal feature space. Thanks to the
simple yet effective object representation, our approach outperforms prior methods
by a significant margin both in terms of prediction quality and their ability to
plan for downstream tasks, and also generalize well to novel environments. Code,
pre-trained models, and more visualization results are available at our Website.

1 INTRODUCTION

As argued by Kenneth Craik, if an organism carries a model of external reality and its own possible
actions within its head, it is able to react in a much fuller, safer and more competent manner to
emergencies which face it (Craik, 1952). Indeed, building prediction models has been long studied
in computer vision and intuitive physics. In computer vision, most approaches make predictions in
pixel-space (Denton & Fergus, 2018; Lee et al., 2018; Ebert et al., 2018b; Jayaraman et al., 2019;
Walker et al., 2016), which ends up capturing the optical flow (Walker et al., 2016) and is difficult to
generalize to long-horizon. In intuitive physics, a common approach is to learn the dynamics directly
in an abstracted state space of objects to capture Newtonian physics (Battaglia et al., 2016; Chang
et al., 2016; Sanchez-Gonzalez et al., 2020). However, the states end up being detached from raw
sensory perception. Unfortunately, these two extremes have barely been connected. In this paper, we
argue for a middle-ground to treat images as a window into the world, i.e., objects exist but can only
be accessed via images. Images are neither to be used for predicting pixels nor to be isolated from
dynamics. We operationalize it by learning to extract a rich state representation directly from images
and build dynamics models using the extracted state representations.

It is difficult to make predictions, especially about the future — Niels Bohr

Contrary to Niels Bohr, predictions are, in fact, easy if made only for the short-term. Predictions
that are indeed difficult to make and actually matter are the ones made over the long-term. Consider
the example of “Three-cushion Billiards” in Figure 1. The goal is to hit the cue ball in such a way
that it touches the other two balls and contacts the wall thrice before hitting the last ball. This task
is extremely challenging even for human experts because the number of successful trajectories is
very sparse. Do players perform classical Newtonian physics calculations to obtain the best action
before each shot, or do they just memorize the solution by practicing through exponentially many
configurations? Both extremes are not impossible, but often impractical. Players rather build a
physical understanding by experience (McCloskey, 1983; Kubricht et al., 2017) and plan by making
intuitive, yet accurate predictions in the long-term.

Learning such a long-term prediction model is arguably the “Achilles’ heel” of modern machine
learning methods. Current approaches on learning physical dynamics of the world cleverly side-step
the long-term dependency by re-planning at each step via model-predictive control (MPC) (Allgöwer
& Zheng, 2012; Camacho & Alba, 2013). The common practice is to train short-term dynamical
models (usually 1-step) in a simulator. However, small errors in short-term predictions can accumulate
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Figure 1: Two example of long-term dynamics prediction tasks. Left: three-cushion billiards. Right:
PHYRE intuitive-physics dataset (Bakhtin et al., 2019). Our proposed approach makes accurate
long-term predictions that do not necessarily align with the ground truth but provide strong signal for
planning.

over time in MPC. Hence, in this work, we focus primarily on the long-term aspect of prediction by
just considering environments, such as the three-cushion billiards example or the PHYRE (Bakhtin
et al., 2019) in Figure 1, where an agent is allowed to take only one action in the beginning so as to
preclude any scope of re-planning.

How to learn an accurate dynamics model has been a popular research topic for years. Recently, there
are a series of work trying to represent video frames using object-centric representations (Battaglia
et al., 2016; Watters et al., 2017; Chang et al., 2016; Janner et al., 2019; Ye et al., 2019; Kipf
et al., 2020). However, those methods either operate in the state space, or ignore the environment
information, both of which are not practical in real-world scenarios. In contrast, our objective is
to build a data-driven prediction model that can both: (a) model long-term interactions over time
to plan successfully for new instances, and (b) work from raw visual input in complex real-world
environments. Therefore, the question we ask is: how to extract such an effective and flexible object
representation and perform long-term predictions?

We propose Region Proposal Interaction Network (RPIN) which contains two key components.
Firstly, we leverage the region of interests pooling (RoIPooling) operator (Girshick, 2015) to extract
object features maps from the frame-level feature. Object feature extraction based on region proposals
has achieved huge success in computer vision (Girshick, 2015; He et al., 2017; Dai et al., 2017;
Gkioxari et al., 2019), and yet, surprisingly under-explored in the field of intuitive physics. By using
RoIPooling, each object feature contains not only its own information but also the context of the
environment. Secondly, we extend the Interaction Network and propose Convolutional Interaction
Networks that perform interaction reasoning on the extracted RoI features. Interaction Networks is
originally proposed in (Battaglia et al., 2016), where the interaction reasoning is conducted via MLPs.
By changing MLPs to convolutions, we can effectively utilize the spatial information of an object
and make accurate future prediction of object location and shapes changes.

