
Augmenting Classic Algorithms with
Neural Components for Strong Generalisation on

Ambiguous and High-Dimensional Data

Imanol Schlag, Jürgen Schmidhuber
The Swiss AI Lab IDSIA, USI & SUPSI

Lugano, Switzerland
{imanol, juergen}@idsia.ch

Abstract

We augment classic algorithms with learned components to adapt them to domains
currently dominated by deep learning models. Two traditional sorting algorithms
with learnable neural building blocks are applied to visual data with apriori un-
known symbols and rules. The models are quickly and reliably trained end-to-end
in a supervised setting. Our models learn symbol representations and generalise
better than generic neural network models to longer input sequences.

1 Introduction

A physical symbol system, or formal system, takes rigid patterns called symbols, organises them into
data structures, and transforms them through processes [Newell and Rosenbloom, 1981]. Algorithms
are typically descriptions of useful symbol manipulation sequences. They can be implemented as
computer programs and applied to any input satisfying certain structural conditions (e.g., a sequence
of integer numbers). A good algorithm can be applied successfully to inputs that would be considered
out of distribution from a statistical perspective (e.g., much longer input sequences) which is the main
advantage of algorithms.

However, on real world problems such as speech recognition, image classification, and natural
language processing, classic symbol-processing algorithms have had limited success. Furthermore,
the search for good algorithms given a set of examples, is notoriously hard to automatize, and usually
left to highly trained humans.

Another way of representing programs are connectionist models. They are “non-symbolic" and rarely
programmed by humans (though some are, e.g., Smolensky [1990]). Instead, a good parametrisation
is typically found through first-order optimisation, i.e., scalable greedy search based on a large
number of input-output examples. In recent years, connectionist models based on gradient descent
have had remarkable success in many domains where classic programs struggle. Nevertheless, in
stark contrast to classic algorithms, many deep learning methods tend to underperform when applied
to novel settings, i.e., problem instances which would be considered out of distribution [Lake and
Baroni, 2018]. Already in 1988, connectionist models were criticised for their lack of systematicity
and productivity [Fodor and Pylyshyn, 1988], arguments that are still relevant to this day [Hupkes
et al., 2020].

Here, we propose a hybrid approach that augments a problem-specific symbolic program with learned
neural components that are trained by gradient descent in a supervised learning setting. This may
facilitate program search because certain program parts will be learned directly from examples.
However, in this preliminary work, we focus on learning to sort sequences of MNIST images
without any apriori knowledge of the digits in the images nor their relation to each other. The neural

35th Conference on Neural Information Processing Systems (aiplans 2021), Sydney, Australia.

components are part of a differentiable symbolic algorithm which allows end-to-end training in a
supervised setting. Our experiments demonstrate that our hybrid programs can be trained efficiently
in just a few thousand steps on short examples (6 digits) and that they generalise better to longer
input sequences than generic neural networks.

2 Method

We augment two classic sorting algorithms with neural components: the odd-even transposition
sort (also known as parallel bubble sort) and insertion sort. Both algorithms take in a sequence
of L MNIST images x = [x0, ...,xL−1] and predict the ordered sequence of L MNIST classes
y = [y0, ...,yL−1]. In the odd-even transposition sort, the model repeatedly processes the sequences
as a whole analogous to Transformer models. In insertion sort, the model processes the images
sequentially – similar to how recurrent neural networks process a sequence. Our models use two
neural components which are always trained from a random initialisation.

The first component is the symbol extractor f which is a learned non-linear map of the input image
to a symbol representation zi = f(xi), zi ∈ Rd. A symbol representation is a distributed neural
representation that captures the information of the input necessary for the successful execution of the
succeeding program. In both models, the symbol extractor is a randomly initialised neural network
with two convolutional layers followed by two fully connected layers.

The second component models the binary branching rules g : Rd × Rd → R2. It is another
learned non-linear map from two symbol representations, here denoted with subscripts p and q where
p, q ∈ [0, L− 1], to the weight a ∈ R2

≥0 of branching one way or the other. Thus,

a = g(zp, zq) (1)

ai =
exp(li/τ)

exp(l0/τ) + exp(l1/τ)
(2)

l = MLP([zp; zq]), (3)

where [zp; zq] is the concatenation of two vectors, MLP is a non-linear map such as the multi-linear
perceptron or a multi-linear map, and τ is a softmax temperature which we always set to 1 during
training. g is a learned binary relation between two symbol representations which can be used to create
weighted combinations of two possible program continuation pα and pβ . To do so, both programs pα
and pβ are computed in parallel and their results combined weighted by g before being added.

