
Recognizing Vector Graphics without Rasterization

Xinyang Jiang1, Lu Liu2∗, Caihua Shan1, Yifei Shen3∗, Xuanyi Dong2∗, Dongsheng Li1
1Microsoft Research Asia

{xinyangjiang,caihua.shan,dongsheng.li}@microsoft.com
2University of Technology Sydney

u.liu.cs@icloud.com,xuanyi.dxy@gmail.com
3The Hong Kong University of Science and Technology

yshenaw@connect.ust.hk

Abstract

In this paper, we consider a different data format for images: vector graphics. In
contrast to raster graphics which are widely used in image recognition, vector
graphics can be scaled up or down into any resolution without aliasing or infor-
mation loss, due to the analytic representation of the primitives in the document.
Furthermore, vector graphics are able to give extra structural information on how
low-level elements group together to form high level shapes or structures. These
merits of graphic vectors have not been fully leveraged in existing methods. To
explore this data format, we target on the fundamental recognition tasks: object
localization and classification. We propose an efficient CNN-free pipeline that does
not render the graphic into pixels (i.e. rasterization), and takes textual document of
the vector graphics as input, called YOLaT (You Only Look at Text). YOLaT builds
multi-graphs to model the structural and spatial information in vector graphics, and
a dual-stream graph neural network is proposed to detect objects from the graph.
Our experiments show that by directly operating on vector graphics, YOLaT out-
performs raster-graphic based object detection baselines in terms of both average
precision and efficiency. Code is available at https://github.com/microsoft/YOLaT-
VectorGraphicsRecognition.

1 Introduction

Raster graphics have been commonly used for image recognition due to its easy accessibility from
cameras. Most existing benchmark datasets are built upon raster graphics, from ImageNet [1] for
classification to COCO [2] for object detection. However, due to its pixel-based fix-sized format,
raster graphics may lead to aliasing when scaling up or down by interpolation. Fields like engineering
design or graphic design require a more precise way to describe visual content without aliasing when
scaling (e.g., graphic designs, mechanical drafts, floorplans, diagrams, etc), so another important
image format emerges, namely vector graphics.

Vector graphics achieve this powerful feature by recording how the graphics are constructed or drawn,
instead of the color bitmaps represented by pixel arrays defined in the raster graphics (first row in
Figure 1). Specifically, vector graphics contain a set of primitives like lines, curves and circles, which
is defined with parametric equations in analytic geometry and some extra attributes. As shown in
Figure 1, such vector graphic is usually a document where every primitive is defined precisely and
written in a line of textual command. Due to the analytic representation, with few parameters, vector
graphics can represent an object at any scale or even in infinite resolution, making it potentially a lot
more precise and compact image format than raster graphics. Also, instead of independent pixels,
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Figure 1: Difference between raster graphics (row 1) and vector graphics (row 2).

vector graphics give higher level structural information on how low-level elements like points or
curves group together to form high level shapes or structures. However, this powerful and widely
used data format has been rarely investigated in previous computer vision literature.

To explore this data format, this paper focuses on the fundamental recognition tasks: object lo-
calization and classification, with wide applications in vector graphics related field like automatic
design audit, AI aided design, design graphics retrieval, etc. Existing raster graphics based methods
[3, 4, 5, 6, 7] takes pixel arrays as input and cannot be directly applied on vector graphics. There
have been attempt [8] dealing with this format by rendering vector graphics into raster graphics
first. However, rendering the vector graphics into raster graphics could result in a pixel array with
super resolutions (e.g., thousands by thousands), which brings extremely large memory cost, and
would be inefficient or even intractable for the traditional models to process. On the other hand,
rendering a lower resolution image causes substantial information loss, and the object bounding
boxes obtained from a low resolution image could be imprecise when scaled back to the original
resolution. Furthermore, the rendering process results in a set of independent pixels and discards the
high-level structural information within the primitives. Some of this information could be critical for
recognition, such as corners in a shape or contours, etc.