Notably, our approach is simple, yet outperforms the state-of-the-art methods in both simulation
and real datasets. In Section 5, we thoroughly evaluate our approach across four datasets to study
scientific questions related to a) prediction quality, b) generalization to time horizons longer than
training, c) generalization to unseen configurations, d) planning ability for downstream tasks. Our
method reduces the prediction error by 75% in the complex PHYRE environment and achieves
state-of-the-art performance on the PHYRE reasoning benchmark.

2 RELATED WORK

Physical Reasoning and Intuitive Physics. Learning models that can predict the changing dy-
namics of the scene is the key to building physical common-sense. Such models date back to
“NeuroAnimator” (Grzeszczuk et al., 1998) for simulating articulated objects. Several methods in
recent years have leveraged deep networks to build data-driven models of intuitive physics (Bhat-
tacharyya et al., 2016; Ehrhardt et al., 2017; Fragkiadaki et al., 2015; Chang et al., 2016; Stewart
& Ermon, 2017). However, these methods either require access to the underlying ground-truth
state-space or do not scale to long-range due to absence of interaction reasoning. A more generic
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yet explicit approach has been to leverage graph neural networks (Scarselli et al., 2009) to capture
interactions between entities in a scene (Battaglia et al., 2018; Chang et al., 2016). Closest to our
approach are interaction models that scale to pixels and reason about object interaction (Watters
et al., 2017; Ye et al., 2019). However, these approaches either reason about object crops with no
context around or can only deal with a predetermined number and order of objects. A concurrent
work (Girdhar et al., 2020) studies using prediction for physical reasoning, but their prediction model
is either in the state space or in the pixel space.

Other common ways to measure physical understanding are to predict future judgments given a
scene image, e.g., predicting the stability of a configuration (Groth et al., 2018; Jia et al., 2015; Lerer
et al., 2016; Li et al., 2016a;b). Several hybrid methods take a data-driven approach to estimate
Newtonian parameters from raw images (Brubaker et al., 2009; Wu et al., 2016; Bhat et al., 2002;
Wu et al., 2015), or model Newtonian physics via latent variable to predict motion trajectory in
images (Mottaghi et al., 2016a;b; Ye et al., 2018). An extreme example is to use an actual simulator to
do inference over objects (Hamrick et al., 2011). The reliance on explicit Newtonian physics makes
them infeasible on real-world data and un-instrumented settings. In contrast, we take into account the
context around each object via RoIPooling and explicitly model their interaction with each other or
with the environment without relying on Newtonian physics, and hence, easily scalable to real videos
for long-range predictions.

Video Prediction. Instead of modeling physics from raw images, an alternative is to treat visual
reasoning as an image translation problem. This approach has been adopted in the line of work
that falls under video prediction. The most common theme is to leverage latent-variable models for
predicting future (Lee et al., 2018; Denton & Fergus, 2018; Babaeizadeh et al., 2017). Predicting
pixels is difficult so several methods leverage auxiliary information like back/fore-ground (Villegas
et al., 2017a; Tulyakov et al., 2017; Vondrick et al., 2016), optical flow (Walker et al., 2016; Liu et al.,
2017), appearance transformation (Jia et al., 2016; Finn et al., 2016; Chen et al., 2017; Xue et al.,
2016), etc. These inductive biases help in a short interval but do not capture long-range behavior as
needed in several scenarios, like playing billiards, due to lack of explicit reasoning. Some approaches
can scale to relative longer term but are domain-specific, e.g., pre-defined human-pose space (Villegas
et al., 2017b; Walker et al., 2017). However, our goal is to model long-term interactions not only for
prediction but also to facilitate planning for downstream tasks.

Learning Dynamics Models. Unlike video prediction, dynamics models take actions into account
for predicting the future, also known as forward models (Jordan & Rumelhart, 1992). Learning
these forward dynamics models from images has recently become popular in robotics for both
specific tasks (Wahlström et al., 2015; Agrawal et al., 2016; Oh et al., 2015; Finn et al., 2016) and
exploration (Pathak et al., 2017; Burda et al., 2019). In contrast to these methods where a deep
network directly predicts the whole outcome, we leverage our proposed region-proposal interaction
module to capture each object trajectories explicitly to learn long-range forward dynamics as well as
video prediction models.

Planning via Learned Models. Leveraging models to plan is the standard approach in control
for obtaining task-specific behavior. Common approach is to re-plan after each action via Model
Predictive Control (Allgöwer & Zheng, 2012; Camacho & Alba, 2013; Deisenroth & Rasmussen,
2011). Scaling the models and planning in a high dimensional space is a challenging problem. With
deep learning, several approaches shown promising results on real-world robotic tasks (Finn et al.,
2016; Finn & Levine, 2017; Agrawal et al., 2016; Pathak et al., 2018). However, the horizon of these
approaches is still very short, and replanning in long-term drifts away in practice. Some methods try to
alleviate this issue via object modeling (Janner et al., 2019; Li et al., 2019) or skip connections (Ebert
et al., 2018a) but assume the models are trained with state-action pairs. In contrast to prior works
where a short-range dynamic model is unrolled in time, we learn our long-range models from passive
data and then couple them with short-range forward models to infer actions during planning.

