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ABSTRACT

In deep neural networks, better results can often be obtained by increasing the
complexity of previously developed basic models. However, it is unclear whether
there is a way to boost performance by decreasing the complexity of such models.
Here, based on an optimization method, we investigate the feasibility of improv-
ing graph classification performance while simplifying the model learning pro-
cess. Inspired by progress in structural information assessment, we optimize the
given data sample from graphs to encoding trees. In particular, we minimize the
structural entropy of the transformed encoding tree to decode the key structure
underlying a graph. This transformation is denoted as structural optimization.
Furthermore, we propose a novel feature combination scheme, termed hierarchi-
cal reporting, for encoding trees. In this scheme, features are transferred from leaf
nodes to root nodes by following the hierarchical structures of encoding trees. We
then present an implementation of the scheme in a tree kernel and a convolutional
network to perform graph classification. The tree kernel follows label propaga-
tion in the Weisfeiler-Lehman (WL) subtree kernel, but it has a lower runtime
complexity O(n). The convolutional network is a special implementation of our
tree kernel in the deep learning field and is called Encoding Tree Learning (ETL).
We empirically validate our tree kernel and convolutional network with several
graph classification benchmarks and demonstrate that our methods achieve better
performance and lower computational consumption than competing approaches.

1 INTRODUCTION

Over the years, deep learning has achieved great success in perception tasks, such as recognizing
objects or understanding language, which are hard for traditional machine learning methods (Ben-
gio et al., 2021). To further enhance performance, research efforts have generally been devoted to
designing more complex models based on previously developed basic models; such improvements
include increasing model depths (e.g., ResNet He et al. (2016)), integrating more complicated com-
ponents (e.g., Transformer Vaswani et al. (2017)) or even both (e.g., GPT3 Brown et al. (2020)).
However, little work has focused on the research direction of boosting performance through simpli-
fying the basic model learning process.

Similarly, there are many interesting tasks involving graphs that are hard to learn with normal deep
learning models, which prefer data with a grid-like structure. Graph neural networks (GNNs) have
emerged and have recently been ubiquitous within deep learning for graphs because of their ability
to model structural information (Hamilton et al., 2017; Kipf & Welling, 2017; Zhang et al., 2018; Xu
et al., 2019). In GNNs, each node recursively updates its feature vector through a message passing
(or neighborhood aggregation) scheme, in which the feature vectors from neighbors are aggregated
to compute a new node feature vector (Gilmer et al., 2017; Xu et al., 2018). For tasks involving
the overall characteristics, an entire graph representation can be obtained through a pooling opera-
tion (Xu et al., 2019; Ying et al., 2018). To improve the performance of basic GNNs, various more
complex models have been developed. Considering the differences among graph nodes, attention
mechanisms have been adopted in GNNs’ message passing schemes to focus on more informative
neighbors (Veličković et al., 2018; Zhang et al., 2019). Regarding the pooling process, in addition to
the basic sum or average pooling methods, more complicated pooling operations have been proposed
for better learning with respect to entire graphs, such as SORTPOOL (Zhang et al., 2018), DIFF-
POOL (Ying et al., 2018), STRUCTPOOL (Yuan & Ji, 2020) and SOPOOL (Wang & Ji, 2020). In

1



Under review as a conference paper at ICLR 2022

this context, the improvement in performance comes with the price of model complexity, similar to
the routine in deep learning. We argue that there is a way to boost performance while reducing the
complexity of basic models.

Here, we investigate the feasibility of improving graph classification performance by simplifying
model learning. Generally, given a problem, a simpler data structure comes with a simpler algo-
rithm but is very likely to result in information loss and poor performance. Therefore, structural
optimization, which transforms the original structure of data into a simplified form while main-
taining crucial features, is proposed. Different from the classic optimization, which optimizes the
parameters of a given target (e.g., the parameters in a neural network are searched by minimizing
the loss function), this optimization aims to search the simplified structure of data. In addition, these
retained features are expected to not only keep the key information of datasets but more importantly,
many other features that negatively influence the given task can also be excluded. Consequently,
this method could possibly yield a better result with even higher efficiency due to the simplified
structure.

This work is inspired by structural entropy (Li & Pan, 2016; Li, 2021), a metric designed to assess
the structural information of a graph. Structural entropy can also be used to decode the key structure
of a graph as a measure of the complexity of its hierarchical structure. In this paper, we realize
structural optimization by transforming the given graph into a corresponding encoding tree that
reflects the hierarchical organization of data. The crucial structural information underlying a graph
can be kept in the encoding tree with minimal structural entropy. Knowing that the essence of deep
learning success is its superior feature characterization ability (Bengio et al., 2021), our core view
is that an encoding tree obtained after structural optimization is a much simpler data structure that
also preserves the main features of the input graph.