To address these issues, we resolve the tasks on vector graphics by introducing a model that does
not need rasterization and takes the textual documents of vector graphics as input, called YOLaT(You
Only Look at the Text). Instead of rendering the vector graphics into raster graphics, we propose
an efficient end-to-end pipeline which predicts objects from the raw textual definitions of primitives.
YOLaT first transforms different types of primitives into a unified format. Then it constructs an
undirected multi-graph to model the structural and spatial information from the unified primitives.
Compared to rendering to raster graphics, this transformation is able to preserve more complete
information. YOLaT generates object proposals directly from the vector graphics, which produces
precise object bounding boxes. Finally, a dual-stream graph neural network (GNN) specifically
designed for vector graphics is proposed to classify the graph contained in each proposal, with no
extra regression needed for bounding box refinement.

To evaluate our pipeline over vector graphics, we use two datasets. i.e., floorplans and diagrams and
show the advantages of our method over the raster graphics based object detection baselines. Without
pre-training, our method consistently outperforms raster graphics based object detection baselines,
with significantly higher efficiency in terms of the number of parameters and FLOPs. Even compared
with the powerful ImageNet pretrained two-stage model, YOLaT achieves comparable performance
with 25 times fewer parameters and 100 times fewer FLOPs. We also show visualizations to better
demonstrate why looking at the text can capture more delicate details and predicts more accurate
bounding boxes.

2 Related Work

Object Detection on Raster Graphics. Currently deep learning based object detection methods
dominate the research field with the superior performance. Two-stage object detection methods
first generate region proposals and classify and regress the proposals to give object predictions with
a deep convolutional networks. R-CNN [9] and Fast-RCNN [3] use selective search for proposal
generations. Faster-RCNN [10] speeds up the proposal generation by introducing a region proposal
network. He et al. [11] proposed Mask-RCNN, adding a segmentation branch to the detection model
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for instance segmentation. To train a more translation-variant backbone, Dai et al. [12] proposed
F-RCN – a new prediction head with position-sensitive score maps.

Most two-stage object detection methods have large computation overhead of the proposal generation
process, and require running a classification and regression sub-network on all the region proposals.
One-stage object detection methods tackle this challenge by removing the proposal generation process
and directly predict the object bounding boxes in an end-to-end fashion. Anchor-based methods
like SSD [4], YOLO series [5, 13, 14, 15], RetinaNet [6] densely tile anchor boxes over the image
and conduct classification and bounding box coordinate refinement on each anchor box. Recently,
anchor-free methods like CornerNet [16], CenterNet[7], FCOS [17] propose to directly find object
without presets anchors.

Graph Neural Networks. GNN has become a powerful tool for machine learning on graphs. It
computes a state for each node in a graph, and iteratively updates the node states according to its
neighbors. Spectral approaches [18, 19] define a convolution operation in the Fourier domain. Spatial
approaches [20, 19, 21] define convolutions directly on the graph. EdgeConv [22] applies GNN
model for classification on 3D Cloud by taking the state difference between neighboring nodes as
the input of the aggregation function. [23] further applies EdgeConv to the object detection task
on 3D cloud data by integrating the GNN backbone into an anchor-free detection framework. The
closest GNN model to our YOLaT is EdgeConv but YOLaT has extra upgrade specifically designed
for vector graphics, including edge attributes, faster inference on densely connected edges, and
dual-stream structure for multi-graph.

Online Sketch and Handwriting Recognition. Online handwriting and drawing recognition
[24, 25] handles a data form that very similar to vector graphics, which contains a sequence of
discrete points. Most of these methods use sequential models to handle this problem. For example,
[26] proposes to convert the point sequences to a sequence of Bézier Curves and use a LSTM for
sequential modeling. Compare to online handwriting, vector graphics contain more types of un-
ordered shapes with more attributes and properties other than polylines, and hence need more general
and non-sequential method.

