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ABSTRACT

Wasserstein autoencoder (WAE) shows that matching two distributions is equivalent
to minimizing a simple autoencoder (AE) loss under the constraint that the latent
space of this AE matches a pre-specified prior distribution. This latent space
distribution matching is a core component of WAE, and a challenging task. In this
paper, we propose to use the contrastive learning framework that has been shown
to be effective for self-supervised representation learning, as a means to resolve
this problem. We do so by exploiting the fact that contrastive learning objectives
optimize the latent space distribution to be uniform over the unit hyper-sphere,
which can be easily sampled from. We show that using the contrastive learning
framework to optimize the WAE loss achieves faster convergence and more stable
optimization compared with existing popular algorithms for WAE. This is also
reflected in the FID scores on CelebA and CIFAR-10 datasets, and the realistic
generated image quality on the CelebA-HQ dataset.

1 INTRODUCTION

The main goal of generative modeling is to learn a good approximation of the underlying data
distribution from finite data samples, while facilitating an efficient way to draw samples. Popular
algorithms such as variational autoencoders (VAE, Kingma & Welling (2013); Rezende et al. (2014))
and generative adversarial networks (GAN, Goodfellow et al. (2014)) are theoretically-grounded
models designed to meet this goal. However, they come with some challenges. For instance, VAEs
suffer from the posterior collapse problem (Chen et al., 2016; Zhao et al., 2017; Van Den Oord et al.,
2017), and a mismatch between the posterior and prior distribution (Kingma et al., 2016; Tomczak &
Welling, 2018; Dai & Wipf, 2019; Bauer & Mnih, 2019). GANs are known to have the mode collapse
problem (Che et al., 2016; Dumoulin et al., 2016; Donahue et al., 2016) and optimization instability
(Arjovsky & Bottou, 2017) due to their saddle point problem formulation.

Wasserstein autoencoder (WAE) Tolstikhin et al. (2017) proposes a general theoretical framework
that can potentially avoid some of these challenges. They show that the divergence between two
distributions is equivalent to the minimum reconstruction error, under the constraint that the marginal
distribution of the latent space is identical to a prior distribution. The core challenge of this framework
is to match the latent space distribution to a prior distribution that is easy to sample from. Tolstikhin
et al. (2017) investigate GANs and maximum mean discrepancy (MMD, Gretton et al. (2012)) for
this task and empirically find that the GAN-based approach yields better performance despite its
instability. Existing research has tried to address this challenge (Kolouri et al., 2018; Knop et al.,
2018) (see section 2 for a discussion).

This paper aims to design a generative model to address the latent space distribution matching problem
of WAEs. To do so, we make a simple observation that allows us to use the contrastive learning
framework. Contrastive learning achieves state-of-the-art results in self-supervised representation
learning tasks (He et al., 2020; Chen et al., 2020) by forcing the latent representations to be 1)
augmentation invariant; 2) distinct for different data samples. It has been shown that the contrastive
learning objective corresponding to the latter goal pushes the learned representations to achieve
maximum entropy over the unit hyper-sphere (Wang & Isola, 2020). We observe that applying
this contrastive loss term to the latent representation of an AE therefore matches it to the uniform
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distribution over the unit hyper-sphere. Due to the use of the contrastive learning approach, we call
our algorithm Momentum Contrastive Autoencoder (MoCA). Our contributions are as follows:

1. we address the fundamental algorithmic challenge of Wasserstein auto-encoders (WAE), viz the
latent space distribution matching problem, which involves matching the marginal distribution of the
latent space to a prior distribution. We achieve this by making the observation that the contrastive
term in the recent contrastive learning framework implicitly achieves this precise goal. This is also
our novelty.

2. we show that our proposal of using the contrastive learning framework to optimize the WAE loss
achieves faster convergence and more stable optimization compared with existing popular algorithms
for WAE.

3. we perform a thorough ablation analysis of the impact of the hyper-parameters introduced by the
contrastive learning framework, on the performance and behavior of WAE.

2 RELATED WORK

There has been a considerable amount of research on autoencoder based generative modeling. In
this paper we focus on Wasserstein autoencoders (WAE). Nonetheless, we discuss other autoencoder
methods for completeness, and then focus on prior work that aim at achieving the WAE objective.

AE based generative models: One of the earliest model in this category is the de-noising autoencoder
(Vincent et al., 2008). Bengio et al. (2013b) show that training an autoencoder to de-noise a corrupted
input leads to the learning of a Markov chain whose stationary distribution is the original data
distribution it is trained on. However, this results in inefficient sampling and mode mixing problems
(Bengio et al., 2013b; Alain & Bengio, 2014).

Variational autoencoders (VAE) (Kingma & Welling, 2013; Rezende et al., 2014) overcome these
challenges by maximizing a variational lower bound of the data likelihood, which involves a KL term
minimizing the divergence between the latent’s posterior distribution and a prior distribution. This
allows for efficient approximate likelihood estimation as well as posterior inference through ancestral
sampling once the model is trained. Despite these advantages, followup works have identified a few
important drawbacks of VAEs. The VAE objective is at the risk of posterior collapse – learning a
latent space distribution which is independent of the input distribution if the KL term dominates
the reconstruction term (Chen et al., 2016; Zhao et al., 2017; Van Den Oord et al., 2017). The poor
sample qualities of VAE has been attributed to a mismatch between the prior (which is used for
drawing samples) and the posterior (Kingma et al., 2016; Tomczak & Welling, 2018; Dai & Wipf,
2019; Bauer & Mnih, 2019). Dai & Wipf (2019) claim that this happens due to mismatch between the
AE latent space dimension and the intrinsic dimensionality of the data manifold (which is typically
unknown), and propose a two stage VAE to remedy this problem. VQ-VAE (Oord et al., 2017) take a
different approach and propose a discrete latent space as an inductive bias in VAE.