3 REGION PROPOSAL INTERACTION NETWORKS

Our model takes N video frames and the corresponding object bounding boxes as inputs, and outputs
the objects’ bounding boxes and masks for the future T timesteps. The overall model structure is
illustrated in Figure 2.

3



Published as a conference paper at ICLR 2021

𝐹(𝑥!") 𝐹(𝑥!"#$) 𝐹(𝑥!"#%) 𝐹(𝑥!"#&) 𝐹(𝑥!"#')

Object Location Prediction

𝐹(𝑥!"#()

𝑥!
𝑥"
𝑥#

𝑧!
𝑧"
𝑧#

𝑓(𝑥!, 𝑥") 𝑓(𝑥!, 𝑥#)

𝑓(𝑥# , 𝑥!) 𝑓(𝑥#, 𝑥")

Interaction Module
Object
FeaturesConvNet

RoIPool

ConvNet

RoIPool

ConvNet

RoIPool

𝐼" 𝐼"#$ 𝐼"#%

ConvNet

RoIPool

𝐹(𝑥!"#)) 𝐹(𝑥!"#*)

𝐼"#&

Figure 2: Our Region Proposal Interaction Network. Given N frames as inputs, we forward them to
an encoder network, and then extract the foreground object features with RoIPooling (different colors
represent different instances). We then perform interaction reasoning on top of the region proposal
features (gray box on the bottom right). We predict each future object feature based on the previous k
time steps. We then estimate the object location from each object feature.

For each frame, we first extract the image features using a ConvNet. Then we apply RoIPooling
(Girshick, 2015; He et al., 2017) to obtain the object-centric visual features. These features are then
forwarded to our Convolutional Interaction Networks (CIN) to perform objects’ interaction reasoning
and used to predict future object bounding boxes and masks. The whole pipeline is trained end-to-end
by minimizing the loss between the predicted outputs and the ground-truth.

3.1 OBJECT-CENTRIC REPRESENTATION

We apply the houglass network (Newell et al., 2016) to extract the image features. Given an input
RGB image I ∈ R3×H×W , the hourglass network firstly downsample the input via one 2-strided
convolution and 2-strided max pooling layers, and then refine the representation by a U-Net-like
encoder-decoder modules (Ronneberger et al., 2015). The hourglass network provides features with
a large receptive field and a fine spatial resolution (4 times smaller than the input image), both of
which are crucial to accurately model object-object and object-environment interactions. We denote
the number of output channels of the feature map as d.

On top of this feature map, we use RoIPooling (Girshick, 2015) to extract a d × h × w object-
centric features. RoIPooling takes the feature map and a object bounding box as input. The region
corresponding to the bounding box on the feature map is cropped and resize to a fixed spatial size
(denoted as h × w). We use xti to represent the feature at t-th timestep for the i-th object. Such
feature representation differs from previous method in two perspectives: 1) It is extracted from image
features with a large receptive field, which gives plenty of context information around the object. 2)
The feature representation is a 3-dimensional feature map rather than a single vector representation. It
can represent the objects’ shapes while the vector representation cannot because the spatial dimension
is flattened.

3.2 CONVOLUTIONAL INTERACTION NETWORKS

To better utilize the spatial information of our object feature map, we propose Convolutional Inter-
action Networks, an extension of Interaction Network operators on 3-dimensional tensors. In this
section, we first briefly review the original Interaction Network (IN) (Battaglia et al., 2016; Watters
et al., 2017) and introduce the proposed Convolutional Interaction Networks (CIN).

The original interaction network is a general-purpose data-driven method to model and predict physi-
cal dynamics. It takes the feature vectors of m objects at timestep t: X = {xt1, xt2, ..., xtm |xti ∈ Rd}
and performs object reasoning fO as well as relational reasoning fR on these features. Specifically,
the updated rule of object features can be described as:

eti = fA
(
fO(x

t
i) +

∑
j 6=i fR(x

t
i, x

t
j)
)
,

zti = fZ(x
t
i, e

t
i),

xt+1
i = fP

(
zti , z

t−1
i , . . . , zt−ki

)
.

(1)
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In the above equation, fA is the function to calculate the effect of both of object reasoning and
relational reasoning results. And fZ is used to combine the original object state and the reasoning
effect. Finally, fP is used to do future state predictions based on one or more previous object states.
In IN, fO,R,A,Z,P are instantiated by a fully-connected layer with learnable weights.