Vector Graphics Related Application. One of the most common application for vector graphics is
design, such as architecture, graphic design, etc. Several methods in architecture drawing recognition
propose to represent symbols in a floor-plan as graphs, and use rule-based graph matching method
to classify and localize symbols, such as visibility graph [27] and attributed relational graph [28, 29].
In this paper, we propose a novel scheme that directly construct graph from vector graphics based
on Bézier Curve, and the object detection is conducted based on the prediction of GNN. Recent
years, a few works develop deep learning based methods to automatically generate vector graphics
for computer aided design or converting raster graphics to vector graphcis (i.e. vectorization)
[30, 31, 32, 33, 34, 35], while to the best of knowledge, our paper is the first to focus on recognition
task on vector graphics. Koch et al. [36] proposes a large 3D model dataset containing analytic
representations, but it lacks semantic labeling to train recognition model.

3 Detection Model

In this paper, we study the problem of object detection leveraging the definitions of the vector graphics
without rendering them. Here, we define the task as object localization and object classification.
Specifically, the model needs to predict a set of bounding box coordinates as well as the category of
the object within the bounding boxes.

In this section, we describe our proposed YOLaT, which is an end-to-end efficient pipeline taking the
raw definitions of the vector graphics as the input without further rendering the graphics. Figure 2
shows the overall pipeline of YOLaT. We convert the primitives like lines and curves as a universal
format of Bézier curves. Based on the Bézier curves, un-directed multi-graphs are constructed to
model both spatial and structural relationships among the key-points within a primitive and among
different primitives. More details on how we build the graphs can be found in Section 3.1. To
fully explore the vector graphics based on the multi-graph, we propose a dual-stream GNN for
graph feature extraction and classification. Section 3.2 shows the detailed design of the proposed
dual-stream GNN. Compared to the complex prediction head commonly used in the object detection
for raster graphics, YOLaT generates precise proposal bounding boxes directly from high resolution
vector graphics. Hence each sub-graph in the proposals are fed into the dual-stream GNN classifier
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Figure 2: The overall pipeline of the proposed method.

without further correction of the box coordinates. We show how to get the potential bounding boxes
and predict their objectiveness and category in Section 3.3.

3.1 Graph Construction

Universal formats of curves. Compared to the raster graphics represented by pixel arrays, vector
graphics have more precise representations and no loss of quality and aliasing when resizing. The
vector graphics consists of primitives defined by textual commands described in parametric equations,
such as lines, curves, polygons and other shapes.Different primitives are described with different
parametric equations. Here, like pixel in raster graphics, we want to find a unified way to describe all
types of primitives. We chose Bézier Curve due to its generality and capability of modeling different
shapes and curves. Bézier Curve is defined by a set of control points, { p0, ..., pn}, where n is the
order of the curve and pi∈[n+1] is a 2-d vector for the coordinates of point i. The first point and the
last point are the end points of a curve while the rest of the control points usually do not sit on the
curve and provide side information instead, such as directional information and curvature statistics
of the curve from p0 to pn. We chose cubic Bézier Curve where n = 3 for the balance between
modeling capability and computational complexity. Formally, the cubic Bézier curve B is defined as:

B(t) = (1− t)3p0 + 3(1− t)2tp1 + 3(1− t)t2p2 + t3p3, 0 ≤ t ≤ 1 (1)

where B(t) defines the position of a specific point at the scale rate of t on the curve from p0 to p3.
Next, we introduce our graph construction based on a set of Bézier Curves.

Nodes. To improve efficiency, we only include the points from the set of start points and end points,
denoted by P, into the collections of nodes on graphs. The rest of the control points will serve
as the edge attributes as defined in the following paragraph. For a point p, the attributes x of the
corresponding node include the coordinates of the point, the RGB color value c and stroke width w:

x = concat(px,py, c, w),p ∈ P (2)

where px and py denote the coordinate value of the point p along the x axis and y axis respectively.
These information is defined in the vector graphic documentation.

Edges. We design the graph as a multi-graph containing two sets of edges, namely the stroke-wise
edges and the position-wise edges. These two types of edges capture the node relationships from
different perspectives.