Ghosh et al. (2019) observe that VAEs can be interpreted as deterministic autoencoders with noise
injected in the latent space as a form of regularization. Based on this observation, they introduce
deterministic autoencoders and empirically investigate various other regularizations.

Similar to our work, the recently proposed DC-VAE (Parmar et al., 2021) also uses contrastive loss for
generative modeling. However, the objective resulting from their version of instance discrimination
estimates the log likelihood function rather than the WAE objective (which estimates Wasserstein
distance). Also, they integrate the GAN loss to the instance discrimination version of VAE loss.

There has been research on AEs with hyperspherical latent space, that we use in our paper. Davidson
et al. (2018) propose to replace the Gaussian prior used in VAE with the Von Mises-Fisher (vMF)
distribution, which is analogous to the Gaussian distribution but on the unit hypersphere.

WAE: Tolstikhin et al. (2017) make the observation that the optimal transport problem can be
equivalently framed as an autoencoder objective under the constraint that the latent space distribution
matches a prior distribution. They experiment with two alternatives to satisfy this constraint in the
form of a penalty – MMD (Gretton et al., 2012) and GAN (Goodfellow et al., 2014)) loss, and they
find that the latter works better in practice. Training an autoencoder with an adversarial loss was also
proposed earlier in adversarial autoencoders (Makhzani et al., 2015).

2



Under review as a conference paper at ICLR 2022

There has been research on making use of sliced distances to achieve the WAE objective. For instance,
Kolouri et al. (2018) observe that Wasserstein distance for one dimensional distributions have a closed
form solution. Motivated by this, they propose to use sliced-Wasserstein distance, which involves
a large number of projections of the high dimensional distribution onto one dimensional spaces
which allows approximating the original Wasserstein distance with the average of one dimensional
Wasserstein distances. A similar idea using the sliced-Cramer distance is introduced in Knop et al.
(2018).

Patrini et al. (2020) on the other hand propose a more general framework which allows for matching
the posterior of the autoencoder to any arbitrary prior of choice (which is a challenging task) through
the use of the Sinkhorn algorithm (Cuturi, 2013). However, it requires differentiating through the
Sinkhorn iterations and unrolling it for backpropagation (which is computationally expensive); though
their choice of Sinkhorn algorithm for latent space distribution matching allows their approach to be
general.

3 MOMENTUM CONTRASTIVE AUTOENCODER

We present the proposed algorithm in this section. We begin by restating the WAE theorem that
connects the autoencoder loss with the Wasserstein distance between two distributions. Let X ∼ PX
be a random variable sampled from the real data distribution on X , Z ∼ Q(Z|X) be its latent
representation in Z ⊆ Rd, and X̂ = g(Z) be its reconstruction by a deterministic decoder/generator
g : Z → X . Note that the encoder Q(Z|X) can also be deterministic in the WAE framework, and
we let f(X)

dist
= Q(Z|X) for some deterministic f : X → Z .

Theorem 1. (Bousquet et al., 2017; Tolstikhin et al., 2017) Let PZ be a prior distribution on Z , let
Pg = g#PZ be the push-forward of PZ under g (i.e. the distribution of X̂ = g(Z) when Z ∼ PZ),
and let QZ = f#PX be the push-forward of PX under f . Then,

Wc(PX , Pg) = inf
Q:QZ=PZ

E
X∼PX

Z∼Q(Z|X)

[c(X, g(Z))] = inf
f :(f#PX)=PZ

E
X∼PX

[c(X, g(f(X))] (1)

where Wc denotes the Wasserstein distance for some measurable cost function c.

The above theorem states that the Wasserstein distance between the true (PX ) and generated (Pg)
data distributions can be equivalently computed by finding the minimum (w.r.t. f ) reconstruction
loss, under the constraint that the marginal distribution of the latent variable QZ matches the prior
distribution PZ . Thus the Wasserstein distance itself can be minimized by jointly minimizing the
reconstruction loss w.r.t. both f (encoder) and g (decoder/generator) as long as the constraint is met.

In this work, we parameterize the encoder network f : X → Rd such that latent variable Z = f(X)
has unit `2 norm. Our goal is then to match the distribution of this Z to the uniform distribution
over the unit hyper-sphere Sd = {z ∈ Rd : ‖z‖2 = 1}. To do so, we study the so-called “negative
sampling” component of the contrastive loss used in self-supervised learning,

Lneg(f ; τ,K) = E
x∼PX

{x−
i }

K
i=1∼PX

log 1

K

K∑
j=1

ef(x)
T f(x−

j )/τ

 (2)

Here, f : X → Sd is a neural network whose output has unit `2 norm, τ is the temperature hyper-
parameter, and K is the number of samples (another hyper-parameter). Theorem 1 of Wang & Isola
(2020) shows that for any fixed t, when K →∞,

lim
K→∞

(Lneg(f ; τ,K)− logK) = E
x∼PX

[
log E

x−∼PX

[
ef(x)

T f(x−)/τ
]]

(3)

Crucially, this limit is minimized exactly when the push-forward f#PX (i.e. the distribution of the
latent random variable Z = f(X) when X ∼ PX ) is uniform on Sd. Moreover, even the Monte
Carlo approximation of Eq. 2 (with mini-batch size B and some K such that B ≤ K <∞)