Based on simplified encoding trees, we propose a novel feature combination scheme for graph clas-
sification, termed hierarchical reporting. In this scheme, we transfer features from leaf nodes to root
nodes based on the hierarchical structures of the associated encoding trees. We then present an im-
plementation of the scheme in a tree kernel and a convolutional network, denoted as WL Encoding
Tree (WL-ET) kernel and Encoding Tree Learning (ETL), to perform graph classification. The tree
kernel follows the label propagation in the WL subtree kernel but has a lower runtime complex-
ity O(n). ETL is a special implementation of our tree kernel in the deep learning field. Finally,
we empirically validate our tree kernel and ETL on various graph classification datasets. Our tree
kernel surpasses the state-of-the-art kernel-based methods and even outperforms GNNs on several
benchmarks. Our ETL approach also achieves competitive performance relative to that of baselines.

We list our contributions in this work as follows:

• We present a novel direction to boost the performance of learning models while reducing
complexity with an optimization method.

• Based on structural optimization, we optimize the given data sample from graphs to encod-
ing trees, which are much simpler data structures that have optimized feature characteriza-
tion abilities.

• We develop a novel tree kernel (WL-ET) and a convolutional network (ETL) and empiri-
cally present their discriminative power on many graph classification benchmarks.

2 RELATED WORK

GNNs have achieved state-of-the-art results on various tasks with graphs, such as node classification
(Veličković et al., 2018), link prediction (Zhang & Chen, 2018) and graph classification (Hamilton
et al., 2017; Zhang et al., 2018; Xu et al., 2019). In this work, we devote our attention to graph
classification scenarios.

Graph classification. Graph classification involves identifying the characteristics of an entire graph
and is universal in a variety of domains, such as urban computing (Bao et al., 2017), social network
analysis (Backstrom & Leskovec, 2011), chemoinformatics (Duvenaud et al., 2015), bioinformatics
(Borgwardt et al., 2005), and even code analysis (Thost & Chen, 2020). In addition to previous
techniques such as graph kernels (Shervashidze et al., 2011), recently, GNNs emerged and have
become a popular way to handle graph tasks due to their effective and automatic extraction of graph
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structural information (Hamilton et al., 2017; Zhang et al., 2018; Xu et al., 2019). To address the
limitations of various GNN architectures, the GIN (Xu et al., 2019) was presented in theoretical
analyses regarding the expressive power of GNNs in terms of graph structure capture. All GNNs are
broadly based on a recursive message passing (or neighborhood aggregation) scheme, where each
node recursively updates its feature vector with the “message” propagated from neighbors (Gilmer
et al., 2017; Xu et al., 2018). The feature vector representing an entire graph for graph classification
can be obtained by a graph pooling scheme (Ying et al., 2018), such as the summation of all node
feature vectors of the graph. Accordingly, much effort has been devoted to exploiting graph pooling
schemes, which are applied before the final classification step (Zhang et al., 2018; Ying et al., 2018;
Yuan & Ji, 2020; Wang & Ji, 2020). All these pooling methods help models achieve state-of-the-art
results but increase the model complexity and the volume of computations.

Structural entropy. Structural entropy is a measure of the complexity of the hierarchical structure
of a graph (Li & Pan, 2016; Li, 2021). The structural entropy of a graph is defined as the average
length of the codewords obtained under a specific encoding scheme for a random walk. That is, when
a random walk takes one step from u to v and we use v’s codeword to label this step, the codeword
of the longest common ancestor of u and v on the encoding tree, which is also their longest common
prefix, is omitted. This shortens the average codeword length. Equivalently, the uncertainty of a
random walk is characterized by this value, and it is why we call it structural entropy. The encoding
tree, which is considered to be the essential hierarchical structure of the given graph, is achieved
when the structural entropy is minimized. Structural optimization is the task of searching for this
optimum. For more information on structural entropy, please refer to (Li & Pan, 2016). Two-
and three-dimensional structural entropy, which measure the complexity of two- and three-level
hierarchical structures, respectively, have been applied in bioinformatics (Li et al., 2018), medicine
(Li et al., 2016b), the structural robustness and security of networks (Li et al., 2016a), etc.