Stroke-wise edges capture the connections defined by the stroke in the vector graphics, which refers to
the actual stroke drawn between the start and end point of each Bézier curve. This type of connections
represents the structures and layouts of the objects in the vector graphics. Thus, an edge is built
in-between two nodes if there is a Bézier Curve linking them:

Es = {(vi, vj) : (vi, vj) ∈ S} (3)

where S denotes the set of tuples containing the start point vi and end point vj of a Bézier Curve.

Other than the connections between start and end points, other attributes of a cubic Bézier curve like
curvature or other appearance are described by the off-curve control points. We use the coordinates
of these off-curve control points as the attributes of the stroke-wise edges:

xe = concat(px,py),p /∈ P (4)
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The stroke-wise edges only model the long-term structural connection between the vertices based on
strokes, which is irrelevant to the spatial vicinity. To further capture the spatial relationship between
nodes, we generate another set of edges, called position-wise edges. Specifically, the position-wise
edges are defined as the dense connections among nodes within a regional cluster Ck:

Ep = {(vi, vj) : vi, vj ∈ Ck}, k ∈ {1, 2, ...,m}, (5)

A regional cluster is a set of nodes close to each other spatially, which can by obtained in different
ways. In our implementation, we obtain regional cluster in three steps. First, given our graph
representation of a vector graphic, we obtain all the connected components in the graph, based on
the stroke-wise edges Es. Secondly, for each pair of connected components, obtain their expanded
minimum bounding rectangles and the overlapping area of the rectangles. If the expanded area of
two connected components overlap, they are spatially close and are merged to be one regional cluster
Ck. The expand length is a hyper-parameter.

3.2 Feature Extraction with Dual-stream GNN

In the previous section, we introduced how to generate graphs, including building nodes, two sets
of edges and attributes. To analyze the proposed multi-graph, YOLaT applies a GNN network
specifically designed for the graph built from vector graphics. Since the proposed graph is defined by
two sets of edges at hand, YOLaT uses a dual-stream GNN structure where a specific GNN branch
is designed to update node representations based on each type of edges. The node representations
extracted by the dual-stream GNN are able to leverage the spatial and structural information in vector
graphics, and can better guide the following head for the downstream tasks.

In the following section, we first elaborate on the details of both streams in our GNN. Then we intro-
duce how to get the representation of a specific region by leveraging multi-step node representations
propagation and representation fusion.

Stroke-wise Stream. For the graphs with stroke-wise edges, inspired from [37], this GNN takes
the input of the concatenation of a node representation, the difference of the representation to its
neighbor node, and the attributes on the edge. At time step t+ 1, the representations ht+1

i for a node
i is updated as follows:

ht+1
i = f l(ht

i) +
1

|N s
i |
∑
j∈Ni

fs(concat(ht
i,h

t
j − ht

i,x
e
ij)), (6)

where the initialization is calculated as Equation 2, i.e., h0 = x. xe
ij denotes the attributes on the

stroke-wise edge between node i and node j as defined in Equation 4. f l is a linear transformation
function. N s

i denotes set of nodes adjacent to the i-th node in terms of stroke-wise edges in the
graph, and fs denotes a transformation function which consists of a linear transformation, a ReLU
activation function [38] and a batch normalization layer [39] in our implementation.

Position-wise Stream. Since the position-wise edges are constructed densely as described in Sec-
tion 3.1, the number of position-wise edges is significantly larger than that of the stroke-wise edges.
To reduce the computational cost, we design a simpler GNN model for graphs with position-wise
edges. At time step t+1, the model only takes the representation of a node and the node representation
zt+1
i is updated by considering the neighboring transformed representation:

zt+1
i =

1

|N p
i |

∑
j∈Np

i ∪{i}

fp(ztj), (7)

whereN p
i denotes the neighbors of node i defined by the positional edges (to maintain the information

from vi a self-loop for each node is added). fp is a transformation function with the same structure but
untied parameters as fs. The initialization of the node representation is also calculated as Equation 2,
i.e., z0 = x. Compared to stroke-wise edge, the computation complexity of fp can be reduced
significantly, because the updates of the nodes in the same regional cluster Ck only needs to be
computed once. More details of the efficient implementation for the GNN can be found in Section 4.