LMC
neg (f ; τ,K,B) =

1

B

B∑
i=1

log
1

K

K∑
j=1

ef(xi)
T f(xj)/τ (4)
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Algorithm 1 PyTorch-like pseudocode of Momentum Contrastive Autoencoder algorithm

# Enc_q, Enc_k: encoder networks for query and key. Their outputs are L2 normalized
# Dec: decoder network
# Q: dictionary as a queue of K randomly initialized keys (dxK)
# m: momentum
# lambda: regularization coefficient for entropy maximization
# tau: logit temperature

for x in data_loader: # load a minibatch x with B samples
z_q = Enc_q(x) # queries: Bxd
z_k = Enc_k(x).detach() # keys: Bxd, no gradient through keys
x_rec = Dec(z_q) # reconstructed input

# positive logits: Bx1
l_pos = bmm(z_q.view(B,1,d), z_k.view(B,d,1))

# negative logits: BxK
l_neg = mm(z_q.view(B,d), Q.view(d,K))

# logits: Bx(1+K)
logits = cat([l_pos, l_neg], dim=1)

# compute loss
labels = zeros(B) # positive elements are in the 0-th index
L_con = CrossEntropyLoss(logits/tau, labels) # contrastive loss maximizing entropy of z_q
L_rec = ((x_rec - x) ** 2).sum() / B # reconstruction loss
L = L_rec + lambda * L_con # momentum contrastive autoencoder loss

# update Enc_q and Dec networks
L.backward()
update(Enc_q.params)
update(Dec.params)

# update Enc_k
Enc_k.params = m * Enc_k.params + (1-m) * Enc_q.params

# update dictionary
enqueue(Q, z_k) # enqueue the current minibatch
dequeue(Q) # dequeue the earliest minibatch

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.
enqueue appends Q with the keys zk ∈ RB×d from the current batch; dequeue removes the oldest B keys from Q

is a consistent estimator (up to a constant) of the entropy of f#PX called the redistribution esti-
mate (Ahmad & Lin, 1976). This follows if we notice that k(xi; τ,K) := 1

K

∑K
j=1 e

f(xi)
T f(xj)/τ

is the un-normalized kernel density estimate of f(xi) using the i.i.d. samples {xj}Kj=1, so
−LMC

neg (f ; τ,K,B) = − 1
B

∑B
i=1 log k(xi; τ,K) (Wang & Isola, 2020). So minimizing Lneg (and

importantly LMC
neg ) maximizes the entropy of f#PX .

Tolstikhin et al. (2017) attempted to enforce the constraint that f#PX and PZ were matching
distributions by regularizing the reconstruction loss with the MMD or a GAN-based estimate of
the divergence between f#PX and PZ . By letting PZ be the uniform distribution over the unit
hyper-sphere Sd, the insights above allow us to instead minimize the much simpler regularized loss

L(f, g;λ, τ,B,K) =
1

B

B∑
i=1

‖xi − g(f(xi))‖22 + λLMC
neg (f ; τ,K,B) (5)

Training: For simplicity, we will now use the notation Enc(·) and Dec(·) to respectively denote
the encoder and decoder network of the autoencoder. Further, the d-dimensional output of Enc(·)
is `2 normalized, i.e., ‖Enc(x)‖2 = 1 ∀x. Based on the theory above, we aim to minimize the
loss L(Enc,Dec;λ, τ,B,K), where λ is the regularization coefficient, τ is the temperature hyper-
parameter, B is the mini-batch size, and K ≥ B is the number of samples used to estimate Lneg .

In practice, we propose to use the momentum contrast (MoCo, He et al. (2020)) framework to
implement Lneg. Let Enct be parameterized by θt at step t of training. Then, we let Enc′t be the
same encoder parameterized by the exponential moving average θ̃t = (1−m)

∑t
i=1m

t−iθi. Letting
x1, . . . , xK be the K most recent training examples, and letting t(j) = t − bj/Bc be the time at
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which xj appeared in a training mini-batch, we replace LMC
neg at time step t with

LMoCo =
1

B

B∑
i=1

log
1

K

K∑
j=1

exp

(
Enct(xi)

TEnc′t(j)(xj)

τ

)
− 1

B

B∑
i=1

Enct(xi)
TEnc′t(xi)

τ
(6)

This approach allows us to use the latent vectors of inputs outside the current mini-batch without
re-computing them, offering substantial computational advantages over other contrastive learning
frameworks such as SimCLR (Chen et al., 2020). Forcing the parameters of Enc′ to evolve according
to an exponential moving average is necessary for training stability, as is the second term encouraging
the similarity of Enct(xi) and Enc′t(xi) (so-called “positive samples” in the terminology of con-
trastive learning). Note that we do not use any data augmentations in our algorithm, but this similarity
term is still non-trivial since the networks Enct and Enc′t are not identical. Pseudo-code of our final
algorithm, which we call Momentum Contrastive Autoencoder (MoCA), is shown in Algorithm 1
(pseudo-code style adapted from He et al. (2020)). Finally, in all our experiments, inspired by Grill
et al. (2020) we set the exponential moving average parameter m for updating the Enc′ network at
the tth iteration as m = 1− (1−m0) · (cos(πt/T ) + 1)/2, where T is the total number of training
iterations, and m0 is the base momentum hyper-parameter.

Inference: Once the model is trained, the marginal distribution of the latent space (i.e. the push-
forward Enc#PX ) should be close to a uniform distribution over the unit hyper-sphere. We can
therefore draw samples from the learned distribution as follows: we first sample z ∼ N (0, I) from
the standard multivariate normal distribution in Rd and then generate a sample xg := Dec(z/‖z‖2).