Convolutional Interaction Networks. The input of CIN is m object feature maps at timestep t:
X = {xt1, xt2, ..., xtm|xti ∈ Rd×h×w}. The high-level update rule is the same as IN, but the key
difference is that we use convolution to instantiate fO,R,A,Z,P . Such instantiation is crucial to utilize
the spatial information encoded in our object feature map and to effectively reason future object
states. Specifically, we have

fR(x
t
i, x

t
j) =WR ∗ [xti, xtj ]

fA(x
t
i) =WT

A ∗ xti

fO(x
t
i) =WO ∗ xti

fZ(x
t
i, e

t
i) =WZ ∗ [xti, eti]

(2)

fP (z
t
i , z

t−1
i , ..., zt−ki ) =WP ∗ [zti , zt−1i , ..., zt−ki ] (3)

One can plug the functions in Equation 1 for better understanding the operations. In the above
equations, ∗ denotes the convolution operator, and [·, ·] denotes concatenation along the channel
dimension. WR,WZ ∈ Rd×2d×3×3, WO,WA ∈ Rd×d×3×3, WP ∈ Rd×(kd)×3×3 are learnable
weights of the convolution kernels with kernel size 3× 3. We also add ReLU activation after each of
the convolutional operators.

3.3 LEARNING REGION PROPOSAL INTERACTION NETWORKS (RPIN)

Our model predicts the future bounding box and (optionally) masks of each object. Given the
predicted feature xt+1

i , we use a simple two layer MLP decoder to estimate its bounding boxes
coordinates and masks. The bounding box decoder takes a flattened object feature map as input. It
firstly projects it to d dimensional vector, and outputs 4-d vector, representing the center location
and size of the box. The mask decoder is of the same architecture but has 21×21 output channels,
representing a 21×21 binary masks inside the corresponding bounding boxes. We use the `2 loss for
bounding box predictions. For mask prediction, we use spatial cross-entropy loss which sums the
cross-entropy values of a 21×21 predicted positions. The objective can be written as:

Lp =

T∑
t=1

λt

n∑
i=1

(
‖B̂t+1

i −Bt+1
i ‖22 + CE(M̂ t+1

i ,M t+1
i )

)
. (4)

We use discounted loss during training (Watters et al., 2017) to mitigate the effect of inaccurate
prediction at early training stage and λt is the discounted factor.

4 EXPERIMENTAL SETUP

Datasets. We evaluate our method’s prediction performance on four different datasets, and demon-
strate the ability to perform downstream physical reasoning and planning tasks on two of them. We
briefly introduce the four datasets below. The full dataset details are in the appendix.

PHYRE: We use the BALL-tier of the PHYRE benchmark (Bakhtin et al., 2019). In this dataset, we
set T = 5. We treat all of the moving balls or jars as objects and other static bodies as background.
The benchmark provides two evaluation settings: 1) within task generalization (PHYRE-W), where
the testing environments contain the same object category but different sizes and positions; 2) cross
task generalization (PHYRE-C), where environments containing objects and context never present
during training. We report prediction using the official fold 0 and the physical reasoning performance
averaged on 10 folds.

ShapeStacks (SS): This dataset contains multiple stacked objects (cubes, cylinders, or balls) (Ye et al.,
2019). In this dataset, we set T = 15. We evaluate all baselines and our methods follow the protocol
of (Ye et al., 2019) with uncertainty estimation incorporated (see Appendix for detail).

Real World Billiards (RealB): We collect “Three-cushion Billiards” videos from professional games
with different viewpoints downloaded from YouTube. There are 62 training videos with 18, 306
frames, and 5 testing videos with 1, 995 frames. The bounding box annotations are from an off-
the-shelf ResNet-101 FPN detector (Lin et al., 2017) pretrained on COCO (Lin et al., 2014) and
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fine-tuned on a subset of 30 images from our dataset. We manually filtered out wrong detections. In
this dataset, we set T = 20.

Simulation Billiards (SimB): We create a simulated billiard environment with three different colored
balls with a radius 2 are randomly placed in a 64×64 image. At starting point, one ball is moving
with a randomly sampled velocity. We generate 1,000 video sequences for training and 1,000 video
sequences for testing, with 100 frames per sequence. We will also evaluate the ability to generalize to
more balls and different sized balls in the experiment section. In this dataset, we set T = 20.

For PHYRE and SS, it is possible to infer the future from just the initial configuration. So we set
N = 1 in these two datasets. For SimB and RealB, the objects are moving in a flat table so we cannot
infer the future trajectories based on a single image. Therefore in this setting, we set N = 4 to infer
the velocity/acceleration of objects. We set k = N in all the dataset because we only have access
to N features when we make prediction at t = N + 1. We predict object masks for PHYRE and
ShapeStacks, and only predict bounding boxes for Billiard datasets.

Baselines. There are a large amount of work studying how to estimate objects’ states and predict
their dynamics from raw image inputs. They fall into the following categories:

VIN: Instead of using object-centric spatial pooling to extract object features, it use a ConvNet to
globally encode an image to a fixed d×m dimensional vector. Different channels of the vector is
assigned to different objects (Kipf et al., 2020; Watters et al., 2017). This approach requires specifying
a fixed number of objects and a fixed mapping between feature channels and object identity, which
make it impossible to generalize to different number of objects and different appearances.

Object Masking (OM): This approach takes one image and m object bounding boxes or masks as
input (Wu et al., 2017; Veerapaneni et al., 2019; Janner et al., 2019). For each proposal, only the
pixels inside object proposals are kept while others are set to 0, leading to m masked images. This
approach assumes no background information is needed thus fails to predict accurate trajectories in
complex environments such as PHYRE. And it also cost m times computational resources.