Representation Fusion. The representation of a specific region in vector graphics is based on the
cluster of nodes representations located within this region. Specifically, given the node representations
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refined by the proposed dual-stream GNN, we average the node representations over the nodes inside
this region Vr to get a region representation and concatenate the region representations for T steps:

r = concat(r0s, r
1
s, ..., r

T
s , r

0
p, r

1
p, ..., r

T
p ), (8)

rts =
1

|Vr|
∑
i

ht
i, i ∈ Vr, rtp =

1

|Vr|
∑
i

zti, i ∈ Vr, (9)

where r denotes the fused representation of a specific region and rts, rtp denote the region representa-
tion at time step t from the graph with stroke-wise edges and position-wise edges, respectively.

3.3 Prediction and Loss

Here we propose a vector graphics based proposal generation method. Given a vector graphic,
we first evenly slices each regional clusters Ck into grids. Then, we permute all vertex pairs on
the grid mesh, each of which forms the top-left and bottom-right points of a rectangle region. The
nodes, edges and corresponding primitives within each rectangle region forms a proposed object,
whose minimum bounding rectangle is the bounding box of the proposal. Note that proposals
with size larger than a threshold is filtered. Compared to generating proposals on raster graphics,
YOLaT produces much fewer negative samples, and operates at highest resolution to directly produce
tightest bounding boxes around the proposed object. Hence, YOLaT requires no extra regression
branch for bounding box refinement.

For each proposal, a proposal B̂’s representation r is obtained by the representation fusion strategy
as described in previous section, which is then fed into a multi-layer perception to predict object
category. During training, we only optimize the cross-entropy loss over the prediction and B̂’s
ground truth label y. In each image, for each ground truth object box Bi, its label is yi. We set y
the same as that of the ground truth Bi, which has the largest Intersection over Union (IoU) with
the proposal B̂. If the largest IoU is below a threshold α, we regard this proposal as “no object” and
set its ground truth label as the total number of classes C (the class index is from 0). We minimize
the cross entropy loss of each proposal:

min− log Pr(y|B̂) = min− log Pr(y|r), (10)

y =

{
argmaxyi∈Y IoU(B̂, Bi) if max(IoU(B̂, Bi)) >= α
C else

, (11)

where Y is the set of all ground truth labels for the boxes {Bi}.
During evaluation, we regard the probability of the classification as the confidence level for this pro-
posal and select the bounding boxes with the confidence level above a set threshold as the predictions.

4 Experiments

4.1 Implementation Details

Architecture. In the model used in our main results comparison, we build a two-layer GNN for both
position-wise stream and stroke-wise stream with dimension of all the hidden node representations
set to 64. We observe no significant performance improvement with deeper GNN due to the over-
smoothing effect. In our graph, the number of position-wise edges is quite large due to its full
connectivity within each regional cluster. To speed up the inference, we first pre-compute the
transformation function fp on each node. Then for each regional cluster, we aggregate the obtained
node representations with mean-pooling. The aggregated representation for each regional cluster is
then assigned to each node in the cluster as their new node representation. In this way, each node only
requires one transformation operation and one mean-pooling operation. Furthermore, since the fully
connected graph constructed by position-wise edges could cause severe over-smoothing problem,
after run fp on each node, the mean aggregate operation is only conducted on the last layer of GNN.
We use a three-layer MLP as classifier, where the dimension of middle layer output is 512 and 256.