4 EXPERIMENTS

We conduct experiments on CelebA (Liu et al., 2015), CIFAR-10 (Krizhevsky et al., 2009), CelebA-
HQ (Karras et al., 2018) datasets, and synthetic datasets using our proposed algorithm as well as
existing algorithms that implement the WAE objective. Unless specified otherwise, for CIFAR-10
and CelebA datasets, we use two architectures: A1: the architecture from Tolstikhin et al. (2017),
which is commonly used as a means to fairly compare against existing methods; and A2: a ResNet-18
based architecture with much fewer parameters. For CelebA-HQ, we use a variant of ResNet-18
with 6 residual blocks instead of 4 for both the encoder and decoder. The remaining architecture and
optimization details are provided in appendix A.

4.1 CONVERGENCE SPEED AND OBJECTIVE ESTIMATION

Latent Space: We try to evaluate how well the contrastive term in our objective addresses the
problem of matching the marginal distribution QZ = Enc#PX of the autoencoder latent space to the
prior distribution PZ , viz, the uniform distribution on the unit hyper-sphere. To systematically study
the approximation quality and convergence rate in the latent space, we design a synthetic task where
we remove the reconstruction loss, and set the objective to exclusively match the latent distribution
with the prior distribution (thus the decoder network is ignored). Specifically, for all the methods we
investigate, the reconstruction error term is removed and only the regularization term aimed at latent
space distribution matching is used. Note that this is still a non-trivial objective.

To this end, we generate 100 dimensional synthetic data points as our dataset (1000 samples) which
are fed through a 2 layer MLP to get their corresponding latent representations (128 dimensional).
We then use different algorithms for matching the latent space distribution with a prior distribution
(chosen to be the uniform distribution over the unit hyper-sphere in 128 dimensions). We use the
Sinkhorn loss, Sliced Wasserstein Distance (SWD) and Maximum Mean Discrepancy (MMD) as
baselines. For all algorithms, we use Adam optimizer with learning rate 1e − 3 and train for 80
epochs on the synthetic data. In order to study how well the different algorithms match the latent
space marginal distribution to the prior, during the training process, we measure the distance between
the latent representations of the synthetic input data and random points sampled from the uniform
distribution over the unit hyper-sphere in 128 dimensions. We use Sliced Wasserstein Distance (SWD)
to measure this distance1. These SWD estimates are shown in figure 1. As evident, the contrastive
objective converges significantly faster.

1Note that we use SWD both as an evaluation metric, as well as one of the baseline loss function for
distribution matching in this experiment. To explain why SWD as an objective performs worse than some of
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Figure 1: Systematic analysis of convergence
speed for various objectives for matching the
marginal distribution of the latent space to a
prior, without the reconstruction term. Con-
trastive loss is faster than existing methods at
this task. SWD measured in latent space.
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Figure 2: Convergence speed and quality
of objective approximation for MoCA vs
WAE-MMD (baseline) for various values of
their respective regularization coefficient λ on
CIFAR-10. SWD measured in image space.

Image Space: We measure how well our algorithm approximates the WAE objective compared
with baseline. Since the MMD loss outperforms other baseline methods in the above experiments
in the latent space, we only compare our algorithm with WAE-MMD (original WAE algorithm
from Tolstikhin et al. (2017)), and empirically study the comparative convergence rate of these
two algorithms. We train MoCA and WAE-MMD with their respective regularization coefficients
λ ∈ {0, 1, 10, 100, 1000} on CIFAR-10 using architecture A2. Starting at initialization (epoch=0),
at every 5 epochs during training, we estimate the Sliced Wasserstein distance (SWD) between the
test set images and the samples generated by each algorithm at the corresponding epoch. We use
the code provided in 2 to compute SWD, whose implementation is aimed specifically at measuring
the SWD between 2 image datasets. The results are shown in figure 2 (all hyper-parameters were
chosen to be identical for both algorithms for fairness). The figure shows that larger λ values in
general result in smaller SWD, and SWD estimates decrease with epochs for MoCA, confirming
that our proposed algorithm indeed minimizes the Wasserstein Distance. Additionally, looking at the
comparative convergence rate of MoCA and WAE-MMD, we can make three observations:

1. Faster convergence: at epoch 5, the SWD for MoCA is already below 1800 compared with that
of WAE-MMD (above 2300) across all values of the regularization coefficient λ. This shows that
MoCA converges faster than WAE-MMD.

2. Better approximation: the final SWD values of MoCA are significantly lower than those of
WAE-MMD across the corresponding λ values.

3. Stable optimization: larger values of λ result in smaller values of SWD for MoCA but this is not
always true for WAE-MMD (see λ = 1000 for WAE-MMD).

4.2 LATENT SPACE BEHAVIOR

Isotropy: We qualitatively investigate the behavior of MoCA in terms of latent space distribution
matching, i.e., how closely QZ = Enc#PX of the autoencoder latent space matches the prior
distribution PZ . Since the encoder is parameterized to output unit `2 norm vectors, we only need to
evaluate how close Q(Z) is to being isotropic. As a computationally efficient proxy, we compute the
singular value decomposition (SVD) of the latent representation corresponding to 10,000 randomly
sampled images from the training set. We use SVD because the spread of singular values of the
latent space samples is indicative of how isotropic the latent space is. If the singular values of all the
singular vectors are close to each other, the latent space distribution is more isotropic.

