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Abstract—Distributed averaging, or distributed average con-
sensus, is a common method for computing the sample mean of
the data dispersed among the nodes of a network in a decentral-
ized manner. By iteratively exchanging messages with neighbors,
the nodes of the network can converge to an agreement on
the sample mean of their initial states. In real-world scenarios,
these messages are subject to bandwidth and power constraints,
which motivates the design of a lossy compression strategy.
Few prior works consider the rate allocation problem from
the perspective of constrained optimization, which provides a
principled method for the design of lossy compression schemes,
allows for the relaxation of certain assumptions, and offers
performance guarantees. We show for Gaussian-distributed
initial states with entropy-coded scalar quantization and vector
quantization that the coding rates for distributed averaging can
be optimized through generalized geometric programming. In
the absence of side information from past states, this approach
finds a rate allocation over nodes and iterations that minimizes
the aggregate coding rate required to achieve a target mean
square error within a finite run time. Our rate allocation
is compared to some of the prior art through numerical
simulations. The results motivate the incorporation of side-
information through differential or predictive coding to improve
rate-distortion performance.

Index Terms—Compression, consensus, geometric program-
ming, optimization, source coding.

I. INTRODUCTION

The proliferation of wireless sensors and large distributed

data sets in recent years has provided significant motiva-

tion for the development of distributed computing methods.

In many distributed computing settings, it is necessary to

compute a function of data that may be dispersed among

a number of computing nodes. Examples include wireless

sensor networks (WSNs), where each agent observes a

different measurement of a physical process, and large-

scale server farms, where the size of the data set requires

distributed storage [1]. The class of distributed algorithms

considered in this paper computes these functions using only

interactions among local subsets of the network nodes. One

popular approach to distributed function computation, which

has many variants, is consensus [2, 3]. Consensus has found

applications in a wide variety of settings, including dis-
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tributed swarm control, sensor fusion, optimization, filtering,

environmental monitoring, and distributed learning [2, 4, 5].

As a motivating example for our lossy compression frame-

work, we consider the application of distributed averaging

in representation learning for the internet of things (IoT).

Distributed average consensus helps different nodes share

intermediate results within a distributed version of the power

method [6],1 which can be used in distributed dictionary

learning schemes such as cloud K-SVD [5]. Take face

recognition as an example. Powered by IoT, a camera net-

work can gather a large number of face images and train

a face recognition model using dictionary learning [7]. If

these cameras can share the data they gathered and re-

train their face recognition model, then they can improve

their performance over time. In fully connected networks,

the cameras would easily share newly gathered images and

re-train their face recognition model efficiently. However,

in IoT, the network is often ad-hoc and may have sparse

connectivity. Furthermore, in dictionary learning for images,

large quantities of data must be communicated among nodes,

which strains the energy constraints of IoT devices [8].

In this work, we propose a scheme that offers the potential

to balance the competing metrics of communication load,

estimation error, and execution time for such IoT applica-

tions. After running for a finite number of iterations T ă 8,

average consensus will produce an estimate of the mean that

has some associated mean square error (MSE), MSEpT q ą 0.

If the internode messages are quantized, this process will

require the transmission of a total or aggregate coding rate,

Ragg ą 0. Our goal is to minimize the communication load,

measured by Ragg, subject to a given number of iterations to

be carried out (T ) and a desired final accuracy, MSEpT q. To

perform this minimization, we use the theory of generalized

geometric programming (GGP) [9, 10] to formulate a convex

program that can find the global optimum solution for certain

lossy compression schemes.

A. Prior art

Many early works on consensus assumed that the nodes

could communicate real-valued data to one another [11].

1This distributed power method helps find the dominant singular vector
of a matrix when batches of its columns are stored among different nodes
of a network.
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In realistic scenarios, the nodes must communicate within

bandwidth and energy constraints, which can have a sig-

nificant impact on the convergence of distributed averaging

algorithms. Although many papers have been published on

quantized consensus in recent years (e.g., [1, 4, 11–17]),2 a

large portion considers trade-offs among run time, commu-

nication load, and final accuracy without formulating the

problem as constrained optimization. Early publications on

quantized consensus (e.g., [11, 19]) show that introducing

perturbations of constant variance (such as quantization error)

into the traditional consensus state update prevents conver-

gence due to the limited precision of the quantizer. Due

to the difficulties associated with quantization error, many

works (e.g., [12–15, 20, 21]) address the incorporation of dy-

namic coding strategies into consensus protocols. However,

few prior schemes explicitly consider the rate-distortion (RD)

trade-off, and they instead offer heuristics to optimize their

respective performance metrics.
Several papers (e.g., [12, 20, 21]) consider the possibility

of using differential coding (also called difference quanti-

zation) [22] with a shrinking quantization range during the

transmission of messages between nodes. Of these, Thanou

et al. [13] demonstrated lower MSE than previous works

in this area (e.g., [12, 20]) with equal communication load.