Graph Construction and Proposal Generation. Our experiments use a widely used vector graphics
standards called Scalable Vector Graphics (SVG). All the primitives in SVG are first converted to
cubic Bézier Curves. A circle is split equally into four parts and then each part is converted into Bézier
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Table 1: Performance comparison on the floorplan dataset.
Methods Pretrained AP50 (%) AP75 (%) mAP (%) Inference time (ms) Params(M) GFLOPs

Yolov3-tiny 7 75.23 60.97 53.24 1.2 8.7 13.0
Yolov3 7 88.24 80.44 72.98 8.2 61.6 155.2

Yolov3-spp 7 87.38 79.66 71.61 8.3 62.7 156.1
Yolov4 7 93.04 87.48 79.59 11.7 70.3 165.5

faster-rcnn-R18-FPN 7 80.91 71.48 67.32 58.7 28.4 126.8
faster-rcnn-R34-FPN 7 80.50 72.18 65.89 61.9 38.5 157.3
faster-rcnn-R50-FPN 7 80.31 73.28 66.53 73.3 41.4 165.7
retinanet-R50-FPN 7 87.50 82.91 79.18 79.2 38.0 189.2

YOLaT (Ours) 7 98.83 94.65 90.59 1.3 1.6 1.5

faster-rcnn-R50-FPN 3 98.04 95.23 90.25 71.2 41.4 165.6
Yolov3 3 74.61 60.33 53.76 8.2 61.6 155.2

curves. We also split curves at the intersection into multiple sub-curves to model delicate differences.
For proposal generation, each region cluster is slices into a grid with 10 columns and 10 rows.

Training. We use Adam optimizer with a learning rate of 0.0025 and a batch size of 16. For data
augmentation, we randomly translate and scale the vector graphics by at most 10% of the image width
and height, and the transformed vector graphics are further rotated by a random angle. The model
is trained for 200 epochs from scratch which takes around 2 hours on a Nvidia V100 graphic card.

4.2 Datasets

We use SESYD, which is a public database containing different types of vector graphic documents,
with the corresponding object detection groundtruth, produced using the 3gT system1. Our experi-
ments use the floorplans and diagrams collections.

Floorplans. This dataset includes vector graphics for floorplans. It contains 1,000 images with
totally 28,065 objects in 16 categories, e.g., armchair, tables and windows. The images are evenly
divided into 10 layouts. We divide half of the layouts as the training data and the other half for
validation and test. The ratio of the validation and test data is 1:9.

Diagrams. This dataset includes vector graphics for diagrams. It contains 1,000 images with totally
1,4100 objects in 21 categories, e.g., diode and resistor. There are 10 layouts and 100 images for each
layout. Note that scale variance of different objects is huge in this dataset. For example, a resistor is
often much smaller compared to a transistor. We divide the training, validation and test set in a way
that objects from the same category are included in both training and testing set. Thus, the dataset is
split as 600, 41 and 359 images for training, validation and test stage.

4.3 Evaluation Metric

We evaluate the models in terms of both accuracy and efficiency. For accuracy, we use AP50,
AP75 and mAP, where AP∗ represents the average precision with the intersection over union (IOU)
threshold for counting as detected as 50%, and 75%. mAP is the mean of the average precision for
the IOU threshold between 0.50 and 0.95. We also evaluate the efficiency because of the real-world
requirements for real-time object detection. Specifically, we use GFLOPs (Giga (one billion) Floating
point operations) and inference time for model efficiency and we also report the number of parameters
to meet the scenarios of limited resources. The inference time is evaluated on a Nvidia V100.

4.4 Comparison to Baselines

We compare YOLaT with two types of object detection methods: one-stage methods, i.e., Yolov3 [14],
Yolov4 [15, 40] and its variants, RetinaNet [6], and two-stage methods, i.e., faster-rcnn with Pyramid
Network (FPN) [41] and its variants. For Yolov3, the -tiny variant is a smaller model and the -spp
uses Spatial Pyramid Pooling. For Yolov4, we use a scaled Yolov4 [40] with slightly more parameters
and potentially much better performance called Yolov4-P5. The faster-rcnn-R*-FPN model series