In this experiment, we train MoCA on CIFAR-10. We compute SVD of latent representation for
models trained with different values of the regularization coefficient λ ∈ {0, 500, 1000, 3000}. Larger
λ is designed to increase the entropy of the latent space to better match it to the uniform distribution.
As Figure 3 shows, for models trained with larger λ, the singular values (and therefore the latent

the other objectives, we hypothesize that its gradients are worse. A distant, but related example is classification
tasks, where we care about accuracy, but accuracy as a loss function does not provide any gradients.

2https://github.com/koshian2/swd-pytorch
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Figure 3: SVD of latent representation ∈
R128 for models trained with various values
of λ. Larger λ results in more uniform singu-
lar values, i.e., closer to uniform distribution,
and lower (better) FID for generated samples.
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Figure 4: The interplay between the latent
dimension d of the MoCA network and the
regularization coefficient λ. Larger d requires
significantly larger λ to achieve comparable
FID scores for the generated sample quality.

distribution) become more uniform. Corresponding FID scores on generated samples reflect this
effect since models trained with larger λ have lower (better) FID scores.

Latent space dimensionality d and regularization coefficient λ Real data often lies on a low
dimensional (d0 < n) manifold that is embedded in a high dimensional (n) space (Bengio et al.,
2013a). Autoencoders attempt to map the probability distribution of the data to a designated prior
distribution in a latent space of of dimension d, and vice versa. However, if there is a significant
mismatch in the dimension d0 of the true data manifold and the latent space’s dimension d, learning a
mapping between the two becomes impossible (Dai & Wipf, 2019). This results in many "holes" in
the learned latent space which do not correspond to the training data distribution.

Given the importance of this problem, we study how the latent dimension d influences the quality of
samples generated by our used by our model MoCA. We also simultaneously analyze the influence of
the regularization coefficient λ, since the value of λ enforces how much we want the mapped latent
distribution to be close to the uniform distribution on the unit hyper-sphere.

For this experiment, we use d ∈ {64, 128, 256, 512} and study the value of λ on a wide range on
the log scale between 100 and 144,000 (in some cases). Due to the large number of experiments in
this analysis, we train each configuration until the epoch reconstruction loss (mean squared error)
reaches 50. For this reason the FID scores are much higher than the fully trained models reported
in other experiments (where reconstruction loss reaches ∼25). The results are shown in Figure 4.
We find that for d = 64 the performance is quite stable across different λ values. However, as d is
set to larger values, a significantly larger value of λ is required to reach a similar FID score. We
hypothesize that this happens because in Eq. 6, the dot product of the two encoding vectors is more
likely to be orthogonal in a higher dimensional space, which suggests that the value of the contrastive
regularization term becomes smaller compared with the reconstruction term in Eq. 5 (considering all
other factors fixed). To compensate for this, a larger regularization coefficient would be required.

t-SNE Visualization of Latent Space: We present a qualitative comparison between the latent
representation representations learned by Hyperspherical VAE (S-VAE, Davidson et al. (2018)) and
MoCA since both algorithms are aimed at learning a latent representation that is embedded on the
unit hypersphere. For this experiment, we train both algorithms on the training set of the MNIST
dataset. Once the models are trained, we compute the latent representation for the test set using
both models. These latent representations are projected to a 2 dimensional space using T-SNE for
visualization. The projections are shown in Figure 7 in appendix. We find that despite its simplicity,
MoCA learns perceptually distinguishable class clusters similar to S-VAE. Experimental details are
provided in appendix B.

4.3 IMAGE GENERATION QUALITY

Qualitatively, we visualize random samples from our trained models on all the datasets. Figure 5
(rows 1-2) contains random samples from CelebA-HQ. The faces in these images look reasonably
realistic. Figure 6 (rows 5-6) contains random samples from CIFAR-10 and CelebA, as well as
reconstructions (rows 1-2) of images from these datasets. Most generated samples look realistic
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Figure 5: Random samples (rows 1-2) from a model trained with MoCA on CelebA-HQ, and that
model’s interpolations (rows 3-4) between images in latent space. The leftmost and rightmost columns
of rows 3-4 are the original images from the test set of CelebA-HQ which we are interpolating.

Figure 6: Left: CIFAR-10. Right: CelebA. Rows 1-2 show original image (odd column) and its
reconstruction (even column). Rows 3-4 show model’s interpolation between two test images in
latent space. The leftmost and rightmost columns of rows 3-4 are the original images from the
corresponding test set. Rows 5-6 show random samples drawn from a trained model.

(especially for the two CelebA datasets), and the reconstructions perceptually match the original
input in most cases.

We also present latent space interpolations between images from the test set of CelebA-HQ in Figure
5 (rows 3-4). We present latent space interpolations for CIFAR-10 and CelebA in Figure 6 (rows
3-4). For these interpolations, we compute the latent vectors z = Enc(x) and z′ = Enc(x′) for two
images x and x′, let zα = αz + (1− α)z′ for some 0 ≤ α ≤ 1, and then generate the interpolated
image x̂α = Dec (zα/‖zα‖2). These latent space interpolations show that our algorithm causes the
generator to learn a smooth function from the unit hyper-sphere Sd to image space, and moreover,
almost all intermediate samples look quite realistic.

We present additional random samples, image reconstructions, and latent space interpolations for
these three datasets in appendix E.
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Data\Model WAE-MMD WAE-GAN Sinhorn AE SWAE CWAE MoCA-A1 MoCA-A2

CelebA 55 42 56 79 49.69 48.43 44.59

Table 1: Comparison of MoCA with existing baselines using FID (lower is better) on CelebA dataset.
MoCA-A1 uses an architecture similar to the one used in WAE (Tolstikhin et al., 2017), while
MoCA-A2 uses a ResNet-18 based architecture.