CVP: The object feature is extracted by cropping the object image patch and forwarding it to an
encoder (Ye et al., 2019; Yi et al., 2020). Since the object features are directly extracted from the raw
image patches, the context information is also ignored. We re-implement CVP’s feature extraction
method within our framework. We show we can reproduce their results in Section A.2.

5 EVALUATION RESULTS: PREDICTION, GENERALIZATION, AND PLANNING

We organize this section and analyze our results by discussing four scientific questions related to the
prediction quality, generalization ability across time & environment configurations, and the ability to
plan actions for downstream tasks.

5.1 HOW ACCURATE IS THE PREDICTED DYNAMICS?

To evaluate how well the world dynamics is modeled, we first report the average prediction errors
on the test split, over the same time-horizon as which model is trained on, i.e., t ∈ [0, Ttrain]. The
prediction error is calculated by the squared `2 distance between predicted object center location and
the ground-truth object centers. The results are shown in Table 1 (left half).

Firstly, we show the effectiveness of our proposed RoI Feature by comparing Table 1 VIN, OM, CVP,
and Ours (IN). These four entries use the same backbone network and interaction network modules
and only visual encoder is changed. Among them, VIN cannot even be trained on PHYRE-W since
it cannot handle varying number of objects. The OM method performs slightly better than other
baselines since it also explicitly models objects by instance masking. For CVP, it cannot produce
reasonable results on all of the datasets except on the SS dataset. The reason is that in PHYRE
and billiard environments, cropped images are unaware of environment information and the relative
position and pose of different objects, making it impossible to make accurate predictions. In SS,
since the object size is large and objects are very close to each other, the cropped image regions
already provide enough context. In contrast, our RoI Feature can implicitly encode the context and
environment information and it performs much better than all baselines. In the very challenging
PHYRE dataset, the prediction error is only 1/4 of the best baseline. In the other three easier datasets,
the gap is not as large since the environment is less complicated, but our method still achieves

6



Published as a conference paper at ICLR 2021

method visual encoder
t ∈ [0, Ttrain] t ∈ [Ttrain, 2× Ttrain]

PHYRE-W SS RealB SimB PHYRE-W SS RealB SimB

VIN Global Encoding N.A. 2.47 1.02 3.89 N.A. 7.77 5.11 29.51

OM Masked Image 6.45 3.01 0.59 3.48 25.72 9.51 3.23 28.87

CVP Cropped Image 60.12 2.84 3.57 80.01 79.11 7.72 6.63 108.56

Ours (IN) RoI Feature 1.50 1.85 0.37 3.01 12.45 4.89 2.72 27.88

Ours (CIN) RoI Feature 1.31 1.03 0.30 2.55 11.10 4.73 2.34 25.77

Table 1: We compare our method with different baselines on all four datasets. The left part shows
the prediction error when rollout timesteps is the same as training time. The right part shows the
generalization ability to longer horizon unseen during training. The error is scaled by 1,000. Our
method has significantly improvements on all of the datasets

method visual encoder PHYRE-C SS-4 SimB-5

VIN Global Encoding N.A. N.A. N.A.

OM Masked Image 50.28 17.02 59.70

CVP Cropped Image 99.26 16.88 113.39

Ours (IN) RoI Feature 10.98 15.02 24.42

Ours (CIN) RoI Feature 9.22 14.61 22.38

Table 2: The ability to generalize to novel environments. We show the average prediction error for
t ∈ [0, 2× Ttrain]. Our method achieves significantly better results compared to previous methods.
The error is scaled by 1,000. Our method generalizes much better than other baselines.

more than 10% improvements. These results clearly demonstrates the advantage of using rich state
representations.

Secondly, we show that the effectiveness of our proposed Convolutional Interaction Network by
comparing Table 1 Ours (IN) and Ours (CIN). With every other components the same, changing
the vector-form representation to spatial feature maps and use convolution to model the interactions
can further improve the performance by 10%∼40%. This result shows our convolutional interaction
network could better utilize the spatial information encoded in the object feature map.

5.2 DOES LEARNED MODEL GENERALIZE TO LONGER HORIZON THAN TRAINING?

Generalize to longer horizons is a challenging task. In this section we compare the performance of
predicting trajectories longer than training time. In Table 1 (right half), we report the prediction error
for t ∈ [Ttrain, 2×Ttrain]. The results in this setting are consistent with what we found in Section 5.1.
Our method still achieves the best performance against all baselines. Specifically, for all datasets
except SimB, we reduce the error by more than 30% percent. In SimB, the improvement is not as
significant because the interaction with environment only includes bouncing off the boundaries (see
Figure 4 (c) and (d)). Meanwhile, changing IN to CIN further improve the performance. This again
validates our hypothesis that the key to making accurate long-term feature prediction is the rich state
representation extracted from an image.