1http://mathieu.delalandre.free.fr/projects/sesyd/
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Table 2: Performance comparison on the diagram dataset.
Methods Pretrained AP50 (%) AP75 (%) mAP (%) Inference time (ms) Params (M) GFLOPs

Yolov3-tiny 7 88.40 79.53 71.42 3.6 8.7 13.0
Yolov3 7 89.69 81.38 78.20 10.9 61.6 155.2

Yolov3-spp 7 90.29 84.51 78.68 10.8 62.7 156.1
Yolov4 7 88.71 84.65 76.28 11.1 70.3 165.5

faster-rcnn-R18-FPN 7 92.79 89.10 85.89 34.4 28.4 121.1
faster-rcnn-R34-FPN 7 90.47 88.74 85.21 36.0 38.5 150.0
faster-rcnn-R50-FPN 7 91.88 90.25 84.65 44.9 41.7 158.0
retinanet-R50-FPN 7 91.33 83.17 82.79 47.9 38.0 179.5

YOLaT (Ours) 7 96.63 94.89 89.67 2.1 1.6 2.9

faster-rcnn-R50-FPN 3 95.24 93.57 90.76 40.0 41.7 157.9
Yolov3 3 90.11 84.68 79.55 8.2 61.6 155.2

Table 3: Ablation study and variant analysis on the floorplan dataset.

(a) Ablation study on graph construction.

Methods AP50(%) AP75(%) mAP(%)

YOLaT 98.83 94.65 90.59

w/o Ep 95.81 91.03 87.17
w/o Es 91.57 91.22 86.00
w/o xe

ij 94.57 90.76 86.25

(b) Ablation study and variant analysis on GNN model.

Methods AP50(%) AP75(%) mAP(%)

stroke-wise
stream

w/o ht
i 96.83 93.19 88.40

w/o ht
j − ht

i 95.87 92.90 87.83

position-wise
stream

early aggregate 95.82 91.64 87.90
with ht

j − ht
i 98.67 94.46 90.39

aggregation
function

GCN 90.36 88.02 83.32
GAT 91.20 89.46 83.92

GraphSage 92.70 91.17 85.26

use backbones of different scales, with ResNet18 [42], ResNet34, ResNet50 for R18, R34, R50,
respectively.

We choose these baselines because they are the most popular methods in object detection. On both
datasets, YOLaT outperforms all baselines without pretraining on ImageNet in terms of precision
and efficiency as shown in Table 1 and Table 2. We also include a baseline, i.e., faster-rcnn-R50-FPN
which is pretrained on ImageNet, YOLaT shows competitive precision with around 100× less FLOPs
and around 25× less model parameters. We also train Yolov3 with ImageNet pretrained backbone,
but do not observe performance improvement. We conduct 3 rounds of experiments with different
random seeds and the standard error in terms of AP50 is 0.0003 on floorplan and 0.0008 on diagram.

For Yolov3, we use the implementation of ultralytics2 [43]. For Yolov4 we use the official pytorch
implementation of Scaled Yolov43 [40]. Note that both the Yolov3 and Yolov4 implementation
shows superior performance on COCO [2] when without ImageNet pretraining. For faster-rcnn and
retina-net, we use the Detectron2 [44] library4. For the non-pretrained model, we use the strategies of
replacing Batch normalization to Group Normalization following [45] to improve the performance.

Broader Impact. Our YOLaT model may present a promising solution for applications that have
the input of vector graphics. Any deployment of the proposed model however should be preceded by
an analysis of the potential biases captured by the dataset sources used for training and the correction
of any such undesirable biases captured by the pre-trained backbones and model.

4.5 Ablation Study and Variants Analysis

Graph Construction. We analyze the effectiveness of the Bézier based graph construction method
in YOLaT on SYSED-Floorplans dataset. Table 3a shows the results of the ablation study on position-
wise edges Ep (as defined in Eq. 7), stroke-wise edges Es (as defined in Eq. 6) and edge attributes xe

ij
(as defined in Eq. 2). The ablation of these components show a significant drop in precision.