Although these papers [12, 13, 20] exploit side-information

in their coding strategies, they study the simple fixed-rate

uniform quantizer and do not make effective use of lossy

compression to balance the trade-offs among T , MSEpT q,

and Ragg.
Yildiz and Scaglione [14, 15], unlike other authors, explic-

itly considered the RD trade-off to achieve an asymptotic

MSE value in consensus for the case of Gaussian initial

states. They proposed schemes based on differential [15],

predictive, and Wyner-Ziv coding [14]. Despite their sophis-

ticated coding approaches, the state update step they used can

only provide bounded steady-state error in the limit of many

consensus iterations, so that limTÑ8 MSEpT q ą 0 [14].
In addition to these dynamic coding strategies [12–14,

20], a few works [4, 17] consider optimization strategies for

energy consumption in wireless sensor networks. However,

Nokleby et al. [4] require a specific topological evolution

of the network. Huang and Hua [17] keep the coding rates

for their fixed-rate uniform quantizers constant across both

nodes and iterations, which does not fully explore the more

general space of node- and time-varying rates.
A handful of works (e.g., [23–26]) analyze consensus

from the viewpoint of information theory. Yang et al. [26]

considered RD bounds for data aggregation, in which data

is routed through a tree network to a fusion center, and

consensus, in which each node forms an estimate of the

desired quantity. Although Yang et al. [26] provided bounds

on the RD relationship for consensus in trees and proved the

achievability of the derived bounds, their analysis is limited

to the setting where the network is tree structured. Often it

is beneficial to consider more flexible topologies, such as

random geometric graphs, which have been used to model

2For a more thorough literature review, see Pilgrim [18].

WSNs [27]. In general, random geometric graphs and their

real-world WSN counterparts have loops.

B. Our contributions

This paper presents a framework for attaining an esti-

mate of the network sample mean at each node, within a

desired average level of accuracy, with finite run time and

minimal total communication cost (measured by Ragg) using

either deterministic or dithered quantization. Our frame-

work is informed by the results of RD theory [28] and

convex optimization [9]. In the plethora of literature we

surveyed, a crucial problem that has not been addressed is
the optimization of quantization schemes for finite run-time
without a certain set of limiting assumptions. Prior works

restrict the topology to trees [26], assume a certain form

for the rate/distortion sequences [14, 15], restrict the rates

to be the same at each node and/or iteration [13, 15, 17], or

use bounds on the MSE or asymptotic MSE values, rather

than exact MSE quantities [15, 17], in their analyses. The

key contribution of this work is the use of GGP [10] to

minimize the communication load subject to an accuracy

constraint, which avoids the previously discussed restrictions.

The advantages of our approach are (i) ignorance about

the parametric form of the allocated rates, which avoids

the introduction of unjustified or unnecessary assumptions;

(ii) support for different rates at each node and iteration

of distributed average consensus; and (iii) optimization with

respect to exact MSE constraints (rather than bounds) for

finite iteration count.

C. Notation

We denote the positive-valued subset of a set S by Są0

and the nonnegative-valued subset by Sě0. The integers are

denoted by Z, and the real numbers by R. Vectors are written

in boldface lowercase letters (e.g., x). Matrices are written

in boldface capital letters (e.g., A). The pi, jqth element of

matrix A is written rAsij . Quantities that vary with time

are written as functions of time (e.g., xptq). The �p-norm

is written ‖¨‖p, matrix transpose is written t¨uJ, and matrix

inverse is written t¨u´1. The expectation operator is written

as E r¨s, the mean of a time-dependent random variable xptq
is written μxptq, and its covariance is denoted by Σxptq. The

Kronecker product of two matrices A,B is written A b B.

A diagonal matrix is compactly specified as

diag

»—–x1

...

xn

fiffifl “
»—–x1 ¨ ¨ ¨ 0

...
. . .

...

0 ¨ ¨ ¨ xn

fiffifl .

II. PROBLEM FORMULATION

A. System model

In this paper, communication links are bidirectional, and

we model the network as an undirected graph, G “ tV, Eu,

comprised of a set of m vertices (nodes) V and a set of edges

E between pairs of vertices [29]. Because the communication

links are bidirectional, each edge pi, jq P E is represented as

an unordered pair of vertices, i, j P V [30].
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In the simplest case of the consensus problem, each node

i P t1, . . . ,mu has an initial scalar quantity zip0q P R, and

the goal is to have all nodes of the network agree upon the

sample mean of these quantities by iteratively exchanging

messages with their neighbors [30]. The quantities ziptq,

t ě 0, will be referred to as “states,” which in this paper

are assumed to be real-valued scalar random variables (RVs)

with joint Gaussian distribution for t “ 0. More formally,

let the (discrete) iteration index be a nonnegative integer,

t P Zě0. At t “ 0, the states tziptqumi“1 are the initial

values to be averaged by the consensus algorithm. For t ě 1,

the state ziptq represents the estimate of the sample averagesz :“ 1
m

řm
i“1 zip0q at node i. The objective of consensus is

for the state ziptq to eventually equal the sample mean of the

initial states: limtÑ8 ziptq “ sz, @i P t1, . . . ,mu [30]. In this

paper, we restrict our attention to deterministic, synchronous-

update consensus algorithms. We assume the following: (i)
the communication link topology of the network is fixed

and does not change with time; (ii) at each iteration, ev-

ery node exchanges messages with only its neighbors; (iii)
communication channels are noiseless; (iv) initial states of all

nodes are Gaussian with a known joint distribution; (v) each

node can use a different rate at each consensus iteration;

(vi) internode messages are broadcast to all neighbors at

once; and (vii) states are stored with infinite precision, but

communicated with limited precision. The last point is well-

motivated for nodes with 32- or 64-bit floating-point support.