4.4 QUANTITATIVE COMPARISON

For quantitative analysis we report the Fréchet Inception Distance (FID) score (Heusel et al., 2017).
We compare the performance of MoCA with other existing algorithms that try to achieve the WAE
objective and AE algorithms with hyper-spherical latent space, because these two class of algorithms
are directly related to our proposal. Specifically, we compare with WAE-MMD and WAE-GAN
(Tolstikhin et al., 2017), Sinkhorn autoencoder (Patrini et al., 2020) (with hyperspherical latent space),
sliced Wasserstein autoencoder (SWAE, Kolouri et al. (2018)) and Cramer-Wold autoencoder (CWAE,
Knop et al. (2018)). All numbers are cited from their respective papers.

Results are shown in table 1. We find that MoCA outperforms all of the methods except WAE-GAN,
which uses GAN objective for matching the latent space distribution to the prior. Experiments
comparing MoCA with WAE-MMD on CIFAR-10 can be found in appendix C.

4.5 ABLATION ANALYSIS AND IMPACT OF HYPER-PARAMETERS INTRODUCED BY THE
CONTRASTIVE LEARNING LOSS

Unlike most existing autoencoder based generative models, our proposal of using the contrastive learn-
ing framework, specifically momentum contrastive learning (He et al., 2020) due to its computational
efficiency compared to its competitor Chen et al. (2020), introduces a number of hyper-parameters in
addition to the regularization coefficient λ. Therefore, it is important to shed light on their behavior
during the training process of MoCA. This section explores how these various hyper-parameters
impact the quality of generated samples. To keep the analysis tractable and quantitative, we use the
Fréchet Inception Distance (FID) score to evaluate the performance of the trained models.

Due to lack of space, we discuss these experiments in appendix D, and summarize the results here.
In appendix D.1, we study the impact of the regularization coefficient λ used in MoCA, on the
reconstruction loss achieved at the end of training, and find that larger values of λ help reduce the
reconstruction loss even more. In appendix D.2, we discuss how the regularization coefficient λ
should be scaled depending on the input image size, and we find that its optimal value scales linearly
with input size. In appendix D.3, we discuss the impact of the momentum hyper-parameter used
in the contrastive algorithm, and show that its value must be closer to 1 for good performance. In
appendix D.4, we discuss the impact of the temperature hyper-parameter used in the contrastive
algorithm, and show that its value must be smaller than 1 for good performance, and discuss possible
reasons. Finally, in appendix D.5, we study the impact of the size of dictionary used in the contrastive
algorithm, and find the the performance remains stable across a wide range of sizes.

5 CONCLUSION

We propose a novel algorithm for addressing the latent space distribution matching problem of
Wasserstein autoencoders (WAE) called Momentum Contrastive Autoencoder (MoCA). The main
idea behind MoCA is to use the contrastive learning framework to match the autoencoder’s latent
space marginal distribution with the uniform distribution on the unit hyper-sphere. We show that
using the contrastive learning framework to estimate the WAE objective achieves faster convergence
and more stable optimization compared with existing popular algorithms for WAE. We perform a
thorough ablation analysis and study the impact of the hyper-parameters introduced in the WAE
framework due to our proposal of using the contrastive learning, and discuss how to set their values.
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APPENDIX

A TRAINING AND EVALUATION DETAILS

We ran all our experiments in Pytorch 1.5.0 (Paszke et al., 2019). We used 8 V100 GPUs on google
could platform for our experiments.

Datasets:

CIFAR-10 contains 50k training images and 10k test images of size 32× 32.

CelebA dataset contains a total of ∼203k 64× 64 images divided into ∼180k training images and
∼20k test images. The images were pre-processed by first taking 140x140 center crops and then
resizing to 64x64 resolution.

CelebA-HQ contains a total of ∼30k 1024× 1024 images. We resized these images to 256× 256
and split the dataset into ∼27k training images and ∼3k test images.

Architecture and optimization:

The network architecture A1 is identical to the CNN architecture used in Tolstikhin et al. (2017)
except that we use batch norm (Ioffe & Szegedy, 2015) in every layer (similar to Ghosh et al. (2019)),
and the latent dimension is 128 for the CelebA dataset. This architecture roughly has around 38
million parameters. We found that using 64 dimensions for CelebA in this architecture prevented the
reconstruction loss from reaching small values.

The encoder of the network architecture A2 is a modification of the standard ResNet-18 architecture
He et al. (2016) in that the first convolutional layer has filters of size 3 × 3, and the final fully
connected layer has latent dimension 128. The decoder architecture is a mirrored version of the
encoder with upsampling instead of downsampling. Additionally, the final convolutional layer uses
an upscaling factor of 1 for CIFAR-10 and 2 for CelebA. The architecture roughly has around 24
million parameters.

Both A1 and A2 were trained on CIFAR-10 with MoCA hyperparameters K = 30000, τ =
0.05,m0 = 0.99. A1 used λ = 2000 while A2 used λ = 100. A1 was trained for 40 epochs
while A2 was trained for 100 epochs using the Adam optimizer with batch size 64, and learning rate
0.001. The learning rate was decayed by a factor of 2 after 60 epochs for A2.

Both A1 and A2 were trained on CelebA with MoCA hyperparameters K = 60000, τ = 0.05,m0 =
0.99. A1 used λ = 1000 while A2 used λ = 100. Both models were trained for 200 epochs using the
Adam optimizer with batch size 64, and learning rate 0.001 decayed by a factor of 2 every 60 epochs.