Very recently, a novel hierarchical encoding algorithm based on structural entropy optimization was
proposed (Pan et al., 2021). This algorithm stratifies a given graph into multiple levels by minimizing
structural entropy, during which the sparsest levels of a graph are differentiated recursively. This
provides an efficient approach to approximate the optimal hierarchical structure. In this paper, we
apply this algorithm to structural optimization.

3 METHODOLOGY

Based on structural optimization, we analyze the feature characterization of a graph by optimizing its
structure and carry out graph classification on the new simplified structure. Specifically, we analyze
the hierarchical structure of a graph that an encoding tree incorporates. A tree is a much simpler data
structure than its original graph, while a high-quality encoding tree retains the structural information
of the graph. Next, we first present the structural optimization process that transforms a graph into
its encoding tree for simplified feature characterization. Based on the optimized encoding trees,
we propose a tree kernel and a corresponding implementation in a deep learning model for graph
classification. We elaborate on them below.

3.1 STRUCTURAL OPTIMIZATION

Given a weighted graph G = (V,E,w) and an encoding tree T for G, the structural entropy of G
on T is defined as

HT (G) = −
∑
α∈T

gα
vol(V )

log
vol(α)

vol(α−)
. (1)

We define the structural entropy of G to be the minimum entropy among all encoding trees, and it is
denoted byH(G) = minT {HT (G)}.HT (G) is essentially the optimal hierarchical structure in the
sense that the average length of the codewords obtained with a random walk under the aforemen-
tioned encoding scheme is minimized.

To formulate a natural encoding tree with a certain height, we define the k-dimensional structural
entropy of G for any positive integer k to be the minimum value among all encoding trees with
heights of at most k:

H(k)(G) = min
T :height(T )≤k

{HT (G)}. (2)
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The algorithm proposed by (Pan et al., 2021) is devoted to computing a k-dimensional encoding tree
with minimum structural entropy. We use this algorithm for structural optimization, which yields an
encoding tree T with a height of at most k for G, where T = (VT , ET ), VT = (V 0

T , . . . , V
k
T ) and

V 0
T = V . We denote n = |V | and m = |E|. It is worth noting that although the time complexity

of this algorithm is O(m logm+ n2) in the worst case, if we denote by hmax the maximum height
among the binary trees that appear during the construction of T , the time complexity reduces to
O(m logm+ hmaxn). Since the minimized structural entropy tends to generate balanced encoding
trees (Pan et al., 2021), hmax is usually of order O(log n), which reduces the time complexity of
structural optimization to O(m logm) (almost linear in the number of edges). In this paper, we
compare the real running times of structural optimization on all test datasets in Appendix E with
other parts of our methods, and the results show that the time required for structural optimization
is much less than that of WL-ET and ETL and only accounts for 0.002% to 4% of the ETL time
requirement.

3.2 TREE KERNEL FOR GRAPH CLASSIFICATION

Following the construction of the WL subtree kernel (Shervashidze et al., 2011), we propose a novel
tree kernel that measures the similarity between encoding trees, named the WL-ET kernel. The key
difference between the two kernels is the label propagation scheme, where we develop a hierarchical
reporting scheme to propagate labels from child nodes to their parents according to the hierarchical
structures of encoding trees. Finally, our tree kernel also adopts the counts of the node labels at
different heights of an encoding tree as the feature vector of the original graph.

Hierarchical Reporting. The key idea of this scheme is to assign labels to non-leaf nodes by aggre-
gating and sorting the labels from their child nodes and then to compress these sorted label sets into
new and short labels. Labels from the leaf nodes are iteratively propagated to the root node, which
means that the iteration time of this scheme is determined by the height of the encoding tree. See
Figure 1 in Appendix A, for an illustration of this scheme.

Definition 1. Let T1 and T2 be any two encoding trees with the same height h. There exists a set
of letters Σi ∈ Σ, which are node labels appearing at the i-th (i < h) height of T1 or T2 (i.e., the
nodes at the i-th height are assigned labels with hierarchical reporting). Σ0 is the set of leaf node
labels of T1 and T2. Assume that any two Σi are disjoint, and every Σi = {bi1, . . . , bi|Σi|} is ordered
without loss of generality. We define a function ci : {T1, T2} × Σi → B such that ci(T1, b

i
j) counts

the number of the letter bij in the encoding tree T1.