Given the above assumptions on communication, one

popular algorithm for consensus relies on linear updates [2,

30]. Each node updates its state by forming a weighted sum

of its own state with those of its neighbors [30],

zipt ` 1q “ wiiziptq `
ÿ
jPNi

wijzjptq, (1)

where wij ą 0, @i, j,
řm

k“1 wik “ řm
k“1 wkj “ 1, and

Ni “ tj|pi, jq P Eu denotes the neighborhood of node i. The

weights wij are designed such that limtÑ8 ziptq “ sz [30].

The above update equation (1) can be written as [30]

zpt ` 1q “ Wzptq. (2)

The asymptotic convergence condition is then limtÑ8 zptq “
1
m11Jzp0q “ sz 1. The interested reader is referred to Xiao

and Boyd [30] for a study of weight matrix design.

When quantization error is present within the internode

messages, the simple linear iteration (2) is not guaranteed to

converge [19]. Instead, we use the modified iteration used

by Frasca et al. [11], which allows the sample average to be

preserved in the presence of quantization errors.

Let Q : R
m Ñ Xm represent quantization to a finite

set of representation levels Xm Ă R
m (i.e., Qpzptqq “

rQ1pz1ptqq, . . . , QmpzmptqqsJ). The associated quantization

error is given by εptq :“ Qpzptqq ´ zptq. We define the

distortion at node i and iteration t as Diptq :“ E
“
ε2i ptq‰

. The

subscripts on Q indicate that each node can use a different

quantizer in general. To allow the algorithm to converge to

zero steady-state estimation error, we use the update proposed

by Frasca et al. [11], which is

zpt ` 1q “ zptq ` pW ´ IqQpzptqq, (3)

where I is the identity matrix. The key advantage of this

update is that the average 1
m

řm
i“1 ziptq of the states ziptq

is preserved at each step t, despite quantization error [11].

Because the average is preserved at each iteration, the esti-

mation error from the average consensus state sz1 is [11]

eptq “ `
I ´ m´111J˘

zptq. (4)

The MSE at node i corresponding to an estimation error

eptq at iteration t is given by

MSEipd, tq :“ E
“
e2i ptq‰

,

where d is a vector of all distortions introduced by all nodes

throughout the consensus process. The average MSE across

the network at the end of iteration t is given by

MSEptq :“ 1

m

mÿ
i“1

MSEiptq.

The communication cost of consensus becomes substantial

when nodes exchange vector states ziptq P R
n, rather than

scalars. In this case, all entries can be collected into a vector

ζptq :“ rz1ptq, ¨ ¨ ¨ , zmptqs P R
mn, and a matrix is defined

Ω :“ W b In P R
mnˆmn [17], so that (3) becomes

ζpt ` 1q “ ζptq ` pΩ ´ ImnqQ pζptqq . (5)

This work assumes that ζptq has a known joint Gaussian

distribution, and that the ziptq are distributed such that

μziptq “ μziptq1, and the diagonal of Σzi
ptq is σ2

i ptq1.

This means that the marginal mean and variance can be

extracted from any of the elements corresponding to ziptq
from the joint mean μζptq and joint covariance Σζptq,

respectively. The marginal means and variances can thus be

derived in our case from (3), without considering the higher-

dimensional (5). The following statistical analysis will focus

on this scalar case.

B. Main objective

At every iteration t P t0, . . . , T ´ 1u (where T is the

total number of iterations) of the consensus process, each

node i P t1, . . . ,mu uses a rate Riptq to encode its state for

transmission to neighboring nodes. This rate is the average

number of bits used per symbol. That is, if node i sends a

length-liptq binary encoding of its scalar state ziptq to node

j, then the corresponding rate is given by Riptq “ E rliptqs,
where the expectation is taken over the distribution of ziptq.

In general, Riptq can vary across both nodes and iterations,

so that it is not necessary that Riptq “ Rjpsq for any i ‰
j, t ‰ s. We simplify notation by defining the rate vector

r :“rR1p0q, ...,Rmp0q, ...,R1pT ´1q, ...,RmpT ´1qsJ
.

Denote the distortions per entry, Diptq :“ E
“
ε2i ptq‰

, incurred

using rates r by the distortion vector

d :“rD1p0q, ...,Dmp0q, ...,D1pT ´1q, ...,DmpT ´1qsJ
. (6)
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One key quantity we use to determine the cost of running

the consensus process is the aggregate coding rate [31, 32]:

Ragg :“
T´1ÿ
t“0

mÿ
i“1

Riptq, (7)

which represents the total rate used over the T iterations of

the consensus algorithm by all m nodes of the network.

Our main objective is to derive minimization strategies for

Cpr, T q :“ Ragg (8)

for fixed- and variable-length codes for Gaussian-distributed

sources using a variety of quantizers.