5.3 DOES LEARNED MODEL GENERALIZE TO UNSEEN CONFIGURATIONS?

The general applicability of RoI Feature has been extensively verified in the computer vision commu-
nity. As one of the benefits, our method can generalize to novel environments configurations without
any modifications or online training. We test such a claim by testing on several novel environments
unseen during training. Specifically, we construct 1) simulation billiard dataset contains 5 balls with
radius 2 (SimB-5); 2) PHYRE-C where the test tasks are not seen during training; 3) ShapeStacks
with 4 stacked blocks (SS-4). The results are shown in Table 2.

Since VIN needs a fixed number of objects as input, it cannot generalize to a different number of
objects, thus we don’t report its performance on SimB-5, PHYRE-C, and SS-4. In the SimB-5
and PHYRE-C setting, where generalization ability to different numbers and different appearances
is required, our method reduce the prediction error by 75%. In SS-4, the improvement is not as
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Within Cross

RAND 13.7±0.5 13.0±5.0

DQN 77.6±1.1 36.8±9.7

Ours 85.2±0.7 42.2±7.1

Table 3: PHYRE Planning results. RAND
stands for a score function with random policy.
We show that our method achieves state-of-
the-art on both within-task generalization as
well as cross-task generalization.

Target State Error Hitting Accuracy

RAND 36.91 9.50%

CVP 29.84 20.3%
VIN 9.11 51.2%
OM 8.75 54.5%

Ours 7.62 57.2%

Table 4: Simulation Billiards planning results. To
make a fair comparison, all of baselines and our
methods are using the original interaction network
and only the visual encoding method is changing.
RAND stands for a policy taking random actions.

significant as the previous two because cropped image may be enough on this simpler dataset as
mentioned above.

5.4 HOW WELL CAN THE LEARNED MODEL BE USED FOR PLANNING ACTIONS?

The advantage of using a general purpose task-agnostic prediction model is that it can help us do
downstream planning and reasoning tasks. In this section, we evaluate our prediction model in the
recently proposed challenging PHYRE benchmark (Bakhtin et al., 2019) and simulation billiards
planning tasks.

PHYRE. We use the B-tier of the environment. In this task, we need to place one red ball at a certain
location such that the green ball touches another blue/purple object (see figure 1 right for an example).
Bakhtin et al. (2019) trains a classification network whose inputs are the first image and a candidate
action, and outputs whether the action leads to success. Such a method does not utilize the dynamics
information. In contrast, we can train a classifier on top of the predicted objects’ features so that it
can utilize dynamics information and makes more accurate classification.

During training, we use the same prediction model as described in previous sections except for
Ttrain = 10, and then attach an extra classifier on the objects’ features. Specifically, we concatenate
each object’s features at the 0th, 3rd, 6th, and 9th timestep and then pass it through two fully-
connected layers to get a feature trajectory for each object. Then we take the average of all the
objects’ features and pass it through one fully-connected layer to get a score indicating whether this
placement solve the task. We minimize the cross-entropy loss between the score and the ground-truth
label indicating whether the action is a success. Note that different from previous work (Bakhtin
et al., 2019; Girdhar et al., 2020), our model does not need to convert the input image to the 7-channel
segmentation map since object information is already utilized by our object-centric representation.
During testing, We enumerate the first 10,000 actions from the pre-computed action set in Bakhtin
et al. (2019) and render the red ball on the initial image as our prediction model’s input. Our final
output is an sorted action list according to the model’s output score.

We report the AUCCESS metric on the official 10 folds of train/test splits for both within-task
generalization and cross-task generalization setting. The results are in Table 3. Our method achieves
about 8 points improvement over the strong DQN baseline (Bakhtin et al., 2019) in the within-
task generalization setting. On the more challenging setting of cross-task generalization where the
environments may not be seen during training, our method is 6 points higher than DQN.

SimB Planning. We consider two tasks in the SimB environment: 1) Billiard Target State. Given an
initial and final configuration after 40 timesteps, the goal is to find one action that will lead to the
target configuration. We report the smallest distances between the trajectory between timestep 35-45
and the final position. 2) Billiard Hitting. Given the initial configurations, the goal is to find an action
that can hit the other two balls within 50 timesteps.

We firstly train a forward model taken image and action as input, to predict the first 4 object positions
and render it to image. After that the rendered images are passed in our prediction model. We score
each action according to the similarity between the generated trajectory and the goal state. Then the
action with the highest score is selected. The results are shown in Table 4. Our results achieves best
performance on all tasks. The full planning algorithm and implementation details are included in the
appendix.
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Figure 3: We show the qualitative comparisons between our method and other baselines in the PHYRE
benchmark. Our model can accurately infer objects’ interactions and collisions with the environment
over a long-range (10s), while the baseline methods cannot (the balls sometimes penetrates other
objects). In this visualization, only the moving objects’ location and masks are predicted (the color is
taken from the simulator). Static environment parts (with black color) are rendered from the initial
image.
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(a) Real Billiard (b) Real Billiard (c) Sim Billiard (d) Sim Billiard (e) ShapeStacks

Figure 4: We show the qualitative results of our predicted trajectories in the other three (RealB, SimB,
and SS) datasets. Our model could produce accurate and plausible predictions on different scenarios.