The tree kernel on the two trees (T1 and T2) with height h after the root nodes are assigned labels is
defined as:

kEncodingTree(T1, T2) =< ϕEncodingTree(T1), ϕEncodingTree(T2) >, (3)

where

ϕEncodingTree(T1) = (c0(T1, b
0
1), . . . , c0(T1, b

0
|Σ0|), . . . , c

h(T1, b
h
1 ), . . . , ch(T1, b

h
|Σh|)),

and

ϕEncodingTree(T2) = (c0(T2, b
0
1), . . . , c0(T2, b

0
|Σ0|), . . . , c

h(T2, b
h
1 ), . . . , ch(T2, b

h
|Σh|)).

Following the label counting process in the WL subtree kernel, our tree kernel is also designed to
count the number of common labels in two encoding trees. An illustration of this kernel is shown in
Figure 1.

Theorem 1. WL-ET kernel on two encoding trees T1 and T2 with the same height h can be computed
in time O(n), which is much simpler than the WL subtree kernel (O(hm)) with h iterations on m
edges (Shervashidze et al., 2011) and is the simplest method in graph classification to the best of
our knowledge (Wu et al., 2020).

Proof. Given a graph G, the biggest encoding tree is a binary encoding tree. Thus, the com-
plexity of WL-ET kernel on the binary encoding tree is the worst case (i.e., OEncodingTree ≤
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OBinaryEncodingTree). The complexity on the binary encoding tree is calculated as:

OBinaryEncodingTree = O(|VT |)
= O(|V 0

T |+ |V 1
T |, . . . ,+|V kT |)

≤ O(2n)

= O(n)

�

3.2.1 COMPUTING THE TREE KERNEL ON MANY ENCODING TREES

In addition to the tree kernel designed for measuring the similarity between encoding trees, we aim to
propose an algorithm to compute the feature vectors formed on N encoding trees for classification.
As shown in Algorithm 1, we present the process for one iteration of our tree kernel computation
process on N encoding trees. This algorithm consists of the same 4 steps as those in the WL test,
including multiset-label determination, multiset sorting, label compression and relabeling. The core
difference is in step 1, where the multiset-label Li(v) consists of labels from the child nodes of v
rather than its neighbors. Consistent with the WL test, Σ is sufficiently large to make f injective. In
a case with N encoding trees, a Σ of size 2nN suffices.

Algorithm 1 One iteration of the tree kernel computation process on N encoding trees

1: Multiset-label determination
• For i = 0, set Li(v) = b0(v), where b0(v) is the initial leaf node label.
• For i > 0, each node v with height i in an encoding tree T is assigned a multiset label
Li(v) = {bi−1(u)|u ∈ C(v)}, where C(v) denotes the children of node v in T .

2: Multiset sorting
• The elements in Li(v) are sorted in ascending order and then united into a string si(v).

3: Label compression
• An injective function f : Σ∗ → Σ is employed to compress each string si(v) into a new

and short label.
4: Relabeling

• bi(v) := f(si(v)) is set for all nodes with height i in T .

Theorem 2. For N encoding trees with height h, WL-ET kernel on all pairs of these encoding trees
can be computed in O(nN2) 1, which is much simpler than the WL subtree kernel formed on N
graphs (O(Nhm + N2hn)) (Shervashidze et al., 2011) and is the simplest graph classification
method.

Proof. The runtime complexity of WL-ET kernel with a naive application derived by computing an
N ×N kernel matrix is O(nN2). �

3.3 ETL FOR GRAPH CLASSIFICATION

Based on our tree kernel, we develop a novel deep learning architecture, Encoding Tree Learning
(ETL), that generalizes the hierarchical reporting scheme to update the hidden features of non-leaf
nodes for graph classification. ETL uses the tree structure and leaf node featuresXv to learn the rep-
resentation vector of the entire graph rT . ETL follows the proposed hierarchical reporting scheme,
where the representation of a non-leaf node is updated by aggregating the hidden features of its
children. Formally, the i-th layer of ETL is

riv = MLPi
(∑

u∈C(v)
r(i−1)
u

)
. (4)

where riv is the feature vector of node v with height i in the encoding tree. We initialize r0
v =

Xv , and C(v) is a set of child nodes of v. As shown in Equation 4, we employ summation and

1Again, we compute the runtime complexity with the form of binary encoding tree, which is the upper
bound of our normal encoding tree.
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multilayer perceptrons (MLPs) to perform hierarchical reporting in ETL. Sum aggregators have been
theoretically proven to be injective over multisets and more powerful than mean and max aggregators
(Xu et al., 2019). MLPs are capable of representing the compositions of functions because of the
universal approximation theorem (Hornik et al., 1989; Hornik, 1991).