During our experiments, we found that the choice of hyper-parameters τ and m was stable across
the two architectures and datasets and they were chosen based on our ablation studies. The value of
K was decided based on the size of the dataset (CelebA being larger than CIFAR-10 in our case).
Finally, we found that the value of λ was generally subjective to the dataset and architecture being
used. We typically ran a grid search over λ ∈ {100, 1000, 3000, 6000}.
The images in Figure 5 (CelebA-HQ 256× 256) were generated using a variant of the ResNet-18
architecture. The base ResNet-18 architecture has 4 residual blocks, each containing 2 convolutional
layers and an additional convolutional layer which spatially downsamples its input by a factor of 2×2.
For the encoder, we use the same architecture, but with 6 blocks (to downsample a 256× 256 image
to 4× 4, which we then flatten and project into the latent space). The decoder is a mirrored version
of the encoder, but with de-convolution upsampling layers instead of downsampling layers. The
latent space of this architecture is 128 dimensional. We train this model with MoCA hyperparameters
λ = 20000,K = 30000, τ = 1,m0 = 0.99. The model was trained for 1000 epochs using the Adam
optimizer with batch size 64, and learning rate 0.002 (decayed by a factor of 2 every 40 epochs until
epoch 400).

Quantitative evaluation:

In all our experiments, FID was always computed using the test set of the corresponding dataset. We
always use 10,000 samples for computing FID.
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Figure 7: Left: MoCA. Right: Hyperspherical VAE (S-VAE). T-SNE projections of autoencoder la-
tent representation of MNIST test set. Both algorithms learn a hyperspherical latent space embedding.
The colors correspond to the 10 digit classes in MNIST. Despite the simplicity of MoCA over S-VAE,
both algorithms are comparable at implicitly learning perceptually distinguishable class clusters.

Data\Model WAE-MMD MoCA-A1 MoCA-A2

CIFAR-10 80.9 61.49 54.36

Table 2: Comparison of MoCA with WAE-MMD on CIFAR-10 dataset using FID (lower is better).

B EXPERIMENTAL DETAILS FOR EXPERIMENTS COMPARING MOCA WITH
S -VAE

For the T-SNE experiment, we train both algorithms using Adam optimizer for 25 epochs with a
fixed learning rate 0.001 (other hyper-parameters take the default Pytorch Adam values). For MoCA,
we used λ = 5, K = 10, 000, τ = 0.99. Both algorithms use the same MLP architecture with 3
hidden layer encoder and 2 hidden layer decoder, and ReLU activations. In both models, the hidden
layer dimensions was 128 for all layers and the latent space dimension was 6. The latent space
visualizations are shown in figure 7.

C ADDITIONAL QUANTITATIVE RESULTS

Experiments comparing MoCA with WAE-MMD on CIFAR-10 can be found in table 2.

D ABLATION ANALYSIS

For this section, unless specified otherwise, we use the CelebA dataset with the ResNet-18 autoencoder
architecture (architecture A2 in the previous section), τ = 1, m0 = 0.999, d = 128, λ = 3000,
K = 60000. For optimization, we use Adam with learning rate 0.001, batch size 64, drop this
learning rate by half every 60 epochs, and train for a total of 200 epochs. All other optimization
hyper-parameters are set to the default Pytorch values.

size 32× 32 64× 64 256× 256

λ? 100 2000 20000

Table 3: The optimal value of λ scales lin-
early with input size. We consider λ between
100 and 50000 and report the value λ? that
achieves the best FID score for each input
size.

m0 0 0.9 0.99 0.999

FID 86.57 98.97 47.96 47.46

Table 4: Smaller base momentum m0 causes
model performance to degrade significantly.
Performance is measured using the FID score
(lower is better). Note that we use the cosine
schedule described in section 3 in all these
experiments.
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Figure 8: Impact of regularization coefficient λ on reconstruction loss at the end of training. Larger
values of λ do not interfere with the reconstruction loss, rather help achieve lower reconstruction loss.

D.1 RECONSTRUCTION LOSS VS λ

We study the impact of the regularization coefficient λ used during the training of MoCA, on
reconstruction loss achieved at the end of training. To provide some context, in VAEs, a trade-off
emerges between the reconstruction loss and the KL term (regularization) because if KL is fully
minimized, the posterior p(z|x) becomes a Normal distribution and hence independent of the input
x. Therefore, too strong a regularization worsens the reconstruction loss in VAEs. However, such a
trade-off does not exist in WAE, in which the regularization aims the make the marginal distribution
of the latent space close to the prior. We see this effect in the experiments shown in figure 8 for
CIFAR-10 dataset using the A2 architecture. We find that larger values of λ in fact help reduce the
reconstruction loss even more.

D.2 CHOOSING λ GIVEN INPUT SIZE

An important consideration when selecting the regularization coefficient λ is the relative scale of the
reconstruction loss ‖xi − g(f(xi))‖22 and contrastive loss.

We show that the optimal value of the regularization weight λ scales linearly with input size. For
this experiment, we downscale CelebA-HQ (256× 256) to 64× 64 and 32× 32, and we study the
impact of λ for the different input sizes. We construct the models for generating d × d images by
removing log2(256/d) of the 6 residual blocks from the encoder/decoder of the base model used
for CelebA-HQ (256× 256) (described in appendix A), as each block downsamples/upsamples the
image by a factor of 2× 2. We train all models for 400 epochs using the Adam optimizer with batch
size 64 and learning rate 0.002 (decayed by a factor of 2 every 40 epochs).

For each case, we report the value of λ ∈ {100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000}
that achieves the best FID score for each image size. We find that the optimal value of λ is roughly
proportional to the number of pixels in the input (Table 3).