In the sorting algorithms that we consider, pi,j ∈ {0, 1}L×L is a permutation matrix which either
swaps zj and zi or inserts zj in front of zi. They are generated from the symbolic context of the
program (e.g. such as running indices i and j). When a branch occurs (e.g. to swap or not to swap)
g is evaluated both programs (swapping and not swapping) are executed in parallel followed by a
convex combination of the results weighted by a. Finally, norm(Z) scales each z in Z such that
||z||2 =

√
d (also known as the RMS normalisation [Zhang and Sennrich, 2019]) to prevent vanishing

or exploding activations.

function BRANCH(zα, zβ , pα, pβ)
Z = [z0, ...,zL−1] . Z ∈ Rd×L
a = g(zα, zβ) . a ∈ R2

≥0

return a0pα(Z) + a1pβ(Z)
end function

2.1 Neural Odd-Even Transposition Sort (NOETS)

The odd-even transposition sort is a parallel sorting algorithm related to bubble sort. It compares
adjacent numbers in the input sequence and swaps them if the first is greater than the second. It has
two phases: in the odd phase, every odd-indexed element is compared with the next element; in the
even phase, every even-indexed element is compared with the next element. Because of the parallel
processing of all pairs in a sequence, the time complexity is O(L). Our neural odd-even transposition
sort is analogous but with neural components, see Algorithm 1.

2

Algorithm 1 Neural Odd-Even Transposition Sort

1: l = 0
2: while l < L do
3: k = 0 if l mod 2 == 0 else k = 1
4: for i in {j ∈ [0, L− 1]|j mod 2 == k} do in parallel
5: Z = norm(BRANCH(zi, zi+1, pi,(i+1), pidentity))
6: end for
7: l = l + 1
8: end while

2.2 Neural Insertion Sort (NIS)

Insertion sort divides the sequence into a sorted and an unsorted part. Initially, the sorted part contains
just one element. One by one, elements are sequentially picked from the unsorted part and inserted at
the correct position in the sorted part. The list is sorted once the unsorted part is empty. It has a time
complexity of O(L2). Our neural insertion sort is Algorithm 2.

Algorithm 2 Neural Insertion Sort
1: pcarry = 1

2: Znew = [0]d,L

3: for i in [0, . . . , L− 1] do
4: j = i− 1
5: while True do
6: if j < 0 then
7: Znew = Znew + pcarrynorm(pi,j(Z))
8: break
9: end if

10: a = g(zi, zj)
11: Znew = Znew + pcarrya0norm(pi,j(Z)) . Permute with weight a0

12: pcarry = pcarrya1 . Don’t Permute and go to the next element.
13: j = j − 1
14: end while
15: Z = Znew
16: end for

3 Experiments

We train our models in two settings. In the first setting, we train the models on the training data of the
MNIST dataset and evaluate on longer sequences: once with images from the training data and once
with images from the test data.

The second setting is an ablation which we refer to as the symbol-embedding setting. Here we simplify
the problem by providing symbolic inputs to the model instead of MNIST images. This allows us to
evaluate the models independently of the noise that is introduced by the MNIST image representation
of a digit. For this purpose, the symbol extractor f is replaced with a learnable symbol embedding.

In both settings, we train with a sequence length of 6. To improve performance we also present results
where we set the temperature τ = 0.01 during testing. We refer to those results with the suffix sharp.

For comparison, we provide a parallel and sequential baseline using general neural networks. Recall
that L is the length of the input sequence. The parallel baseline is a Transformer encoder layer where
we add positional encodings of size L to the inputs and repeat the same layer L times with shared
weights. The sequential baseline is a single layer LSTM model where we first encode the input
sequence, followed by L thinking steps, and L decoding steps. Both baselines have a hidden state
size of 512. To improve generalisation of our baselines we train both with sequence lengths sampled
uniformly from 5 to 10.