To efficiently encode the data stored across the network,

it is necessary to know the distribution of ziptq for all

i P t1, . . . ,mu and t ě 0. To determine these distributions

from (3) and the distributions of the initial states tzip0qumi“1

is difficult in general. Instead, we propose an optimiza-

tion scheme for entropy-coded uniform scalar quantization

(ECSQ) [22] of stationary Gaussian states and RD-optimal

vector quantization (VQ) [28] of memoryless Gaussian-

distributed states.3 Because (3) consists of a linear combi-

nation of jointly Gaussian RVs and independent quantization

errors, it can be proven that the states will remain Gaussian

for all t ě 0 [18], and thus the mean and covariance of zptq
are sufficient to describe its distribution.

It can be shown that, for additive quantization noise and

symmetric weight matrices [18]:

μzpt ` 1q “ Wμzptq, (9)

μept ` 1q “ `
I ´ m´111J˘

Wμeptq, (10)

Σzpt ` 1q “ WΣzptqW ` pW ´ IqΣεptqpW ´ Iq, (11)

Σeptq “ `
I ´ m´111J˘

Σzptq`
I ´ m´111J˘

, (12)

where eptq is the estimation error (4) and the covariance

Σεptq is diagonal, Σεptq “ diagrD1ptq, ¨ ¨ ¨ , DmptqsJ. Us-

ing these definitions, we present the following mathematical

relationships, which we term the state evolution equations.

These equations allow us to perform the optimization of the

rate vector r using the cost function (8). The marginal source

variance νipd, tq at node i and iteration t is given by

νipd, tq “ rΣzptqsii ,
the MSE at node i and iteration t is given by

MSEipd, tq “ “
Σeptq ` μeptqμJ

e ptq‰
ii
, (13)

and the average MSE across the network at iteration t is

MSEpd, tq “ 1

m
tr

`
Σeptq ` μeptqμJ

e ptq˘
, (14)

where tr p¨q denotes the trace of a matrix.

3For the scalar quantization schemes, we assume that the state of each
node is a sample from a stationary, ergodic Gaussian random process. We
expect the performance of ECSQ to be the same as in the memoryless case.

C. Rate-distortion theory

For encoders operating on real-valued sources, the quan-

tization process necessarily introduces a certain expected

distortion D into their representation of the input signal [22].

This distortion can be quantified using a number of metrics,

but for the purpose of this paper, we use the square error

δpzptq, ẑptqq “ ‖zptq ´ ẑptq‖22,
so that the expected distortion per node per dimension is

given by D “ 1
mE

“‖zptq ´ ẑptq‖22
‰

[22]. In general, using

a higher coding rate R results in a lower distortion D, with

the drawback of greater communication load. RD theory [28]

quantifies the best possible trade-off between coding rate

and distortion. The minimum coding rate R required for any

compression scheme to produce an expected distortion less

than or equal to a particular value D is given by the RD

function RpDq [28].

III. RATE ALLOCATION VIA GGP

The key insight of this work is the ability to pose the

optimization of the rate vector r as a GGP, for which the

global optimum can be found [10]. The resulting scheme

finds an efficient rate vector r that achieves a target value of

MSEpd, T q, given by (14).4

When a particular quantizer is used in our problem, it

will often have an RD performance trade-off that differs

from RpDq, which is a bound on the best possible perfor-

mance [22]. In this paper, we term such a trade-off curve for a

particular practical quantizer an operational RD relationship.

For ECSQ and uniform quantization followed by fixed-rate

coding in the case of Gaussian sources, the operational RD

relationship in the high-rate regime is

RpDq «
$&
%

1

2
log2

ˆ
σ2

D

˙
` Rc, D P p0, σ2Dmaxs

0, otherwise

, (15)

where σ2 represents the variance of the data to be encoded,

and Rc and Dmax are constants [33]. In some cases, such as

infinite-dimensional VQ with memoryless Gaussian sources

and dithered [34] scalar uniform quantization [35], the rela-

tionship (15) holds for all rates.

The source variance νipd, tq is a function of the initial state

vector covariance Σzp0q (see (11)) and the distortion vector

d in (6); it evolves as described by (11). The operational

RD relationship at all nodes i P t1, . . . ,mu and iterations

t P t0, . . . , T ´ 1u can be expressed as

Ripd, tq “ 1

2
log2

ˆ
max

"
νipd, tq
Diptq , 2´2Rc

*˙
` Rc. (16)

The max in (16) encapsulates the saturation of the RD

relationship at R “ 0 in (15). Given T iterations, the

goal is to minimize the aggregate coding rate (7), sub-

ject to a constraint on the final MSE, MSEpd, T q ď
MSE˚ (14). For a target MSE of MSE˚, the minimum

4Note that the final network MSE corresponds to iteration index T , and
not T ´ 1. This is because MSEpd, tq is the network MSE after the end
of t iterations, or before the execution of the pt ` 1qth iteration.
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number of iterations required to achieve that MSE, Tmin “
argminT

�
T | MSEpd, T q ă MSE˚,d “ 0

(
, can be readily

obtained using the state-evolution equations (9)–(12). More

formally, using the operational RD relationship (16), the

optimization problem is

minimize
d

T´1ÿ
t“0

mÿ
i“1

1

2
log2

ˆ
max

"
νipd, tq
Diptq , 2´2Rc

*˙
` Rc,

subject to the constraints

MSEpd, T q ď MSE˚, (17)

Diptq ą 0, @i, t. (18)

Note that the above optimization is equivalent to

minimize
d

ln

˜
T´1ź
t“0

mź
i“1

max

"
νipd, tq
Diptq , 2´2Rc

*¸
,

subject to (17) and (18).