For graph classification, the root node representation rhv can be naively employed as the representa-
tion of the entire encoding tree rT . However, as discussed in Xu et al. (2019), better results could
be obtained from features in earlier iterations. To cover all hierarchical information, we employ
hidden features from each height/iteration of the model. This is achieved by an architecture similar
to the GIN (Xu et al., 2019), where we model the entire encoding tree with layer representations
concatenated across all heights/layers of the ETL structure:

rT = CONCAT
(
LAYERPOOL({riv|v ∈ T i})|i = 0, 1, . . . , h

)
, (5)

where riv is the feature vector of node v with height i in encoding tree T and h is the height of T .
In ETL, LAYERPOOL in Equation 5 can be replaced with the summation or averaging of all node
vectors within the same iterations as in GIN, which provably generalizes our tree kernel.

4 COMPARISONS TO RELATED WORK

We now discuss why the structural optimization is capable of making graph classification simpler
and better.

The simplicity is mainly reflected in three aspects. First, we employ structural optimization to
transform the given data sample from a graph into an encoding tree, which is a simpler data structure
for representation. Second, based on the transformed encoding trees, our proposed tree kernel is
much simpler than the most popular graph kernel, the WL subtree kernel (Shervashidze et al., 2011),
for graph classification in terms of runtime complexity. As seen in Theorem 1, our tree kernel for the
similarity measurement of a pair of encoding trees can be computed in timeO(n), which is naturally
less than the O(hm) required for running the WL subtree kernel. Finally, regarding the use of deep
learning models for graph classification, our proposed ETL also achieves a lower complexity than
previous GNNs, such as the graph convolutional network (GCN) (Kipf & Welling, 2017) and GIN
(Xu et al., 2019). Considering that ETL is generalized from our tree kernel, the runtime complexity
of ETL for learning an encoding tree is O(n), while at least O(hm) is required for previous GNNs
to learn a graph (Wu et al., 2020).

The great success of deep networks is attributed to their excellent feature characterization power;
put differently, “they exploit a particular form of compositionality in which features in one layer
are combined in many different ways to create more abstract features in the next layer” (Bengio
et al., 2021). Regarding graph representation learning, the expressive power of GNNs has also
been theoretically proven (Xu et al., 2019). To achieve better graph classification, we optimize the
feature characterization ability, including feature extraction and combination, of kernel-based and
deep learning-based methods. In particular, through structural optimization, we transform a graph
into a powerful data structure, an encoding tree, which is simple but helpful for feature extraction
and combination. Specifically, we first optimize the feature extraction process. The encoding tree
optimized from a graph has the minimum structural entropy and decodes the key structure underlying
the original graph. Following the hierarchical structure of the encoding tree, the features extracted
for each tree node are hierarchical, while GNNs are designed to learn representations of the original
graph nodes in a flat space. For feature combination, we optimize the form of compositionality
in different iterations/layers. With the hierarchical reporting scheme, the features are combined
from bottom to top according to the hierarchical relationships among tree layers, which is obviously
different from the form of message passing in GNNs.

5 EXPERIMENTS

We validate the effectiveness of structural optimization by comparing the experimental results of
our tree kernel and ETL with those of the most popular kernel-based methods and GNNs on graph
classification tasks 2.

2The code of WL-ET kernel and ETL will be public after review.
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5.1 DATASETS

We conduct graph classification on 5 benchmarks: 3 social network datasets (IMDB-BINARY,
IMDB-MULTI, and COLLAB) and 2 bioinformatics datasets (MUTAG and PTC) (Xu et al., 2019)
3. There is a difference between the data of bioinformatic datasets and social network datasets; that
is, the nodes in bioinformatics graphs have categorical labels that do not exist in social networks.
Thus, the initial node labels for the tree kernel are organized as follows: the node degrees are taken
as node labels for social networks; the combination of node degrees and node categorical labels are
taken for bioinformatic graphs. Correspondingly, the initial node features of the ETL inputs are
set to one-hot encodings of the node degrees for social networks and a combination of the one-hot
encodings of the degrees and categorical labels for bioinformatic graphs. Table 1 summarizes the
characteristics of the 5 employed datasets, and detailed data descriptions are shown in Appendix C.

5.2 CONFIGURATIONS

Following Xu et al. (2019), 10-fold cross-validation is conducted to make a fair comparison, and
we present the average accuracies achieved to validate the performance of our methods in graph
classification. Regarding the configuration of our tree kernel, we adopt the C-support vector ma-
chine (C-SVM) (Chang & Lin, 2011) as the classifier and tune the hyperparameter C of the SVM
and the height of the encoding tree ∈ [2, 3, 4, 5]. We implement the classification program with an
SVM from Scikit-learn (Pedregosa et al., 2011), where we set another hyperparameter γ as auto for
IMDB-BINARY and IMDB-MULTI and as scale for COLLAB, MUTAG and PTC and set the other
hyperparameters as their default values.