5.5 QUALITATIVE RESULTS

In figure 3, we show the qualitative prediction results both for our method as well as the OM and
CVP baselines. In figure 4, we compare our prediction and ground-truth on the other three datasets.
More results and videos are available at our Website.

6 CONCLUSIONS

In this paper, we leverage the modern computer vision techniques to propose Region Proposal
Interaction Networks for physical interaction reasoning with visual inputs. We show that our general,
yet simple method achieves a significant improvement and can generalize across both simulation and
real-world environments for long-range prediction and planning. We believe this method may serve
as a good benchmark for developing future methods in the field of learning intuitive physics, as well
as their application to real-world robotics.
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A IMPLEMENTATION DETAILS

A.1 NETWORK ARCHITECTURE DETAILS

Backbone Networks: We use the same backbone network for our method and all the baselines (VIN,
OM, CVP). We choose the hourglass network (Newell et al., 2016) as the image feature extractor.
Given an input image, the hourglass network firstly applies a 7×7 stride-2 convolution, three residual
blocks with channel dimension d/4, and a stride-2 max pooling on it. Then this intermediate feature
representation is fed into one hourglass modules. In the hourglass module, the feature maps are down-
sampled with 3 stride-2 residual blocks and then up-sampled with nearest neighbor interpolation.
The dimensions of both the input channel and the output channel of each residual block are d. For
SimB, we use d = 64 since the visual information in this environment is relatively simple. For RealB,
PHYRE, and ShapeStacks, d = 256. We use batch normalization before each convolutional layer
in the backbone network. The resulting feature map size is d× H

4 ×
W
4 , where H , W is the input

image size and 4 is the spatial feature stride of the hourglass network.

The output features are transformed to object-centric representations differently for our method and
each of the baseline methods:

VIN: The resulting feature map is forwarded to 4 convolutional layers with stride 2 and a spatial
global average pooling layer to get a d dimensional feature vector. This feature vector is transformed
to d×m by one fully-connected layer. This feature will be reshaped to m vectors with d channel
dimensional to represent each object. This representation is refined by two d × d fully-connected
layers and passed to the (convolutional) interaction network.

OM and CVP: The output feature map is of shape m× d× H
4 ×

W
4 because this method produce

m masked (or cropped) images as input. The resulting feature map is forwarded to 4 convolutional
layers with stride 2 and a spatial global average pooling layer to get a d dimensional feature vector
and the output feature is of size m× d, representing the features of m objects. This representation is
refined by two d× d fully-connected layers and passed to the (convolutional) interaction network.

A.2 UNCERTAINTY MODELING.

Only in the shapestack datasets, we also incorporate uncertainty estimation follows (Ye et al., 2019),
by modeling the latent distribution using a variational auto-encoder (Kingma & Welling, 2014). For
the complete details, we refer the reader to (Ye et al., 2019). Here we only give a summary: we build
an encoder h which takes the image feature from first F0 and last frame FT of a video sequence as
the input. The output of h is a distribution parameter, denoted by h(u|F0,FT ). Given a particular
sample from such distribution, we recover the latent variable by feeding them into a one-layer LSTM
and merge into the object feature xti. In this case, our pipeline is trained with an additional loss that
minimize the KL divergence between the predicted distribution and normal distribution (Kingma &
Welling, 2014).

During inference, we sample 100 trajectories for each test image and report the minimum of them.
This setting is the same as the original CVP paper Ye et al. (2019). Our implementation gets
5.28× 10−3 squared `2 distance for T ∈ [0, Ttrain] while the original paper report 6.69× 10−3.

A.3 DATASET DETAILS

SimB: To get the initial velocity, the magnitude (number of pixels moved per timestep) is sampled
from [2, 3, 4, 5, 6] and the direction is sampled from {6iπ, i = 0, 1, . . . , 11}.
RealB: We found that the bounding box prediction results are accurate enough to serve as the ground-
truth. After running the detector, we also manually go through the dataset and filter out images with
incorrect detections.

ShapeStacks: There are 1,320 training videos and 296 testing videos, with 32 frames per video.
Only objects’ center positions provided. Following (Ye et al., 2019), we assume the object bounding
box is square and of size 70×70.

PHYRE: For within task generalization (PHYRE-W), the training set contains 80 templates for
each of the 25 task. The testing set contains the remaining 20 templates from each task. For cross
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task generalization (PHYRE-C), the training set contains 100 templates from 20 tasks while the test
set contains 100 templates from the remaining 5 tasks. For each template, we randomly sample a
maximum 100 success and 400 failure actions to collect the trajectories to train our model. The image
sequence is temporally downsampled by 60.

For our physical reasoning experiments in section 5.4, we train the model using 400 successful actions
and 1600 failure actions per template. We use the validation set to select hyper-parameters first, and
then do training on the union of train and validation sets and report the final results in the test set.