(19)

We will now introduce the concept of GGP and show that

the optimization (19) reduces to such a problem.

A. Basics of GGP

The following information can be found in Boyd and

Vandenberghe [9]. For this subsection, we stay close to

the authors’ original notation. In the language of geometric

programming, a function of the form

fpxq “ cxa1
1 xa2

2 ¨ ¨ ¨xan
n , c ą 0, xi ą 0, ai P R, @i,

is called a monomial [9, 10]. Similarly, a function of the form

fpxq “
kÿ

i“1

gipx1, . . . , xnq,

is a posynomial [9, 10], where gipx1, . . . , xnq are monomials.

Generalized posynomials are functions formed from posyn-

omials by operations including addition, multiplication, and

maximum [10].

A standard inequality-constrained GGP has the form

minimize
x1,...,xn

Cpx1, . . . , xnq,
subject to fipx1, . . . , xnq ď 1, @i P t1, . . . , nfu,

gipx1, . . . , xnq “ 1, @i P t1, . . . , ngu,
xi ą 0 @i P t1, . . . , nu,

where the cost Cpx1, . . . , xnq and all the inequality con-

straints fipx1, . . . , xnq are generalized posynomials, and all

the equality constraints gipx1, . . . , xnq are monomials [10].

Applying some function transformations, GGPs can be cast

in convex form and efficiently solved numerically [10].

B. Generalized posynomial form of cost function

Applying a monotone increasing function to the cost

function (19) results in an equivalent problem to (19) [9],

so we apply the exponential function to obtain

minimize
d

T´1ź
t“0

mź
i“1

max

"
νipd, tq
Diptq , 2´2Rc

*
,

subject to (17) and (18).

(20)

The above optimization problem (20) is a GGP, which is

formally shown in Pilgrim [18].

Two aspects of the above optimization (20) should be

highlighted. Because the constraints are allowed to be gen-

eralized posynomials, one could also optimize with respect

to a constraint on the maximum node MSE, for example,

max
i

tMSEipd, T qumi“1 ď MSE˚,

or constraints on each of the node MSE values,

MSEipd, T q ď MSE˚
i , @i P t1, . . . ,mu,

where MSEipd, tq is defined in (13). Also, in its most general

form, the optimization allows each node to use a different

rate or distortion. In the interest of designing a distributed

protocol (or for computational efficiency), one may wish

to constrain the rates or distortions at each node to be the

same. The constraint that all distortions be the same is a

straightforward modification of (20) and is also a GGP.

C. Constant distortion simplification

Solving the exact optimization problem (20) naively re-

quires explicit representation of all mT distortions Diptq
and all the coefficients of the log-sum-exp (LSE) model5

required to compute MSEipd, tq and νipd, tq from d. The

result of this explicit representation is large computational

time and memory complexity. In this section, we explore a

simplification of (20) to combat these issues.

In practice, as the network grows (specifically, m ą 20 and

T ě 6), the memory and time requirements of the optimiza-

tion (20) seem to grow quickly. If explicit representation of

LSE parameters can be avoided, it is possible to apply other

convex optimization methods without these scaling issues. To

provide a program that is more easily solvable in practice, we

constrain the distortions to be equal at each node, which is

equivalent to redefining d :“ rDp0q, . . . , DpT ´ 1qsJ
. The

optimization is then

minimize
d

T´1ź
t“0

mź
i“1

max

"
νipd, tq
Dptq , 2´2Rc

*
,

subject to (17) and (18).

(21)

In the following section, the results of solving the simplified

problem (21) are compared to the solutions of the exact

program (20) and the prior art [13, 14]. Surprisingly, the

above simplified optimization provides competitive results

for random geometric networks [38], with significant re-

duction in memory and run-time requirements. We conclude

5GGPs are converted to convex LSE form for solution [36, 37].
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Fig. 1 Optimal rates and MSE se-
quences from the solution of (20)
(T “ 5, ρc “ 0.35, σ2

x “ 1,
σ2
n “ 0.5, m “ 20). Left: Optimal

rate sequences for (20). Right: Op-
timal rate sequences for (21). The
rates are plotted against iteration
indices, and each line represents
the rates used by a different sen-
sor. Note that because variable-
length coding is used [22], the
rates can be non-integer-valued.

by noting that in practical implementation, it is anticipated

that the optimization (20) will be run offline with a priori
knowledge of the network topology and initial state statistics.

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical results that provide

insight into the optimal rate sequences that result from

solving (20). We further compare the performance of the pro-

posed GGP optimizations (20) and (21) to the prior art [13,

14]. To test the effectiveness of the proposed approach, we

used the CVX toolbox [36, 37] to solve (20) and (21).

Due to scaling issues, only the fixed-distortion prob-

lem (21) was solved for prior art comparison. The bin size

of all fixed-rate uniform quantizers was set to 12 times the

standard deviation of the data to prevent clipping.