For configuration of ETL, the number of ETL iterations is consistent with the heights of the asso-
ciated encoding trees, which are also ∈ [2, 3, 4, 5]. All MLPs have 2 layers, as in the setting of the
GIN (Xu et al., 2019). For each layer, batch normalization is applied to prevent overfitting. We
utilize the Adam optimizer and set its initial learning rate to 0.01. For a better fit, the learning rate
is decayed by half every 50 epochs. Other tuned hyperparameters for ETL include the number of
hidden dimensions ∈ {16, 32, 64}; the minibatch size ∈ {32, 128}; the dropout ratio ∈ {0, 0.5}
after the final output; the number of epochs for each dataset is selected based on the best accuracy
within cross-validation results. We apply the same layer-level pooling approach (LAYERPOOL in
Eq. 5) for ETL; specifically, sum pooling is conducted on the bioinformatics datasets, and mean
pooling is conducted on the social datasets due to better test performance.

5.3 BASELINES

We compare our tree kernel and ETL model configured above with several state-of-the-art baselines
for graph classification: (1) kernel-based methods, i.e., the WL subtree kernel (Shervashidze et al.,
2011) and Anonymous Walk Embeddings (AWE) (Ivanov & Burnaev, 2018); (2) state-of-the-art
deep learning methods, i.e., Diffusion-Convolutional Neural Network (DCNN) (Atwood & Towsley,
2016), PATCHY-SAN (Niepert et al., 2016), Deep Graph CNN (DGCNN) (Zhang et al., 2018) and
GIN (Xu et al., 2019). The accuracies of the WL subtree kernel are derived from Xu et al. (2019).
For AWE and the deep learning baselines, we utilize the accuracies contained in their original papers.

6 RESULTS

The results of validating our tree kernel and ETL model on graph classification tasks are presented
in Table 1. Our methods are shown in boldface. In the panel of kernel-based methods, we can
observe that the accuracies of our tree kernel exceed those of other kernel-based methods on 4 out of
5 benchmarks. For the only failed dataset, MUTAG, our tree kernel still achieves very competitive
performance. Notably, our tree kernel even outperforms the state-of-the-art deep learning method
(i.e., GIN-0) on IMDB-MULTI, COLLAB and MUTAG, which implies that superior performance
can sometimes be obtained through an optimization method rather than a deep learning method.

3Considering the limitations of encoding trees on disconnected graphs, we utilize additional configurations
for the other 4 datasets that contain such graphs. The results are presented in Appendix B.
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Table 1: Classification accuracies on 5 benchmarks (%). The best results are highlighted in
boldface. On datasets where WL-ET and ETL are not strictly the highest-scoring models among the
baselines, our methods still achieve competitive results; thus, their accuracies are still highlighted in
boldface. For the results of the baselines, we highlight those that are significantly higher than those
of all other methods.

Dataset IMDB-B IMDB-M COLLAB MUTAG PTC
# Graphs 1000 1500 5000 188 344
# Classes 2 3 3 2 2
Avg. # Nodes 19.8 13.0 74.5 17.9 25.5

Kernel-based methods
WL 73.8±3.9 50.9±3.8 78.9±1.9 90.4±5.7 59.9±4.3
AWE 74.5±5.9 51.5±3.6 73.9±1.9 87.9±9.8
WL-ET 74.7±3.5 52.4±4.5 81.5±1.2 89.5±6.1 63.7±4.7

Deep learning methods
DCNN 49.1 33.5 52.1 67.0 56.6
PATCHY-SAN 71.0±2.2 45.2±2.8 72.6±2.2 92.6±4.2 60.0±4.8
DGCNN 70.0 47.8 73.7 85.8 58.6
GIN-0 75.1±5.1 52.3±2.8 80.2±1.9 89.4±5.6 64.6±7.0
ETL 76.7±4.5 53.1±4.5 81.8±1.2 90.6±6.8 66.3±4.3

In the lower panel containing the deep learning methods, we can observe that the results of ETL are
naturally superior to the accuracies of the tree kernel, which further confirms the outperformance of
deep learning in terms of feature characterization. In addition, ETL also yields the best performance
on 4 out of 5 datasets, while competitive performance can still be observed on the other dataset (i.e.,
MUTAG). These results indicate that optimization methods can not only coexist with but also further
boost deep learning methods. We also compare the volumes of computations of ETL and GIN-0 in
Appendix D, and the results show that ETL requires only 22% of the volume of computations used
in the GIN on average.