A.4 HYPERPARAMETERS

We use Adam optimizer Kingma & Ba (2014) with cosine decay Loshchilov & Hutter (2016) to train
our networks. The default input frames is N = 4 except N = 1 for ShapeStacks and PHYRE. We
set d to be 256 except for simulation billiard d is 64. During training, T (denoted as Ttrain) is set
to be 20 for SimB and RealB, 5 for PHYRE, and 15 for fair comparison with Ye et al. (2019). The
discounted factor λt is set to be ( current_iter

max_iter )t.

Simulation Billiards. The image size is 64×64. We train the model for 100K iterations with a learning
rate 2×10−3, weight decay 1×10−6, and batch size 200.

Real World Billiards. The image is resized to 192×64. We train the model for 240K iterations with a
learning rate 1×10−4, weight decay 1×10−6, and batch size 20.

PHYRE. The image is resized to 128×128. We train the model for 150K iterations with a learning
rate 2×10−4, weight decay 3×10−7, and batch size 20.

ShapeStacks. The image is resized to 224×224. We train the model for 25K iterations with a learning
rate 2×10−4, no weight decay (the same as Ye et al. (2019)), and batch size 40. In this dataset,
we apply uncertainty modeling. The loss weight of KL-divergence is 3× 10−5. During inference,
following Ye et al. (2019), we randomly sample 100 outputs from our model, and select the best (in
terms of the distance to ground-truth) of them as our model’s output.

B PLANNING DETAILS

Given an initial state (represented by an image) and a goal, we aim to produce an action that can
lead to the goal from the initial state. Our planning algorithm works in a similar way as visual
imagination Fragkiadaki et al. (2015): Firstly, we select a candidate action a from a candidate action
set A. Then we generate the input images I. For SimB, we train a forward model take the initial
image and the action embedding to generate object positions for the next 3 steps. Then we use the
simulator to generate the 3 images. For PHYRE, we convert the action to the red ball using the
simulator and get the initial image. After that, we run our model described in section 5.4 and the
score of each action is simply the classifier’s output. We then select the action with the max score.

We introduce the action set for each task in section B.1, and how to design distance function in B.2.
A summary of our algorithm is in Algorithm 1.

B.1 CANDIDATE ACTION SETS

For simulation billiard, the action is 3 dimensional. The first two dimensions stand for the direction
of the force. The last dimension stands for the magnitude of the force. During doing planning, we
enumerate over 5 different magnitudes and 12 different angles, leading to 60 possible actions. All of
the initial condition is guaranteed to have a solution.

For PHYRE, the action is also 3 dimensional. The first two dimensions stand for the location placing
the red ball. The last dimension stands for the radius of the ball. Following (Bakhtin et al., 2019), we
use the first 10k actions provided by the benchmark.

B.2 DISTANCE FUNCTION

Init-End State Error. Denote the given target location of m objects as y ∈ Rm×2. We use the
following distance function, which measures the distance between the final rollout location and the
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target location:

D =

m∑
i=1

2∑
j=1

(p̂T,i,j − yi,j)2 (5)

Hitting Accuracy. Denote the given initial location of m objects as x ∈ Rm×2. We apply force at
the object i′. We use the following distance function, which prefer the larger moving distance for
objects other than i′:

D = −min
i

m∑
i=1,i6=i′

2∑
j=1

(p̂T,i,j − xi,j)2 (6)

PHYRE task. Since we already train a classifier to classify whether the predicted trajectory will lead
to a successful solution of the current task, during test time we can directly use it to classify whether
the current action will lead to a successful solution. The distance function is just the negative output
score.

B.3 PLANNING ALGORITHM

Algorithm 1: Planning Algorithm for Simulated Billiard and PHYRE
Input: candidate actions A = {ai}, initial state x, end state y (optional)
Output: action a∗

for a in A do
I = Simulation(x,a) ;
p̂ = PredictionModel(I) ;
calculate D according to task as in B.2;
if D < D∗ then

D∗ = D ;
a∗ = a ;

end
end

C PHYRE 10 FOLD RESULTS

To enable future work to compare with our method, we provide AUCCESS scores for all folds in
Table 5. The number of RAND and DQN is taken from Bakhtin et al. (2019).

setting method
fold id

0 1 2 3 4 5 6 7 8 9

B (within)
RAND 13.44 14.01 13.79 13.80 12.75 13.34 13.95 14.30 13.36 14.33

DQN 76.82 79.72 78.22 75.86 77.03 78.42 78.01 77.34 78.04 76.87

Ours 85.49 86.57 85.58 84.11 85.30 85.18 84.78 84.32 85.71 85.17

B (cross)
RAND 11.78 12.42 18.18 12.42 3.81 22.50 11.73 13.29 8.94 14.60

DQN 43.69 30.96 43.05 43.91 22.77 44.40 34.53 39.20 18.98 46.46

Ours 50.86 36.58 55.44 38.34 37.11 47.23 38.23 47.19 32.23 38.76

Table 5: The AUCCESS scores for each of evaluated fold.
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