In the results presented, the networks were generated by

random geometric graph (RGG) models [38], and each node

state was initialized with the same independent and identi-

cally distributed (i.i.d.) variance-σ2
x zero-mean Gaussian vec-

tor x P R
L corrupted by a different variance-σ2

n, zero-mean

Gaussian noise ni P R
L, i P t1, . . . ,mu. Incorporating noise

is important so that the nodes have different estimates of the

signal x to average together. The consensus process averages

the states elementwise, so this is the same as running L trials

of consensus on scalar states zip0q at once. The random

geometric graphs (RGGs) [38] were generated on the unit

torus (i.e., edge effects were neglected by “wrapping” edges

of r0, 1s2) [39]. The RGGs provide a model of networks

where location determines topology, such as WSNs [40]. An

RGG is one for which each node Vi P V is associated with a

coordinate vi. For a given connectivity radius ρc, two nodes

Vi, Vj are connected if ‖vi ´ vj‖2 ď ρc [27].

To better understand the structure of the solutions to

the optimization problems (20) and (21), we present some

simulation results. Each of these results is taken from single

instantiations of the optimization problem (i.e., they are not

averaged over multiple trials).

The optimal rate sequences, tRiptquT´1
t“0 , i P t1, . . . ,mu,

for both the variable-distortion (20) and constant-distortion

(21) problems typically exhibit monotonically nondecreasing

structure, with an increasing rate of change toward the final

iterations. In the constant-distortion case, the rates Riptq «
1
2 log2

´
max

!
νipd,tq
Diptq , 2´2Rc

)¯
`Rc are similar because the

ratios
νipd,tq
Diptq in the Gaussian operational RD relationship (15)

are similar across the network. Examples of optimal rate

sequences are provided for both variants of the optimization

problem (20) and (21) in Fig. 1.

The pattern of these rate sequences is intuitive, and it mir-

rors the results of Zhu and coauthors’ study of multiprocessor

approximate message passing [31, 32, 41]. As the estimate

of the sample mean at each node increases in precision,

higher-resolution messages must be exchanged among nodes

to achieve increasing estimation quality. In the case of coding

without side information, this improving precision requires

using larger coding rates in the later iterations.

To compare our work to the prior art [13, 14], we generated

32 RGGs [38] with connectivity radius ρc P t0.35, 0.45u on

a two-dimensional unit torus. For each of these networks,

consensus was run on 1,000 realizations of the initial states,

which were length-10,000 i.i.d. Gaussian vectors zip0q “
x ` ni, @i P t1, . . . ,mu, x „ N p0, Iq,ni „ N p0, 0.5Iq.

This corresponds to SNR :“ σ2
x

σ2
n

“ 2, which is 3.01 dB. We

simulated ProgQ [13] and order-one predictive coding [14],

using initial rates Rip0q P t4, . . . , 7u and Rip0q P t3, . . . , 6u,

@i, respectively. The measured final MSE values (13) for

these schemes were set as the target values for the GGP.

For all schemes, MSEpd, T q and Ragg were computed.

These values were averaged over all 32 realizations of each

(ρc, Rip0q, T ) setting, and the resulting averages were plotted

against each other. Looking at (11), it seems that the MSE

for quantized consensus, where Diptq ě 0,@i, t, is greater

than in unquantized consensus, where Diptq “ 0,@i, t.
We therefore introduce two terms to define the MSE

performance relative to the ideal, unquantized algorithm. To

compensate for the effect of network topology on the MSE,

we define the lossless MSE,

MSElosslessptq :“ MSEpd, tq
ˇ̌̌
d“0

.

Next, define the final excess MSE (EMSE) as

EMSEpT q :“ 10 log10
MSEpd, T q

MSElosslesspT q ,

which represents the increase in MSE over lossless consen-

sus resulting from distortion. The EMSE was used for the

generation of RD trade-off curves.

In the case of very low rates using ECSQ on zero-mean

Gaussian sources, all elements decoded at a receiving node

would be zeros. To prevent this behavior, the maximum

379

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 14,2023 at 02:16:49 UTC from IEEE Xplore.  Restrictions apply. 



0 2 4 6 8 10 12 14
EMSE(T ) (dB)

15

20

25

30

35

40

45
R

a
g
g
(b
it
s/
sy
m
b
ol
/s
en
so
r)

ECSQ (simulated)
ECSQ (predicted)
ProgQ
Predictive

0 0.2 0.4 0.6 0.8 1
EMSE(T ) (dB)

15

20

25

30

35

40

45

50

R
ag
g
(b
it
s/
sy
m
b
ol
/s
en
so
r)

GGP (constant distortion)
Predictive

Fig. 2 Left: RD trade-off curves
for the proposed GGP-optimized
ECSQ versus ProgQ [13] and
order-one predictive coding [14]
(ρc “ 0.45, T “ 7). Right:
Comparison of the proposed GGP-
optimization versus order-one pre-
dictive for a single realization of
the RGG (ρc “ 0.35, T “
7), where both schemes use RD-
optimal VQ. The corresponding
quantization error was simulated
by adding white Gaussian noise.

normalized distortion Dmax allowed was set such that the

recieved elements were nonzero at least 1% of the time.