7 CONCLUSION AND FUTURE WORK

In this paper, to boost the performance of basic models while simplifying its learning process, we
propose structural optimization, which is a structural transformation from original datasets to a sim-
plified new structure that preserves the key features of the input data. Utilizing a recently developed
structural entropy minimization algorithm, we improve upon the graph classification performance by
simplifying the corresponding kernel method and deep learning method. In particular, our proposed
tree kernel and ETL make graph classification simpler and better with optimized encoding trees.
In addition to the excellent graph classification performance, the ETL that derived from structural
optimization even possess powerful interpretability with respect to node importance and feature
combination paths because of the hierarchical structure of the constructed encoding tree 4. Thus,
an interesting direction for future work is to interpret the power of ETL. Furthermore, despite the
superior performance of our proposed methods in graph classification, they are not fit for another
important task in graph realm, i.e., node classification. Hence, how structural optimization makes
node classification simpler and better may be another underlying direction for future work.
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A ILLUSTRATION OF WL ENCODING TREE KERNEL
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Figure 1: Illustration of computing the tree kernel on two encoding trees with height=2. Here,
{1, 2, . . . , 7} ∈ Σ are considered letters.

B EXPERIMENTS ON DATASETS WITH DISCONNECTED GRAPHS

Considering the limitation of encoding tree on disconnected graphs, we take additional configura-
tions for the other 4 datasets that contain disconnected graphs.

B.1 DATASETS

There are 4 other well-known graph classification benchmarks with disconnected graphs: 2 bioin-
formatics datasets (PROTEINS and NCI1) and 2 social network datasets (REDDIT-BINARY and
REDDIT-MULTI5K). The input features for these 4 datasets are consistent with the feature han-
dling approach in the main text. Notably, we take additional configurations for the disconnected
graphs contained in these 4 datasets. (1) We transform each connected component from a discon-
nected graph sample separately into corresponding encoding trees, (2) and then, we combine these
separate encoding trees into one tree through naive root node merging. Table 2 summarizes the data
statistics of the adopted benchmarks, and detailed data descriptions are shown in Appendix C.
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B.2 MODELS AND CONFIGURATIONS

Following the setting in the main text, 10-fold cross-validation is conducted to make a fair compar-
ison, and we present the average accuracies obtained to validate the performance of our methods
on graph classification tasks. Regarding the configuration of our tree kernel, we also tune the hy-
perparameter C of the SVM and the height of the encoding tree ∈ [2, 3, 4, 5]. We set the other
hyperparameter γ as auto for REDDIT-BINARY and REDDIT-MULTI5K and as scale for PRO-
TEINS and NCI1. The configuration of ETL on these 4 datasets is consistent with that in the main
text.

B.3 RESULTS

We compare our methods with the same baselines and report the results in Table 2. Our methods
only achieve superior performance on one dataset (PROTEINS), where disconnected graphs occupy
a 4% proportion of the data. For the other three datasets, WL has the best performance among all
GNN-based models on NCI1, and GIN-0 obtains the highest accuracies on the REDDIT datasets.
One explanation for this phenomenon is that the structural information underlying the disconnected
graphs can hardly be captured by the methods that are based on structural optimization.

Table 2: Classification accuracies on datasets with disconnected graphs (%).

Dataset RDT-B RDT-M5K PROTEINS NCI1
# Graphs 2000 5000 1113 4110
# Disconnected Graphs 1022 3630 46 580
# Classes 2 5 2 2
Avg. # Nodes 429.6 508.5 39.1 29.8

Kernel-based methods
WL 81.0±3.1 52.5±2.1 75.0±3.1 86.0±1.8
AWE 87.9±2.5 54.7±2.9
WL-ET 86.9±6.1 53.3±2.4 76.2±3.3 76.5±3.3

Deep learning methods
DCNN 61.3 62.6
PATCHSAN‘ 86.3±1.6 49.1±0.7 75.9±2.8 78.6±1.9
DGCNN 75.5 74.4
GIN-0 92.4±2.5 57.5±1.5 76.2±2.8 82.7±1.7
ETL 86.8±1.9 51.9±2.6 76.5±2.5 79.3±1.4

C DETAILS OF THE DATASETS

Here, we present detailed descriptions of the 9 benchmarks utilized in this paper.