The full data for this experiment (which support the claims of Table 3) can be found in Figure 9. We
consider λ ∈ {100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000} for each image size (except
256× 256, as quality rapidly deteriorates when λ < 5000). Please note that the absolute FID scores
are not comparable between different image sizes! Rather, we emphasize the relative trends.

D.3 IMPORTANCE OF MOMENTUM m

We study the impact of the contrastive learning hyper-parameter m on the generated sample quality.
m is the exponential moving average hyper-parameter used for updating the parameters of the
momentum encoder network Enck. m is typically kept to be close to 1 for training stability (He
et al., 2020). We confirm this intuition for our generative model as well in Table 4. We use the base
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Figure 9: Impact of regularization weight λ on FID score based on input size. Optimal values
λ? (labeled with a red star) scale linearly with input size. Note that absolute FID scores are not
comparable between different image sizes! This figure focuses on relative trends.
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Figure 10: Impact of τ on optimal choice of λ and best FID for generated samples. Optimal λ is
lower for lower τ . Best FID is better for lower τ . This suggests that entropy is maximized more
accurately when τ is smaller.

value m0 ∈ {0, 0.9, 0.999}. Note that we use the cosine schedule to compute the value of m every
iteration (as discussed in section 3), which makes m increase from the base value m0 to 1 over the
course of training. We find that FID scores are much worse when m is not close to 1.

D.4 IMPORTANCE OF TEMPERATURE τ

Based on the discussion below Eq. 3, the negative term in the contrastive loss essentially estimates
the entropy of the latent space distribution due to its equivalent kernel density estimation (KDE)
interpretation (Eq. 4). Therefore, the temperature hyper-parameter τ used in the contrastive loss acts
as the smoothing parameter of this KDE and controls the granularity of the estimated distribution.
Thus for larger temperature, the estimated distribution becomes smoother and the entropy estimation
becomes poor, which should result in poor quality of generated samples. Additionally, for larger τ ,
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K 100 5000 10,000 30,000 60,000 120,000

FID 84.93 48.45 46.56 47.31 46.68 49.94

Table 5: The effect of dictionary size K on the quality of samples measured using the FID score
(lower is better). The performance is largely stable across different values of K unless K is too small.

intuitively, a larger λ should be needed in order to push the KDE samples apart from one another.
We confirm these intuitions in Figure 10. Note that due to the large number of experiments in this
analysis, we train each configuration until 50 epochs (explaining the inferior FID values).

D.5 EFFECT OF K

Since we use the momentum contrastive framework, it would be useful to understand how the
dictionary size K affects the quality of generative model learned. The dictionary Q contains the
negative samples in the contrastive framework which are used to push the latent representations away
from one another, encouraging the latent space to be more uniformly distributed. We therefore expect
a small K would be bad for achieving this goal. Our experiments in Table 5 confirm this intuition.
We use K ∈ {100, 5000, 10000, 30000, 60000, 120000}. We find that the FID score is stable and
small across the various values of K chosen, except for K = 100, for which FID is much worse.

E ADDITIONAL QUALITATIVE RESULTS

Figures 11, 12, and 13 respectively depict additional randomly sampled images, reconstructions, and
latent space interpolations for CelebA-HQ 256× 256. Figures 12 and 13 are generated by the same
model used to generate Figure 5, while Figure 11 is generated by an earlier checkpoint of that model
(selected for best visual quality).

Figures 14, 16, and 18 respectively depict additional randomly sampled images, reconstructions, and
latent space interpolations for CIFAR-10 using the same model that achieved the FID score of 54.36
in table 1.

Figures 15, 17, and 19 respectively depict additional randomly sampled images, reconstructions, and
latent space interpolations for CelebA using the same model that achieved the FID score of 44.59 in
table 1.
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Figure 11: Random samples generated by a model trained (as described in appendix A on CelebA-HQ
256× 256 for 850 epochs. Model checkpoint picked based on best visual quality.
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Figure 12: Image reconstructions by a model trained (as described in appendix A) on CelebA-HQ
256× 256. For each pair of columns, the left is the original image, and the right is the reconstruction.
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Figure 13: Latent space interpolations by a model trained (as described in appendix A) on CelebA-HQ
256× 256.

Figure 14: Randomly generated samples from
the MoCA model trained on CIFAR-10 with FID
54.36 in table 1.

Figure 15: Randomly generated samples from
the MoCA model trained on CelebA with FID
44.59 in table 1.
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Figure 16: Reconstructed test samples from the
MoCA model trained on CIFAR-10 with FID
54.36 in table 1.

Figure 17: Reconstructed test samples from the
MoCA model trained on CelebA with FID 44.59
in table 1.

Figure 18: Interpolation between two test im-
ages in latent space for MoCA model trained
on CIFAR-10 with FID 54.36 in table 1. The
leftmost and rightmost columns are the original
images from the corresponding test set.

Figure 19: Interpolation between two test im-
ages in latent space for MoCA model trained on
CelebA with FID 44.59 in table 1. The leftmost
and rightmost columns are the original images
from the corresponding test set.

21


	Introduction
	Related Work
	Momentum Contrastive Autoencoder
	Experiments
	Convergence Speed and Objective Estimation
	Latent Space Behavior
	Image Generation Quality
	Quantitative Comparison
	Ablation Analysis and Impact of Hyper-parameters introduced by the Contrastive Learning loss

	Conclusion
	Training and Evaluation details
	Experimental Details for Experiments Comparing MoCA with S-VAE
	Additional Quantitative Results
	Ablation Analysis
	Reconstruction loss vs 
	Choosing  given input size
	Importance of momentum m
	Importance of temperature 
	Effect of K

	Additional Qualitative Results