Because of stability issues with the GGP solvers used,

Yildiz and Scaglione’s order-one predictive coding imple-

mentation [14], which was provided by the authors, was

modified to use fixed-rate uniform quantization but allow

for the rate to vary with iteration and node indices. This

capability was implemented by running two rate update

recursions—one to keep track of the ideal (real-valued) rates

given by the quantization noise variance recursion [14], and

another to perform the predictive coding using rates that were

rounded to the nearest integral value.

V. DISCUSSION

To adequately discuss the RD results, we first comment

on some properties of each prior art scheme presented. The

ProgQ algorithm [13] uses a time- and node-invariant fixed-

rate uniform quantizer (i.e., Riptq “ R, @i P t1, . . . ,mu, t P
t0, . . . , T ´1u), whereas Yildiz and Scaglione [14] allow the

use of different rates at each node and iteration.

Thanou et al. [13] use the same state update as ours (3),

but Yildiz and Scaglione [14] use a different update that is

incapable of truly converging in the presence of quantization

error. The final asymptotic MSE for the predictive scheme

depends on the sum of distortions, Diptq, t P Zě0. If these

distortions are chosen to form a convergent series, then

the MSE will converge to a nonzero, but bounded, value.

Because of this limitation, the predictive scheme [14] is

heavily dependent on the starting rates, Rip0q.

In some cases, such as the bottom right of the ECSQ

curve in Fig. 2, the predicted performance and measured

performance of ECSQ do not match. Because the ECSQ used

in the simulations is not dithered [34], the additive quanti-

zation model only holds approximately. As Ragg increases,

the performance improves, and better adherence to predicted

performance can be accomplished using dithering [34].

The RD performance of the proposed optimization

scheme (21) for ECSQ is compared to the predictive coding

scheme of Yildiz and Scaglione [14] and the ProgQ algorithm

of Thanou et al. [13] in Fig. 2. For our scheme, the predicted

RD performance (as computed by the state evolution equa-

tions (9)–(12)) is compared to the actual performance. The

distortion (measured by the EMSE) is given by the horizontal

axis, and the aggregate rate Ragg by the vertical axis. The

predicted performance is denoted by a dashed line, while

the simulated performance is represented as a solid line.

Alongside our approaches, we plot the RD performance of

both of the comparators. A curve closer to the bottom left

corner of these figures indicates better performance, meaning

lower aggregate rate Ragg to achieve the same EMSE, or

lower EMSE for a particular Ragg.
The numerical results in the left panel of Fig. 2 suggest that

our GGP approach outperforms that of Yildiz and Scaglione

and Thanou et al. However, a closer look reveals that much

if not all of the gain is due to our using variable rate coding,

whereas the implementations for the comparators use fixed

rate coding. When we evaluated our approach with fixed rate

coding using a heuristic proposed in Pilgrim [18], our re-

sults were typically somewhat weaker than the comparators.

We attribute the performance advantage of ProgQ [13] and

predictive coding [14] to their use of side information from

previous iterations.
For a fairer comparison to the predictive approach of

Yildiz and Scaglione [14], we also simulated their approach

against ours (21) for RD-optimal vector quantizers, which use

variable coding rates. The simulations were run on a single

instance of the RGG by varying the initial coding rate of the

predictive scheme [14] and setting the resulting EMSEpT q as

the target for the optimization (21). Because the quantization

error of infinite-dimensional lattice quantizers approaches an

additive white Gaussian noise process [35], these experi-

ments simulated quantization by adding independent noise

of variance Dptq to the states. This plot demonstrates the

advantage of predictive quantization on an even playing field

by allowing both our approach and the predictive scheme [14]

to use variable-rate coding.
The ProgQ scheme [13], unlike predictive coding [14], is

capable of converging in the limit due to its different state

update strategy. Both ProgQ [13] and predictive coding [14]

are capable of using constant or even shrinking coding rates

to achieve good performance. It is clear from Fig. 1 that

our rates grow with t. Therefore, as T Ñ 8, we expect

that ProgQ will outdo our proposed schemes in all settings,

despite our constrained optimization, because it can converge

in the limit of large T with constant rates.

VI. CONCLUSION

In conclusion, this paper presented a framework for opti-

mizing the source coding performance of distributed average
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consensus. The key insight of our approach is the formulation

of the problem as a GGP [10]. Our framework allows the

problem to be transformed to a convex program [9] and

solved for the global optimum. Although we do not incor-

porate knowledge from past iterations, our numerical results

are competitive with prior art that uses more sophisticated

side information strategies, which motivates the study of

optimization for predictive coding schemes.
In light of the performance gain from predictive coding

strategies, we feel that future work should focus on variable

rate strategies. Moreover, we aim to optimize the predictive

approach of Yildiz and Scaglione using our GGP formulation

and the state update (5).

ACKNOWLEDGMENTS

Thanks to Yanting Ma for her inputs on extending the

GGP model to variable distortion, to Mehmet Ercan Yildiz

and Anna Scaglione for graciously providing their code for

comparison, and to Yaoqing Yang and Pulkit Grover for

discussing their work with Soummya Kar.