Social network datasets. IMDB-BINARY and IMDB-MULTI are movie collaboration datasets.
Each graph corresponds to an ego network for each actor/actress, where the nodes correspond to
actors/actresses and an edge is drawn between two actors/actresses if they appear in the same movie.
Each graph is derived from a prespecified genre of movies, and the task is to classify the genre from
which each graph is derived. REDDIT-BINARY and REDDIT-MULTI5K are balanced datasets,
where each graph corresponds to an online discussion thread and nodes correspond to users. An
edge is drawn between two nodes if at least one of them responds to another’s comment. The
task is to classify each graph into the community or subreddit to which it belongs. COLLAB is a
scientific collaboration dataset derived from 3 public collaboration datasets, namely, High Energy
Physics, Condensed Matter Physics and Astro Physics. Each graph corresponds to an ego network
of a different researcher from each field. The task is to classify each graph into a field to which the
corresponding researcher belongs.

Bioinformatics datasets. MUTAG is a dataset containing 188 mutagenic aromatic and heteroaro-
matic nitro compounds with 7 discrete labels. PROTEINS is a dataset where the nodes are secondary
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structure elements (SSEs), and there is an edge between two nodes if they are neighbors in the given
amino acid sequence or in 3D space. The dataset has 3 discrete labels, representing helixes, sheets
or turns. PTC is a dataset containing 344 chemical compounds that reports the carcinogenicity of
male and female rats and has 19 discrete labels. NCI1 is a dataset made publicly available by the
National Cancer Institute (NCI) and is a subset of balanced datasets containing chemical compounds
screened for their ability to suppress or inhibit the growth of a panel of human tumor cell lines; this
dataset possesses 37 discrete labels.
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Figure 2: Comparison regarding the required volume of computations.

D ANALYSIS OF THE EFFICIENCY OF ETL

In addition to the lower runtime complexity of our ETL approach than that of state-of-the-art GNNs
(O(n) < O(hm)), we also compare the volumes of computations, i.e., the numbers of floating-point
operations per second (FLOPs), required by ETL and GIN-0 under the same parameter settings on
all datasets. Specifically, we fix the number of iterations to 4 (the 5 GNN layers of GIN-0 include
the input layer), the number of hidden units to 32, the batch size to 128 and the final dropout ratio
to 0. The results are shown in Figure 2. One can see that the volume of computations required by
our ETL method is consistently smaller than that of GIN-0. More concretely, ETL needs only 22%
of the volume of computations needed by the GIN on average.

E THE RUNNING TIME OF STRUCTURAL OPTIMIZATION

The total time required for generating a classifier includes the time of structural optimization and the
training time of ETL, in which the structural optimization only needs to run once, while ETL needs
hundreds of epochs of training before its testing even with fixed hyperparameters. Thus, we compare
the real running times of structural optimization (SO), WL-ET 5 and ETL 6 on all datasets with the
fixed hyperparameters described in Section D. The results are shown in Figure 3, and we can see
that the time required for structural optimization is much less than the time needed by WL-ET and
ETL and only accounts for 0.002% to 4% of the time required by ETL.

5The running time of WL-ET is the time required for performing 10-fold cross-validation with C-SVM.
6We calculate the actual running time of ETL with fixed hyperparameters under 300 epochs training.
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Figure 3: Running time comparison. Structural optimization and WL-ET are conducted on a
machine with an AMD Ryzen 3900x and 64 GB of RAM. ETL is trained with a Tesla V100 GPU.
The Y axis is the log with a base of 10 seconds because of the very large distinction in scale.

F UNDERLYING INTERPRETABILITY ADVANTAGE

Compared with GNNs, our ETL is more interpretable regarding its node importance levels and
feature combination paths. Based on the optimized encoding trees, the features propagating in ETL
follow a single direction rather than the complicated data loops found in graphs, which makes it hard
for GNNs to interpret the entire information propagation path.

Following the decomposition methods used in GNNs, we can not only measure the importance levels
of nodes with different heights but also identify the most important path for feature combination
by combining the importance scores of the nodes in the path. A toy example to demonstrate the
advantage of ETL in terms of interpretability can be found in Figure 4. As in the decomposition
methods of GNNs. The intuition of this idea is to build score decomposition rules to distribute the
prediction scores from the output space to the input space. Starting from the output layer, the model’s
prediction is treated as the initial target score. Then, the score is decomposed and distributed to the
neurons in the previous layer following the decomposition rules. By repeating such procedures until
covering the input space, the importance scores for node features can be obtained, which can also
be combined to represent path importance.
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Figure 4: An example of the interpretability of ETL with a decomposition method.
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