3

(a) MNIST class input (symbol-embedding setting).

(b) MNIST train images. (c) MNIST test images.

Figure 1: Lenvenshtein distance for longer input sequences. NIS and NOETS are trained with input
sequence of length 6. LSTM and Transformer (TF) are trained with sequences ranging from 5-10.
Notice that NIS and NOETS generalise perfectly in the symbol setting which has unambiguous inputs
and generalise very well to longer sequences with MNIST images as inputs.

All models are trained for 5,000 steps using the Adam optimiser with default parameters (except the
Transformer baseline which is trained with a learning rate of 1e-4). All models achieve 100% train
accuracy in the symbol-embedding setting and converge in the regular setting.

The results are presented in Figure 1. In our evaluation, we measure the performance of our models
using the Levenshtein distance, which measures the minimum number of single digit edits necessary
to change the predicted sequence into the target sequence. This is a more accurate than a per-token
accuracy measure because missclassifying one ambiguous image of a "9" for a "1" could result in a
reordering of large parts of the sequence such that many more tokens are missclassified.

4 Discussion

Numerous models have been proposed to learn “neuro-symbolic programs" from examples. Often
such models are neural network architectures trained to mimic symbolic programs by predicting
execution traces (e.g. Reed and de Freitas [2016]) or by explicitely generating executable programs
(e.g. Mao et al. [2019]). Our work differs from such approaches. Instead, we propose to augment
existing algorithms with learnable neural components to improve the generalisation in settings where
the algorithm naturally applies (such as ordering sequences in the case of insertion sort). Our results
demonstrate perfect generalisation in the absence of input ambiguity despite the apriori unknown set
of symbols and rules which parallels the utility of such classic algorithms.

Another approach revolves around the idea of using deep learning methods as an interface between
noisy/high-dimensional data and a symbolic program (e.g., Manhaeve et al. [2018] or Pogančić et al.

4

[2019]). Our method draws inspiration from such approaches but doesn’t limit learnable subprograms
to only act as interfaces (see, e.g., the rules component in Section 2) and it doesn’t assume the set of
symbols to be known.

5 Conclusion

We presented neural versions of two classic sorting algorithms and applied them to ambiguous and
high-dimensional inputs. The neural parts are quickly learned from examples using gradient descent.
The neural algorithms strongly generalize way beyond the training distribution of input images and
sequence lengths.

Acknowledgments and Disclosure of Funding

We thank the AIPLANS reviewers for valuable comments on the first version of this paper and
Aleksandar Stanić for helpful discussions. This research was partially funded by ERC Advanced
grant no: 742870, project AlgoRNN. We thank NVIDIA Corporation for donating several DGX
machines, and IBM for donating a Minsky machine.

References
A. Newell and P. S. Rosenbloom. Mechanisms of skill acquisition and the law of practice. In J. R.

Anderson, editor, Cognitive Skills and Their Acquisition, chapter 1, pages 1–51. Lawrence Erlbaum
Associates, Inc., Hillsdale, NJ, 1981.

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial intelligence, 46(1-2):159–216, 1990.

Brenden Lake and Marco Baroni. Still not systematic after all these years: On the compositional skills
of sequence-to-sequence recurrent networks, 2018. URL https://openreview.net/forum?
id=H18WqugAb.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71, 1988.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial Intelligence Research, pages 757–795, 2020.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf.

Scott Reed and Nando de Freitas. Neural programmer-interpreters. In International Conference on
Learning Representations (ICLR), 2016. URL http://arxiv.org/pdf/1511.06279v3.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. In
International Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=rJgMlhRctm.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differen-
tiation of blackbox combinatorial solvers. In International Conference on Learning Representa-
tions, 2019.

5

https://openreview.net/forum?id=H18WqugAb
https://openreview.net/forum?id=H18WqugAb
https://proceedings.neurips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
http://arxiv.org/pdf/1511.06279v3
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm
https://proceedings.neurips.cc/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/dc5d637ed5e62c36ecb73b654b05ba2a-Paper.pdf

	Introduction
	Method
	Neural Odd-Even Transposition Sort (NOETS)
	Neural Insertion Sort (NIS)

	Experiments
	Discussion
	Conclusion