REFERENCES

[1] N. Noorshams and M. J. Wainwright, “Non-asymptotic analysis of an
optimal algorithm for network-constrained averaging with noisy links,”
IEEE J. Sel. Topics Signal Process., vol. 5, no. 4, pp. 833–844, Aug.
2011.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95,
no. 1, pp. 215–233, Jan. 2007.

[3] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proc. IEEE, vol.
98, no. 11, pp. 1847–1864, Nov. 2010.

[4] M. Nokleby, W. U. Bajwa, R. Calderbank, and B. Aazhang, “Toward
resource-optimal consensus over the wireless medium,” IEEE J. Sel.
Topics Signal Process., vol. 7, no. 2, pp. 284–295, Apr. 2013.

[5] H. Raja and W. U. Bajwa, “Cloud K-SVD: A collaborative dictionary
learning algorithm for big, distributed data,” IEEE Trans. Signal
Process., vol. 64, no. 1, pp. 173–188, Jan. 2016.

[6] A. Scaglione, R. Pagliari, and H. Krim, “The decentralized estimation
of the sample covariance,” in Proc. IEEE 42nd Asilomar Conf. Signals,
Syst., Comput., Oct. 2008, pp. 1722–1726.

[7] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[8] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Commun. ACM, vol. 43, no. 5, pp. 51–58, May 2000.

[9] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, UK:
Cambridge University Press, 2004.

[10] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial
on geometric programming,” Optimization Eng., vol. 8, no. 67, pp.
67–127, Mar. 2007.

[11] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri, “Average consensus
on networks with quantized communication,” Int. J. Robust Nonlinear
Control, vol. 19, no. 16, pp. 1787–1816, Nov. 2008.

[12] R. Carli, F. Bullo, and S. Zampieri, “Quantized average consensus via
dynamic coding/decoding schemes,” Int. J. Robust Nonlinear Control,
vol. 20, no. 2, pp. 156–175, May 2009.

[13] D. Thanou, E. Kokiopoulou, Y. Pu, and P. Frossard, “Distributed
average consensus with quantization refinement,” IEEE Trans. Signal
Process., vol. 61, no. 1, pp. 194–205, Jan. 2013.

[14] M. E. Yildiz and A. Scaglione, “Coding with side information for
rate-constrained consensus,” IEEE Trans. Signal Process., vol. 56, no.
8, pp. 3753–3764, Aug. 2008.

[15] M. E. Yildiz and A. Scaglione, “Limiting rate behavior and rate
allocation strategies for average consensus problems with bounded
convergence,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), Apr. 2008, pp. 2717–2720.

[16] R. Rajagopal and M. J. Wainwright, “Network-based consensus
averaging with general noisy channels,” IEEE Trans. Signal Process.,
vol. 59, no. 1, pp. 373–385, Jan. 2011.

[17] Y. Huang and Y. Hua, “On energy for progressive and consensus
estimation in multihop sensor networks,” IEEE Trans. Signal Process.,
vol. 59, no. 8, pp. 3863–3875, Aug. 2011.

[18] R. Z. Pilgrim, “Coding rate optimization for distributed average
consensus,” M.S. thesis, NC State University, Raleigh, NC, July 2017,
Available: http://arxiv.org/abs/1710.01816.

[19] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with
least-mean-square deviation,” J. Parallel Distributed Comput., vol. 67,
no. 1, pp. 33–46, Jan. 2007.

[20] T. Li, M. Fu, L. Xie, and J.-F. Zhang, “Distributed consensus with
limited communication data rate,” IEEE Trans. Autom. Control, vol.
56, no. 2, pp. 279–292, Feb. 2011.

[21] F. F. C. Rego, Y. Pu, A. Alessandretti, A. P. Aguiar, and C. N. Jones, “A
consensus algorithm for networks with process noise and quantization
error,” in Proc. 53rd Allerton Conf. Commun., Control, and Comput.,
Oct. 2015, pp. 488–495.

[22] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion, Kluwer, 1993.

[23] O. Ayaso, D. Shah, and M. A. Dahleh, “Information theoretic bounds
for distributed computation over networks of point-to-point channels,”
IEEE Trans. Inf. Theory, vol. 56, no. 12, pp. 6020–6039, Dec. 2010.

[24] A. Xu and M. Raginsky, “A new information-theoretic lower bound for
distributed function computation,” in Proc. IEEE Int. Symp. Inform.
Theory (ISIT), June 2014, pp. 2227–2231.

[25] H.-I. Su and A. El Gamal, “Distributed lossy averaging,” IEEE Trans.
Inf. Theory, vol. 56, no. 7, pp. 3422–3437, July 2010.

[26] Y. Yang, P. Grover, and S. Kar, “Rate distortion for lossy in-network
linear function computation and consensus: Distortion accumulation
and sequential reverse water-filling,” IEEE Trans. Inf. Theory, vol. 63,
no. 8, pp. 5179–5206, Aug. 2017.

[27] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Mixing times for
random walks on geometric random graphs,” in Meeting Algorithm
Eng. Experiments/Analytic Algorithmics and Combinatorics, Jan. 2005,
pp. 240–249.

[28] T. M. Cover and J. A. Thomas, Elements of Information Theory, New
York, NY: Wiley-Interscience, 1991.
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