Dual-Stream GNN. As show in Table 3b, we conduct several experiments to analyze the effective-
ness of our dual-stream GNN that is specifically designed for vector graphics recognition. We did the

2https://github.com/ultralytics/yolov3
3https://github.com/WongKinYiu/ScaledYOLOv4
4https://github.com/facebookresearch/detectron2
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Missing objects: 3

Wrong predictions: 0

Missing objects: 13

Wrong predictions: 4 Imprecise box

precise box

Struggled with details

Capture details

YOLaT

Yolo v3

Figure 3: Visualizations of Yolov3 (upper line) and YOLaT (lower line) show that 1) [Left] Yolov3
has more missing objects (shaded boxes in YOLaT figure) and wrong predictions (shaded boxes in
Yolov3 figure). 2) [Mid] The prediction boxes of YOLaT are tighter and more accurate. 3) [Right]
Yolov3 can not distinguish the details of transistors, e.g., the direction of the arrows, leading to wrong
predictions.

ablation of YOLaT without the input ht
i and ht

j − ht
i. For position-wise stream, feature aggregation

for position-wise edges is conducted on every layer in GNN, instead of only last layer. the experiment
results show that early aggregation hurts the performance, due to the over-smoothing caused by
fast message passing along the fully connected edges. Due to the high computation complexity of
aggregation function on fully connected position-wise edges, YOLaT discards neighboring feature
difference in fp. This experiment shows that there is no obvious performance improvement by
adding neighboring feature difference on fp. Meanwhile, this method significantly increases the
computation complexity by and increase GFLOPs by almost 60% from 1.5 to 2.4. The last three
rows of Figure 3b shows the performance comparison between YOLaT and some other popular GNN
aggregation methods. In this experiments, we replace our proposed aggregation function with the
aggregation functions in GCN [19], GAT [21] and GraphSage [20]. Since some of these methods do
not directly support edge attributes, similar to our dual-stream GNN, we treat it as extra dimensions
of features of a pair of adjacent nodes. The experiment shows that our GNN outperforms existing
GNN methods, which further verifies the effectiveness of our vector graphics specific design.

4.6 Visualizations

We visualize the detection results for Yolov3 and YOLaT as in Figure 3. The prediction results in
first two columns show that the bounding box predicted by Yolo is imprecise while the bounding
box predicted by YOLaT is precise and sits exactly at the border of every object. For example, both
models generate a bounding box for the table in the middle of the figure, while YOLaT outputs
tighter box for the object border. This is because YOLaT directly looks at the text and leverages the
information of where the positions of the curves are, while Yolo only leverages the lower resolution
pixel arrays rendered from the text. The imprecise predictions can affect the performance for higher
standard detection which is reflected as the AP with higher IOU. This is why the gap between Yolo
and YOLaT is bigger for mAP compared to that for AP50 as shown in Table 1. Also, Yolo gives
more undetected cases under a strict threshold, such as the armchair and sofa as in Figure 3.

The third column on Figure 3 shows that Yolov3 fails to distinguish the object details (the direction
of arrows in different types of transistors) due to the limited resolution of raster graphics, while by
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directly operating on the vector graphics with each primitive precisely described by textual command,
YOLaT is able to capture the details at very small scale.

5 Conclusions

We propose an efficient CNN-free pipeline does not need rasterization called YOLaT(You Only Look
at Text). YOLaT builds a unified representations for all primitives in a vector graphic with un-directed
multi-graph and detect objects with a dual-stream GNN specifically designed for vector graphics.
The experiments show that YOLaT outperforms both one-stage and two-stage deep learning methods
with much better efficiency. Our work provides a new direction for recognition on vector graphics,
and is able to draw more researchers’ attention on exploring the merits of vector graphics. In the
future, there is much work to further improve YOLaT and recognition on vector graphics in general,
such as leveraging both vector graphic and raster graphic based methods, building a GNN model
for vector graphics that supports deeper structure, large vector graphics dataset to support backbone
pre-training.
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